Проблемы управления термоядерным синтезом (УТС). Международный журнал прикладных и фундаментальных исследований Проблемы создания термоядерных установок

Разработана новую методика для эффективного замедления убегающих электронов путем введения «тяжелых» ионов, таких как неон или аргон, в реактор.

Функциональный термоядерный реактор - это все еще мечта, но она в конечном итоге может реализоваться благодаря многочисленным исследованиям и экспериментам с целью разблокировки неограниченного запаса чистой энергии. Проблемы с которыми ученые сталкиваются при получении ядерного синтеза, несомненно, серьезные и действительно сложные, однако все преодолимо. И кажется, что одна из главных проблем решена.

Ядерный синтез - это не придуманный человечеством процесс, а существующий в природе изначально, процесс питает наше Солнце. Глубоко внутри нашей родной звезды атомы водорода расположены вместе, чтобы сформировать гелий, который является толчковым для процесса. Термоядерный синтез высвобождает огромное количество энергии, но требует огромных затрат на создание чрезвычайно высокого давления и температуры, что сложно поддается контролируемому воспроизведению на Земле.

В прошлом году исследователи из Массачусетского технологического института приблизили нас к синтезу, поместив плазму в условия с тем самым, подходящим, давлением, теперь, два исследователя из Университета Чалмерса открыли еще один кусочек головоломки.

Одна из проблем, с которой инженеры столкнулись, - это убегающие электроны. Эти электроны, с чрезвычайно высокой энергией, могут внезапно и неожиданно, разогнаться до очень высокой скорости, что может разрушить стену реактора без предупреждения.

Докторанты Линнея Хешлов и Оле Эмбероз разработали новую методику для эффективного замедления этих убегающих электронов путем введения «тяжелых» ионов, таких как неон или аргон, в реактор. В итоге, электроны, соударяясь с высоким зарядом в ядра этих ионов, замедляются и становятся гораздо более управляемыми.

«Когда мы сможем эффективно замедлять убегающие электроны, мы подойдем на один шаг ближе к функциональному термоядерному реактору», - говорит Линнеа Хешлов.

Исследователи создали модель, которая может эффективно прогнозировать энергию электронов и поведение. Используя Математическое моделирование плазмы физики теперь могут эффективно контролировать скорость убегания электронов, не прерывая процесс синтеза.

«Многие считают, что это будет работать, но легче съездить на Марс, чем добиться слияния», - говорит Линнеа Хешлов: «Можно сказать, что мы пытаемся собрать здесь звезды на земле, и это может занять некоторое время. Он берет невероятно высокие температуры, горячее, чем центр солнца, для нас, чтобы успешно добиться слияния здесь, на земле. Поэтому я надеюсь, что все это дело времени».

по материалам newatlas.com, перевод

3. Проблемы управляемого термоядерного синтеза

Исследователи всех развитых стран связывают надежды на преодоление грядущего энергетического кризиса с управляемой термоядерной реакцией. Такая реакция - синтез гелия из дейтерия и трития - миллионы лет протекает на Солнце, а в земных условиях ее вот уже пятьдесят лет пытаются осуществить в гигантских и очень дорогих лазерных установках, токамаках (устройство для осуществления реакции термоядерного синтеза в горячей плазме) и стеллараторах (замкнутая магнитная ловушка для удержания высокотемпературной плазмы). Однако есть и другие пути решения этой непростой задачи, и вместо огромных токамаков для осуществления термоядерного синтеза можно будет, вероятно, использовать довольно компактный и недорогой коллайдер - ускоритель на встречных пучках.

Для работы Токамака необходимо очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт сжигает около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 10 трлн. кВт/ч электроэнергии в год, то есть столько же, сколько сегодня производят все электростанции Земли, то мировых запасов дейтерия и лития хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет.

Кроме слияния дейтерия и лития возможен чисто солнечный термояд, когда соединяются два атома дейтерия. В случае освоения этой реакции энергетические проблемы будут решены сразу и навсегда.

В любом из известных вариантов управляемого термоядерного синтеза (УТС) термоядерные реакции не могут войти в режим неконтролируемого нарастания мощности, следовательно, таким реакторам не присуща внутренняя безопасность.

С физической точки зрения задача формулируется несложно. Для осуществления самоподдерживающейся реакции ядерного синтеза необходимо и достаточно соблюсти два условия.

1. Энергия, участвующих в реакции ядер, должна составлять не менее 10 кэВ. Чтобы пошел ядерный синтез, участвующие в реакции ядра должны попасть в поле ядерных сил, радиус действия которых 10-12-10-13 с.см. Однако атомные ядра обладают положительным электрическим зарядом, а одноименные заряды отталкиваются. На рубеже действия ядерных сил энергия кулоновского отталкивания составляет величину порядка 10 кэВ. Чтобы преодолеть этот барьер, ядра при столкновении должны иметь кинетическую энергию, по крайней мере не меньше данной величины.

2. Произведение концентрации реагирующих ядер на время удержания, в течение которого они сохраняют указанную энергию, должно быть не менее 1014 с.см-3. Это условие - так называемый критерий Лоусона - определяет предел энергетической выгодности реакции. Чтобы энергия, выделившаяся в реакции синтеза, хотя бы покрывала расходы энергии на инициирование реакции, атомные ядра должны претерпеть много столкновений. В каждом столкновении, при котором происходит реакция синтеза между дейтерием (D) и тритием (Т), выделяется 17,6 МэВ энергии, т. е. примерно 3.10-12 Дж. Если, например, на поджиг затрачивается энергия 10 МДж, то реакция будет неубыточной, если в ней примут участие не менее 3.1018 пар D-T. А для этого довольно плотную плазму высокой энергии нужно удерживать в реакторе достаточно долго. Такое условие и выражается критерием Лоусона.

Если удастся одновременно выполнить оба требования, проблема управляемого термоядерного синтеза будет решена.

Однако техническая реализация данной физической задачи сталкивается с огромными трудностями. Ведь энергия 10 кэВ - это температура 100 миллионов градусов. Вещество при такой температуре удержать в течение даже долей секунды можно только в вакууме, изолировав его от стенок установки.

Но существует и другой метод решения этой проблемы – холодный термояд. Что такое холодный термояд - это аналог "горячей" термоядерной реакции проходящий при комнатной температуре.

В природе существует как минимум, два способа изменения материи внутри одной мерности континуума. Можно вскипятить воду на огне, т.е. термически, а можно в СВЧ печи, т.е. частотно. Результат один – вода закипает, разница лишь в том, что частотный метод более быстрый. Также используется достижение сверхвысокой температуры, чтобы расщепить ядро атома. Термический способ даёт неуправляемую ядерную реакцию. Энергия холодного термояда – энергия переходного состояния. Одним из основных условий конструкции реактора для проведения реакции холодного термояда есть условие его пирамидально – кристаллической формы. Другим важным условием есть наличие вращающегося магнитного и торсионного полей. Пересечение полей происходит в точке неустойчивого равновесия ядра водорода.

Учёные Рузи Талейархан из Ок-Риджской Национальной Лаборатории, Ричард Лейхи из Политехнического Университета им. Ренссилира и академик Роберт Нигматулин - зафиксировали в лабораторных условиях холодную термоядерную реакцию.

Группа использовала мензурку с жидким ацетоном размером с два-три стакана. Сквозь жидкость интенсивно пропускались звуковые волны, производя эффект, известный в физике как акустическая кавитация, следствием которой является сонолюминесценция. Во время кавитации в жидкости появлялись маленькие пузыри, которые увеличивались до двух миллиметров в диаметре и взрывались. Взрывы сопровождались вспышками света и выделением энергии т.е. температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину, а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза.

"Технически" суть реакции заключается в том, что в результате соединения двух атомов дейтерия образуется третий - изотоп водорода, известный как тритий, и нейтрон, характеризующийся колоссальным количеством энергии.


Току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии. 8. Сверхбыстродействующие системы. Управляемый термоядерный синтез с инерциальным удержанием Трудности, связанные с магнитным удержанием плазмы, можно в принципе обойти, если сжигать ядерное горючее за чрезвычайно малые времена, когда...

На 2004 год . Очередные переговоры по этому проекту пройдут в мае 2004 года в Вене. Реактор начнут создавать в 2006 году и планируют запустить в 2014. Принцип работы Термоядерный синтез* – это дешевый и экологически безопасный способ добычи энергии. На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез – из тяжелого изотопа водорода дейтерия образуется гелий. При этом...

Экспериментального термоядерного реактора возглавляет Е.П.Велихов. США потратив 15 миллиардов долларов вышли из этого проекта, остальные 15 миллиардов уже потрачена международными научными организациями. 2. Технические, экологические и медицинские проблемы. При работе установок управляемого термоядерного синтеза (УТС). возникают нейтронные пучки и гамма излучение, а так же возникают...

Энергии и какого качества понадобится, для того чтобы выделяемой энергии оказалось достаточно для покрытия расходов на запуск процесса энерговыделения. Этот вопрос мы обсудим ниже в связи с проблемами термоядерного синтеза. О качестве энергии лазеров В простейших случаях ограничения на преобразование энергии низкого качества в энергию высокого качества очевидны. Приведу несколько примеров из...

1

Несмотря на полные абсолютной уверенности заявления достаточно авторитетных зарубежных специалистов о скором использовании энергии, которую, наконец, можно будет получать от термоядерных реакторов, - всё не так оптимистично. Термоядерная энергетика, казалось бы, такая понятная и доступная, на самом деле по-прежнему далека от широкого и повсеместного внедрения на практике. Недавно в Интернете снова появились радужные сообщения, уверяющие широкую общественность в том, что «не осталось практически никаких технических препятствий для создания в скором времени термоядерного реактора». Но ведь такая уверенность была и раньше. Казалось, что это очень перспективная и решаемая проблема. Но прошли десятки лет, а воз, что называется, и ныне там. Высокоэффективный экологически чистый источник энергии до сих пор остаётся неподвластным человечеству. Как и прежде это - перспективный предмет исследований и разработок, которые должны будут когда-то завершиться удачным проектом - и тогда энергия пойдёт к нам как из рога изобилия. Но дело в том, что столь долгое продвижение вперёд, больше похожее на топтание на месте, заставляет очень серьёзно задуматься и оценить создавшуюся ситуацию. Что если мы недооцениваем какие-то важные факторы, не учитываем значение и роль каких-либо параметров. Ведь даже в Солнечной системе есть так и не вступивший в эксплуатацию термоядерный реактор. Это планета Юпитер. Недостаток массы и гравитационного сжатия не позволили этому представителю планет-гигантов выйти на необходимую мощность и стать ещё одним Солнцем в Солнечной системе. Получается, что также как для обычного ядерного топлива существует критическая масса, необходимая для протекания цепной реакции, так и в данном случае существуют ограничивающие параметры. И если для того, чтобы как-то обойти ограничения по минимально необходимой массе при использовании традиционного ядерного заряда, используется сжатие материала в процессе взрыва, то и в случае создания термоядерных установок тоже нужны определённые нестандартные решения.

Проблема состоит в том, что плазму нужно не только получить, но и удержать. Нужна стабильность в работе создаваемого термоядерного реактора. Но с этим как раз большие проблемы.

Конечно, никто не будет спорить о преимуществах термоядерного синтеза. Это практически неограниченный ресурс для получения энергии. Но директор российского агентства ITER (речь идёт о международном экспериментальном термоядерном реакторе) справедливо отметил, что уже более 10 лет назад США и Англия получили энергию на термоядерных установках, но выход её был далёк от вложенной мощности. Максимум составлял даже менее 70 %. А ведь современный проект (ITER) предполагает получение в 10 раз большей мощности, по сравнению с вложенной. Поэтому очень настораживают заявления, о том, что проект технически сложный и в него будут вноситься коррективы, как, разумеется, и в даты запуска реактора, а, следовательно, возврата инвестиций государствам, вложившим средства в данную разработку.

Таким образом, возникает вопрос, насколько оправдана попытка заменить мощную гравитацию, удерживающую плазму в природных термоядерных реакторах (звёздах) магнитными полями - результатом творения инженерной мысли человека? Преимущество термоядерного синтеза - выделение энергии в миллионы раз превышающее тепловыделение, происходящее, например, при сжигании обычного топлива - именно оно, в то же самое время, является препятствием к успешному обузданию вырывающейся на свободу энергии. То, что легко решается достаточным уровнем гравитации, становится невероятно сложной задачей для инженеров и учёных. Поэтому так трудно разделить оптимизм относительно близких перспектив для термоядерной энергетики. Гораздо больше шансов пользоваться естественным термоядерным реактором - Солнцем. Этой энергии хватит ещё не менее чем на 5 миллиардов лет. И за счёт неё будут работать фотоэлементы, термоэлементы и даже какие-нибудь паровые котлы, для которых вода была бы нагрета с помощью линз или сферических зеркал.

Библиографическая ссылка

Силаев И.В., Радченко Т.И. ПРОБЛЕМЫ СОЗДАНИЯ УСТАНОВОК ДЛЯ ТЕРМОЯДЕРНОГО СИНТЕЗА // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 1. – С. 37-38;
URL: https://applied-research.ru/ru/article/view?id=4539 (дата обращения: 19.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Сивкова Ольга Дмитриевна

Данная работа заняла 3 место на районном НОУ

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение

Средняя общеобразовательная школа №175

Ленинского района г. Н. Новгорода

Проблемы термоядерного синтеза

Выполнила: Сивкова Ольга Дмитриевна

Ученица 11 «А» класса, школы №175

Научный руководитель:

Киржаева Д. Г.

Нижний Новгород

2013 год.

Введение 3

2. Управляемый термоядерный синтез 8

3. Преимущества термоядерного синтеза 10

4. Проблемы термоядерного синтеза 12

4.1 Экологические проблемы 15

4.2 Медицинские проблемы 16

5. Термоядерные установки 18

6. Перспективы освоения термоядерного синтеза 23

Заключение 26

Литература 27

Введение


По разным прогнозам, основные источники электроэнергии на планете закончатся через 50-100 лет. Запасы нефти человечество исчерпает лет через 40, газа - максимум через 80, а урана - через 80-100 лет. Запасов угля может хватить лет на 400. Но использование этого органического топлива, причем в качестве основного, ставит планету за грань экологической катастрофы. Если сегодня не остановить столь нещадное загрязнение атмосферы, ни о каких столетиях не может быть и речи. А значит, альтернативный источник энергии нам необходим уже в обозримом будущем.

И такой источник есть. Это - термоядерная энергетика, в которой используется абсолютно нерадиоактивный дейтерий и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике. И источник этот практически неисчерпаем, он основан на столкновении ядер водорода, а водород - самое распространенное вещество во Вселенной.

Одной из важнейших задач, стоящих перед человечеством в этой области стоит проблема управляемого термоядерного синтеза.

Человеческая цивилизация не может существовать, а тем более развиваться без энергии. Все хорошо понимают, что освоенные источники энергии, к сожалению, могут скоро истощиться. По данным Мирового энергетического совета, разведанных запасов углеводородного топлива на Земле осталось на 30 лет.

Сегодня основными источниками энергии служат нефть, газ и уголь.

По оценкам специалистов, запасы этих ископаемых на исходе. Почти не осталось разведанных, годных к освоению месторождений нефти и уже наши внуки могут столкнуться с очень серьезной проблемой нехватки энергии.

Наиболее обеспеченные топливом атомные электростанции могли бы, конечно, еще не одну сотню лет снабжать человечество электроэнергией.

Объект исследования: Проблемы управляемого термоядерного синтеза.

Предмет исследования: Термоядерный синтез.

Цель исследования: Решить проблему управления термоядерным синтезом;

Задачи исследования:

  • Изучить виды термоядерных реакций.
  • Рассмотреть все возможные варианты донесения энергии, выделявшийся во время термоядерной реакции, до человека.
  • Выдвинуть теорию о преобразования энергии в электричество.

Исходный факт:

Ядерная энергия выделяется при распаде или синтезе атомных ядер. Любая энергия - физическая, химическая, или ядерная проявляется своей способностью выполнять работу, излучать высокую температуру или радиацию. Энергия в любой системе всегда сохраняется, но она может быть передана другой системе или изменена по форме.

Достижению условий управляемого термоядерного синтеза препятствуют несколько основных проблем:

  • Во-первых, нужно нагреть газ до очень высокой температуры.
  • Во-вторых, необходимо контролировать количество реагирующих ядер в течение достаточно долгого времени.
  • В-третьих, количество выделяемой энергии должно быть больше, чем было затрачено для нагревания и ограничения плотности газа.
  • Следующая проблема – накопление этой энергии и преобразование её в электричество

1. Термоядерные реакции на Солнце

Что является источником солнечной энергии? Какова природа процессов, в ходе которых производится огромное количество энергии? Сколько времени будет еще светить Солнце?

Первые попытки ответить на эти вопросы были сделаны астрономами в середине ХIX века, после формулирования физиками закона сохранения энергии.

Роберт Майер предположил, что Солнце светит за счет постоянной бомбардировки поверхности метеоритами и метеорными частицами. Эта гипотеза была отвергнута, так как простой расчет показывает, что для поддержания светимости Солнца на современном уровне необходимо, чтобы на него за каждую секунду выпадало 2∙10 15 кг метеорного вещества. За год это составит 6∙10 22 кг, а за время существования Солнца, за 5 миллиардов лет – 3∙10 32 кг. Масса Солнца М = 2∙10 30 кг, поэтому за пять миллиардов лет на Солнце должно было выпасть вещества в 150 раз больше массы Солнца.

Вторая гипотеза была высказана Гельмгольцем и Кельвином также в середине ХIX века. Они предположили, что Солнце излучает за счет сжатия на 60–70 метров ежегодно. Причина сжатия – взаимное притяжение частиц Солнца, именно поэтому данная гипотеза получила название контракционной . Если сделать расчет по данной гипотезе, то возраст Солнца будет не больше 20 миллионов лет, что противоречит современным данным, полученным по анализу радиоактивного распада элементов в геологических образцах земного грунта и грунта Луны.

Третью гипотезу о возможных источниках энергии Солнца высказал Джеймс Джинс в начале ХХ века. Он предположил, что в недрах Солнца содержатся тяжелые радиоактивные элементы, которые самопроизвольно распадаются, при этом излучается энергия. Например, превращение урана в торий и затем в свинец, сопровождается выделением энергии. Последующий анализ этой гипотезы также показал ее несостоятельность; звезда, состоящая из одного урана, не выделяла бы достаточно энергии для обеспечения наблюдаемой светимости Солнца. Кроме того, существуют звезды, по светимости во много раз превосходящие светимость нашей звезды. Маловероятно, что в тех звездах запасы радиоактивного вещества будут также больше.

Самой вероятной гипотезой оказалась гипотеза синтеза элементов в результате ядерных реакций в недрах звезд.

В 1935 году Ханс Бете выдвинул гипотезу, что источником солнечной энергии может быть термоядерная реакция превращения водорода в гелий. Именно за это Бете получил Нобелевскую премию в 1967 году.

Химический состав Солнца примерно такой же, как и у большинства других звезд. Примерно 75 % – это водород, 25 % – гелий и менее 1 % – все другие химические элементы (в основном, углерод, кислород, азот и т.д.). Сразу после рождения Вселенной "тяжелых" элементов не было совсем. Все они, т.е. элементы тяжелее гелия и даже многие альфа-частицы, образовались в ходе "горения" водорода в звездах при термоядерном синтезе. Характерное время жизни звезды типа Солнца десять миллиардов лет.

Основной источник энергии – протон-протонный цикл – очень медленная реакция (характерное время 7,9∙10 9 лет), так как обусловлена слабым взаимодействием. Ее суть состоит в том, что из четырех протонов получается ядро гелия. При этом выделяются пара позитронов и пара нейтрино, а также 26,7 МэВ энергии. Количество нейтрино, излучаемое Солнцем за секунду, определяется только светимостью Солнца. Поскольку при выделении 26,7 МэВ рождается 2 нейтрино, то скорость излучения нейтрино: 1,8∙10 38 нейтрино/с. Прямая проверка этой теории – наблюдение солнечных нейтрино. Нейтрино высоких энергий (борные) регистрируются в хлор-аргонных экспериментах (эксперименты Дэвиса) и устойчиво показывают недостаток нейтрино по сравнению с теоретическим значением для стандартной модели Солнца. Нейтрино низких энергий, возникающие непосредственно в рр-реакции, регистрируются в галлий-германиевых экспериментах (GALLEX в Гран Сассо (Италия – Германия) и SAGE на Баксане (Россия – США)); их также "не хватает".

По некоторым предположениям, если нейтрино имеют отличную от нуля массу покоя, возможны осцилляции (превращения) различных сортов нейтрино (эффект Михеева – Смирнова – Вольфенштейна) (существует три сорта нейтрино: электронное, мюонное и тауонное нейтрино). Т.к. другие нейтрино имеют гораздо меньшие сечения взаимодействия с веществом, чем электронное, наблюдаемый дефицит может быть объяснен, не меняя стандартной модели Солнца, построенной на основе всей совокупности астрономических данных.

Каждую секунду Солнце перерабатывает около 600 миллионов тонн водорода. Запасов ядерного топлива хватит еще на пять миллиардов лет, после чего оно постепенно превратится в белый карлик.

Центральные части Солнца будут сжиматься, разогреваясь, а тепло, передаваемое при этом внешней оболочке, приведет к ее расширению до размеров, чудовищных по сравнению с современными: Солнце расширится настолько, что поглотит Меркурий, Венеру и будет тратить "горючее" в сто раз быстрее, чем в настоящее время. Это приведет к увеличению размеров Солнца; наша звезда станет красным гигантом, размеры которого сравнимы с расстоянием от Земли до Солнца!

Мы, конечно, будем заранее поставлены в известность о таком событии, поскольку переход к новой стадии займет примерно 100–200 миллионов лет. Когда температура центральной части Солнца достигнет 100 000 000 К, начнет сгорать и гелий, превращаясь в тяжёлые элементы, и Солнце вступит в стадию сложных циклов сжатия и расширения. На последней стадии наша звезда потеряет внешнюю оболочку, центральное ядро будет иметь невероятно большую плотность и размеры, как у Земли. Пройдет еще несколько миллиардов лет, и Солнце остынет, превратившись в белый карлик.

2. Управляемый термоядерный синтез.

Управляемый термоядерный синтез (УТС) – синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерном оружии), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий ( 2 H) и тритий (3 H), а в более отдалённой перспективе гелий-3 ( 3 He) и бор-11 (11 B).

Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.

К термоядерному горючему относят дейтерий 2 D 1 , тритий 3 Т 1 и 6 Li 3 . Первичным ядерным горючим этого типа является дейтерий. 6 Li 3 служит сырьем для получения вторичного термоядерного горючего – трития.

Тритий 3 Т 1 - сверхтяжёлый водород 3 Н 1 – получают при облучении природного Li ( 7,52% 6 Li 3 ) нейтронами и альфа-частицами ( 4 α 2 - ядра атома гелия 4 Не 2 ). В качестве термоядерного горючего используют дейтерий в смеси с тритием и 6 Li 3 (в форме LiD и LiТ ). При осуществлении ядерных реакций синтеза в горючем протекают реакции синтеза ядер гелия (при температуре десятки-сотни миллионов градусов). Выделяющиеся нейтроны поглощаются ядрами 6 Li 3 , при этом образуется дополнительное количество трития по реакции: 6 Li 3 + 1 п 0 = 3 Т 1 + 4 Не 2 (в реакции суммы массовых числе 6+1=3+4 и суммы зарядов 3+0=1+2 должны быть одинаковыми в обеих частях уравнения). Два ядра дейтерия (тяжёлый водород) дают в результате реакции синтеза одно ядро трития (сверхтяжёлый водород) и протон (ядро атома нормального водорода): 2 D 1 + 2 D 1 = 3 Т 1 + 1 Р 1; Реакции может идти и по другому пути, с образованием ядра изотопа гелия 3 Не 2 и нейтрона 1 п 0 : 2 D 1 + 2 D 1 = 3 Не 2 + 1 п 0 . Тритий вступает в реакцию с дейтерием, вновь возникают нейтроны, способные взаимодействовать с 6 Li 3: 2 D 1 + 3 Т 1 = 4 Не 2 + 1 п 0 и т.д. Теплотворная способность термоядерного горючего в 5–6 раз выше, чем у делящихся материалов. Запасы дейтерия в гидросфере составляют порядка 10 13 т . Однако в настоящее время практически осуществляются только неуправляемые реакции (взрыв), широко ведется поиск методов осуществления управляемой термоядерной реакции, позволяющей в принципе обеспечить человечество энергией практически на неограниченный срок.

3.Преимущества термоядерного синтеза

Какие же преимущества имеет термоядерный синтез по сравнению с ядерными реакциями деления, которые позволяют надеяться на широкомасштабное развитие термоядерной энергетики? Основное и принципиальное отличие заключается в отсутствии долгоживущих радиоактивных отходов, которые характерны для ядерных реакторов деления. И хотя в процессе работы термоядерного реактора первая стенка активируется нейтронами, выбор подходящих низкоактивируемых конструкционных материалов открывает принципиальную возможность создания термоядерного реактора, в котором наведенная активность первой стенки будет снижаться до полностью безопасного уровня за тридцать лет после остановки реактора. Это означает, что выработавший ресурс реактор нужно будет законсервировать всего на 30 лет, после чего материалы могут быть переработаны и использованы в новом реакторе синтеза. Эта ситуация принципиально отличается от реакторов деления, которые производят радиоактивные расходы, требующие переработки и хранения в течение десятков тысяч лет. Кроме низкой радиоактивности, термоядерная энергетика имеет огромные, практически неисчерпаемые запасы топлива и других необходимых материалов, достаточных для производства энергии в течение многих сотен, если не тысяч лет.

Именно эти преимущества побудили основные ядерные страны начать в середине 50 годов широкомасштабные исследования по управляемому термоядерному синтезу. В Советском Союзе и США к этому времени уже были проведены первые успешные испытания водородных бомб, которые подтвердили принципиальную возможность использования энергии ядерного синтеза в земных условиях. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 г. исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. Водородная бомба была создана всего за несколько лет, и в то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако, потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 г. самая крупная термоядерная установка – Европейский ТОКАМАК (JET) получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Что же явилось причиной такой задержки? Оказалось, что для достижения цели физикам и инженерам пришлось решить массу проблем, о которых и не догадывались в начале пути. В течении этих 40 лет была создана наука – физика плазмы, которая позволила понять и описать сложные физические процессы, происходящие в реагирующей смеси. Инженерам потребовалось решить не менее сложные проблемы, в том числе, научиться создавать глубокий вакуум в больших объемах, подобрать и испытать подходящие конструкционные материалы, разработать большие сверхпроводящие магниты, мощные лазеры и источники рентгеновского излучения, разработать импульсные системы питания, способные создавать мощные пучки частиц, разработать методы высокочастотного нагрева смеси и многое другое.

4. Проблемы управляемого термоядерного синтеза

Исследователи всех развитых стран связывают надежды на преодоление грядущего энергетического кризиса с управляемой термоядерной реакцией. Такая реакция - синтез гелия из дейтерия и трития - миллионы лет протекает на Солнце, а в земных условиях ее вот уже пятьдесят лет пытаются осуществить в гигантских и очень дорогих лазерных установках, токамаках (устройство для осуществления реакции термоядерного синтеза в горячей плазме) и стеллараторах (замкнутая магнитная ловушка для удержания высокотемпературной плазмы). Однако есть и другие пути решения этой непростой задачи, и вместо огромных токамаков для осуществления термоядерного синтеза можно будет, вероятно, использовать довольно компактный и недорогой коллайдер - ускоритель на встречных пучках.

Для работы Токамака необходимо очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт сжигает около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 10 трлн. кВт/ч электроэнергии в год, то есть столько же, сколько сегодня производят все электростанции Земли, то мировых запасов дейтерия и лития хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет.

Кроме слияния дейтерия и лития возможен чисто солнечный термояд, когда соединяются два атома дейтерия. В случае освоения этой реакции энергетические проблемы будут решены сразу и навсегда.

В любом из известных вариантов управляемого термоядерного синтеза (УТС) термоядерные реакции не могут войти в режим неконтролируемого нарастания мощности, следовательно, таким реакторам не присуща внутренняя безопасность.

С физической точки зрения задача формулируется несложно. Для осуществления самоподдерживающейся реакции ядерного синтеза необходимо и достаточно соблюсти два условия.

  1. Энергия, участвующих в реакции ядер, должна составлять не менее 10 кэВ. Чтобы пошел ядерный синтез, участвующие в реакции ядра должны попасть в поле ядерных сил, радиус действия которых 10-12-10-13 с.см. Однако атомные ядра обладают положительным электрическим зарядом, а одноименные заряды отталкиваются. На рубеже действия ядерных сил энергия кулоновского отталкивания составляет величину порядка 10 кэВ. Чтобы преодолеть этот барьер, ядра при столкновении должны иметь кинетическую энергию, по крайней мере не меньше данной величины.
  2. Произведение концентрации реагирующих ядер на время удержания, в течение которого они сохраняют указанную энергию, должно быть не менее 1014 с.см-3. Это условие - так называемый критерий Лоусона - определяет предел энергетической выгодности реакции. Чтобы энергия, выделившаяся в реакции синтеза, хотя бы покрывала расходы энергии на инициирование реакции, атомные ядра должны претерпеть много столкновений. В каждом столкновении, при котором происходит реакция синтеза между дейтерием (D) и тритием (Т), выделяется 17,6 МэВ энергии, т. е. примерно 3.10-12 Дж. Если, например, на поджиг затрачивается энергия 10 МДж, то реакция будет неубыточной, если в ней примут участие не менее 3.1018 пар D-T. А для этого довольно плотную плазму высокой энергии нужно удерживать в реакторе достаточно долго. Такое условие и выражается критерием Лоусона.

Если удастся одновременно выполнить оба требования, проблема управляемого термоядерного синтеза будет решена.

Однако техническая реализация данной физической задачи сталкивается с огромными трудностями. Ведь энергия 10 кэВ - это температура 100 миллионов градусов. Вещество при такой температуре удержать в течение даже долей секунды можно только в вакууме, изолировав его от стенок установки.

Но существует и другой метод решения этой проблемы – холодный термояд. Что такое холодный термояд - это аналог "горячей" термоядерной реакции проходящий при комнатной температуре.

В природе существует как минимум, два способа изменения материи внутри одной мерности континуума. Можно вскипятить воду на огне, т.е. термически, а можно в СВЧ печи, т.е. частотно. Результат один – вода закипает, разница лишь в том, что частотный метод более быстрый. Также используется достижение сверхвысокой температуры, чтобы расщепить ядро атома. Термический способ даёт неуправляемую ядерную реакцию. Энергия холодного термояда – энергия переходного состояния. Одним из основных условий конструкции реактора для проведения реакции холодного термояда есть условие его пирамидально – кристаллической формы. Другим важным условием есть наличие вращающегося магнитного и торсионного полей. Пересечение полей происходит в точке неустойчивого равновесия ядра водорода.

Учёные Рузи Талейархан из Ок-Риджской Национальной Лаборатории, Ричард Лейхи из Политехнического Университета им. Ренссилира и академик Роберт Нигматулин - зафиксировали в лабораторных условиях холодную термоядерную реакцию.

Группа использовала мензурку с жидким ацетоном размером с два-три стакана. Сквозь жидкость интенсивно пропускались звуковые волны, производя эффект, известный в физике как акустическая кавитация, следствием которой является сонолюминесценция. Во время кавитации в жидкости появлялись маленькие пузыри, которые увеличивались до двух миллиметров в диаметре и взрывались. Взрывы сопровождались вспышками света и выделением энергии т.е. температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину, а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза.

"Технически" суть реакции заключается в том, что в результате соединения двух атомов дейтерия образуется третий - изотоп водорода, известный как тритий, и нейтрон, характеризующийся колоссальным количеством энергии.

4.1 Экономические проблемы

При создании УТС предполагается, что это будет крупная установка, оснащенная мощными компьютерами. Это будет целый маленький город. Но в случае аварии или поломки оборудования, работа станции будет нарушена.

Это не предусмотрено например в современных проектах АЭС. Считается что главное их построить, а что будет потом не важно.

Но в случае отказа 1 станции много городов останется без электроэнергии. Это можно наблюдать на примере АЭС в Армении. Вывоз радиоактивных отходов стал очень дорог. По требованию зеленых АЭС была закрыта. Население осталось без электроэнергии, оборудование электростанции износилось, а деньги выделенные международными организациями на восстановление были растрачены.

Серьезной экономической проблемой является дезактивация заброшенных производств, где производилась переработка урана. Например "в городе Актау - собственный маленький "чернобыль". Он расположен на территории химико-гидрометаллургического завода (ХГМЗ). Излучение гамма-фона в цехе по переработке урана (ГМЦ) местами достигает 11000 микрорентген в час, средний уровень фона - 200 микрорентген (Обычный естественный фон от 10 до 25 микрорентген в час). После остановки завода здесь вообще не проводилась дезактивация. Значительная часть оборудования, около пятнадцати тысяч тонн, имеет уже неснимаемую радиоактивность. При этом столь опасные предметы хранятся под открытым небом, плохо охраняются и постоянно растаскиваются с территории ХГМЗ.

Поэтому раз не существует вечных производств, в связи с появлением новых технологий УТС может быть закрыта и тогда предметы, металлы c предприятия попадут на рынок и пострадает местное население.

В системе охлаждения УТС будет использоваться вода. Но по данным экологов, если брать статистику по АЭС, вода из этих водоемов не пригодна для питья.

По данным экспертов, водоем полон тяжелых металлов (в частности, тория-232), и в некоторых местах уровень гамма-излучения достигает 50 - 60 микрорентген в час.

То есть сейчас, при строительстве АЭС не предусматриваются средства, которые бы возвращали местность в первоначальное состояние. И после закрытия предприятия никто не знает как захоронить накопившиеся отходы и очистить бывшее предприятие.

4.2 Медицинские проблемы

К вредным воздействиям УТС относится выработка мутантов вирусов и бактерий, вырабатывающих вредные вещества. Особенно это касается вирусов и бактерий, находящихся в теле человека. Появление злокачественных опухолей и заболевания раком, будет скорее всего распространенным заболеванием жителей поселков, живущих рядом с УТС. Жители всегда больше страдают, так как у них нет никаких средств защиты. Дозиметры дороги, а лекарства недоступны. Отходы от УТС будут сбрасывать в реки, стравливать в воздух или закачивать в подземные пласты, что происходит сейчас на АЭС.

Помимо повреждений, проявляющихся вскоре после облучения в больших дозах, ионизирующее излучение вызывает отдаленные последствия. В основном канцерогенез и генетические нарушения, которые могут возникнуть при любых дозах и характере облучения(разовом, хроническом, локальном).

По сообщениям от врачей, которые регистрировали заболевания работников АЭС, сначала идут сердечно сосудистые заболевания(инфаркты), затем рак. Сердечная мышца истончается под действием радиации, становиться дряблой, менее прочной. Встречаются совсем непонятные заболевания. Например отказ работы печени. Но почему это происходит, никто из врачей до сих пор не знает. При попадании радиоактивных веществ при аварии в дыхательные пути врачи вырезают поврежденные ткани легкого и трахеи и инвалид ходит с переносным устройством, для дыхания

5. Термоядерные установки

Ученые нашей страны и большинства развитых стран мира уже много лет занимаются проблемой использования термоядерных реакций для целей энергетики. Созданы уникальные термоядерные установки - сложнейшие технические устройства, предназначенные для изучения возможности получения колоссальной энергии, которая выделяется пока лишь при взрыве водородной бомбы. Ученые хотят научиться контролировать ход термоядерной реакции - реакции соединения тяжелых ядер водорода (дейтерия и трития) с образованием ядер гелия при высоких температурах, - чтобы использовать выделяющуюся при этом энергию в мирных целях, на благо людям.


В литре водопроводной воды содержится совсем немного дейтерия. Но если этот дейтерий собрать и использовать как топливо в термоядерной установке, то можно получить энергии столько, сколько от сжигания почти 300 килограммов нефти. А для обеспечения энергией, которую сейчас получают при сжигании обычного топлива, добываемого за год, потребовалось бы извлечь дейтерий из воды, содержащейся в кубе со стороной всего 160 метров. Одна река Волга ежегодно несет в Каспийское море около 60000 таких кубов воды.


Для осуществления термоядерной реакции необходимо соблюдение нескольких условий. Так, температура в зоне, где происходит соединение тяжелых ядер водорода, должна составлять примерно 100 миллионов градусов. При такой огромной температуре речь идет уже не о газе, а о плазме. Плазма - это такое состояние вещества, когда при высоких температурах газа нейтральные атомы теряют принадлежащие им электроны и превращаются в положительные ионы. По-другому, плазма - смесь свободно движущихся положительных ионов и электронов. Второе условие состоит в необходимости поддерживать в зоне реакции плотность плазмы не ниже 100 тысяч миллиардов частиц в кубическом сантиметре. И, наконец, главное и самое трудное, - надо удержать ход термоядерной реакции хотя бы не меньше одной секунды.


Рабочая камера термоядерной установки - тороидальная, похожа на огромный пустотелый бублик. Она заполнена смесью дейтерия и трития. Внутри самой камеры создается плазменный виток - проводник, по которому пропускают электрический ток силой около 20 миллионов ампер.
Электрический ток выполняет три важные функции. Во-первых, он создает плазму. Во-вторых, разогревает ее до ста миллионов градусов. И, наконец, ток создает вокруг себя магнитное поле, то есть окружает плазму магнитными силовыми линиями. В принципе силовые линии вокруг плазмы должны были бы удержать ее в подвешенном состоянии и не дать плазме возможность соприкоснуться со стенками камеры Однако удержать плазму в подвешенном состоянии не так просто. Электрические силы деформируют плазменный проводник, не обладающий прочностью металлического проводника. Он изгибается, ударяется о стенку камеры и отдает ей свою тепловую энергию. Для предотвращения этого поверх тороидальной камеры надевают еще катушки, создающие в камере продольное магнитное поле, оттесняющее плазменный проводник от стенок. Только и этого оказывается мало, поскольку плазменный проводник с током стремится растянуться, увеличить свой диаметр. Удержать плазменный проводник от расширения призвано также магнитное поле, которое создается автоматически, без посторонних внешних сил. Плазменный проводник помещают вместе с тороидальной камерой еще в одну камеру большего размера, сделанную из немагнитного материала, обычно меди. Как только плазменный проводник делает попытку отклониться от положения равновесия, в медной оболочке по закону электромагнитной индукции возникает индукционный ток, обратный по направлению току в плазме. В результате появляется противодействующая сила, отталкивающая плазму от стенок камеры.
Удерживать плазму от соприкосновения со стенками камеры магнитным полем предложил в 1949 году А.Д. Сахаров, а немного позже американец Дж. Спитцер.


В физике принято давать названия каждому новому типу экспериментальных установок. Сооружение с такой системой обмоток именуется токамаком - сокращение от «тороидальная камера и магнитная катушка».


В 1970-е годы в СССР была построена термоядерная установка, названная «Токамак-10». Ее разработали в Институте атомной энергии им. И.В. Курчатова. На этой установке получили температуру плазменного проводника 10 миллионов градусов, плотность плазмы не ниже 100 тысяч миллиардов частиц в кубическом сантиметре и время удержания плазмы близко к 0,5 секунды. Крупнейшая на сегодня в нашей стране установка «Токамак-15» также построена в московском научном центре «Курчатовский институт».


Все созданные термоядерные установки пока лишь потребляют энергию на разогрев плазмы и создание магнитных полей. Термоядерная установка будущего должна, наоборот, выделять столько энергии, чтобы небольшую ее часть можно было использовать для поддержания термоядерной реакции, то есть подогрева плазмы, создания магнитных полей и питания многих вспомогательных устройств и приборов, а основную часть - отдавать для потребления в электрическую сеть.


В 1997 году в Великобритании на токамаке JET достигли совпадения вложенной и полученной энергии. Хотя и этого, конечно, недостаточно для самоподдержания процесса: до 80 процентов полученной энергии теряется. Для того чтобы реактор работал, необходимо производить энергии в пять раз больше, чем тратится на нагревание плазмы и создание магнитных полей.
В 1986 году страны Европейского союза вместе с СССР, США и Японией решили совместными усилиями разработать и построить к 2010 году достаточно большой токамак, способный производить энергию не только для поддержания термоядерного синтеза в плазме, но и для получения полезной электрической мощности. Этот реактор назвали ITER, аббревиатура от - «международный термоядерный экспериментальный реактор». К 1998 году удалось завершить проектные расчеты, но из-за отказа американцев в конструкцию реактора пришлось вносить изменения, чтобы уменьшить его стоимость.


Можно позволить частицам двигаться естественным образом, а камере придать форму, повторяющую их траекторию. Камера тогда имеет довольно причудливый вид. Она повторяет форму плазменного шнура, возникающего в магнитном поле внешних катушек сложной конфигурации. Магнитное поле создают внешние катушки гораздо более сложной конфигурации, чем в токамаке. Устройства подобного рода называют стеллараторами. В нашей стране построен торсатрон «Ураган-3М». Этот экспериментальный стелларатор рассчитан на удержание плазмы, нагретой до десяти миллионов градусов.


В настоящее время у токамаков появились и другие серьезные конкуренты, использующие инерциальный термоядерный синтез. В этом случае несколько миллиграммов дейтерий-тритиевой смеси заключают в капсулу диаметром 1–2 миллиметра. На капсуле фокусируют импульсное излучение нескольких десятков мощных лазеров. В результате капсула мгновенно испаряется. В излучение надо вложить 2 МДж энергии за 5–10 наносекунд. Тогда световое давление сожмет смесь до такой степени, что может пойти реакция термоядерного синтеза. Выделившаяся энергия при взрыве, по мощности эквивалентного взрыву ста килограммов тротила, будет преобразовываться в более удобную для использования форму - например в электрическую. Однако строительство стеллараторов и установок инерциального синтеза также наталкивается на серьезные технические трудности. Вероятно, практическое использование термоядерной энергии - вопрос не ближайшего будущего.

6. Перспективы освоения термоядерного синтеза

В качестве важной задачи для атомной отрасли, на долгосрочную перспективу является выход на освоение технологий управляемого термоядерного синтеза как основы энергетики будущего. В настоящее время во всем мире принимаются стратегические решения по развитию и освоению новых источников энергии. Необходимость разработки таких источников связана с ожидаемым дефицитом производства энергии и ограниченностью топливных ресурсов. Одним из наиболее перспективных инновационных источников энергии является управляемый термоядерный синтез (УТС). Энергия синтеза выделяется при слиянии ядер тяжелых изотопов водорода. Топливом для термоядерного реактора служат вода и литий, запасы которых практически не ограничены. В земных условиях реализация УТС представляет сложную научно-технологическую задачу, связанную с получением температуры вещества более 100 миллионов градусов и термоизоляцией области синтеза от стенок реактора.

Термоядерный синтез - это долгосрочный проект, создание коммерческой установки ожидается к 2040-2050 году. Наиболее вероятный сценарий овладения термоядерной энергией предполагает реализацию трех этапов:
- освоение режимов длительного горения термоядерной реакции;
- демонстрация производства электроэнергии;
- создание промышленных термоядерных станций.

В рамках международного проекта ИТЭР (международный термоядерный экспериментальный реактор) предполагается продемонстрировать техническую возможность удержания плазмы и получения энергии. Основная программная цель проекта ИТЭР заключается в демонстрации научной и технической возможности получения энергии за счет реакций синтеза (слияния) изотопов водорода – дейтерия и трития. Проектная термоядерная мощность реактора ИТЭР составит порядка 500 МВт при температуре плазмы в 100 млн. градусов.
В ноябре 2006 года всеми участниками проекта ИТЭР - Европейским союзом, Россией, Японией, США, Китаем, Кореей и Индией подписаны Соглашения о создании Международной организации ИТЭР по термоядерной энергии для совместной реализации проекта ИТЭР. Этап сооружения реактора начался с 2007 года.

Участие России в проекте ИТЭР заключается в разработке, изготовлении и поставке на площадку сооружения реактора (г.Кадараш, Франция) основного технологического оборудования и внесению денежного взноса, составляющих в целом около 10% от полной стоимости сооружения реактора. Такая же доля вклада у США, Китая, Индии, Кореи и Японии.
Дорожная карта овладения энергией управляемого термоядерного синтеза

2000 год (современный уровень):
Решаемые задачи: достижение равенства затрат и выработки энергии
Последнее поколение токамаков позволило вплотную приблизиться к осуществлению управляемого термоядерного горения с большим выделением энергии.
Мощность реакций термоядерного синтеза достигла уровня 17 МВт, (установка JET, ЕС), что сравнимо с вложенной в плазму мощностью.
2020 год:

Решаемые в проекте ИТЭР задачи: длительная реакция, освоение и интеграция термоядерных технологий .

Цель проекта ИТЭР - достижение контролируемого зажигания термоядерной реакции и ее длительного горения при десятикратном превышении термоядерной мощности над мощностью на инициирование реакции синтеза Q³10.

2030 год:
Решаемая задача: сооружение демонстрационной станции ДЕМО (ОТЭ)
Выбор оптимальных материалов и технологий для ОТЭ, выполнено проектирование, строительство и пусковые испытания опытной термоядерной электростанции в рамках проекта ДЕМО, завершено концептуальное проектирование ПТЭ.
2050 год
Решаемые задачи: проектирование и сооружение ПТЭ, завершение испытаний технологий генерации электрической мощности на ДЕМО.
Создание энергетической промышленной станции с высоким запасом безопасности и приемлемыми экономическими показателями стоимости энергии.
Человечество получит в свои руки неисчерпаемый, экологически и экономически приемлемый источник энергии. В основе проекта термоядерного реактора положены системы с магнитным удержанием плазмы типа «Токамак», впервые разработанные и реализованные в СССР. В 1968 году на токамаке Т-3 была достигнута температура плазмы в 10 млн. градусов. С этого времени установки «Токамак» стали лидирующим направлением в исследованиях по термоядерному синтезу во всех странах.

В настоящее время в России эксплуатируются токамаки Т-10 и Т-15 (РНЦ «Курчатовский институт»), Т-11М (ФГУП ГНЦ РФ ТРИНИТИ, Троицк, Московская область), Глобус-М, ФТ-2, Туман-3 (Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, РАН) и стелларатор Л-2 (Институт общей физики, Москва, РАН).

Заключение

На основе проведенных исследований можно сделать следующие выводы:

Термоядерный синтез – наиболее рациональный, экологический безвредный и дешевый способ получения энергии, по количеству получаемого тепла несравнимый с природными источниками, используемыми человеком в настоящий момент. Безусловно, процесс освоения термоядерного синтеза решил бы многие проблемы человечества, как в настоящем, так и в будущем.

В будущем термоядерный синтез позволит преодолеть еще один "кризис человечества", а именно, перенаселение Земли. Не секрет, что развитие земной цивилизации предусматривает постоянный и устойчивый рост населения планеты, поэтому вопрос освоения "новых территорий", иными словами, колонизация соседних планет Солнечной системы для создания постоянных поселений - вопрос уже совсем недалекого будущего.

Литература

  1. А. П. Баскаков. Теплотехника/ - М.: Энергоатомиздат, 1991
  2. В. И. Крутов. Теплотехника/ - М.: Машиностроение, 1986
  3. К. В. Тихомиров. Теплотехника, теплогазоснабжение и вентиляция – М.: Стройиздат, 1991
  4. В. П. Преображенский. Теплотехнические измерения и приборы - М.: Энергия, 1978
  5. Jeffrey P. Freidberg. Plasma Physics and Fusion Energy/ - Cambridge University Press, 2007.
  6. http://www.college.ru./astronomy- Астрономия
  7. http://n-t.ru/tp/ie/ts.htm Термоядерный синтез на Солнце – новая версия Владимир Власов
Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ТЕРМОЯДЕРНЫЙ СИНТЕЗ

ПОНЯТИЕ Это разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счет кинетической энергии их теплового движения.

ПОЛУЧЕНИЕ ЭНЕРГИИ

УРАВНЕНИЕ РЕАКЦИИ С ОБРАЗОВАНИЕМ HE ⁴

ТЕРМОЯДЕРНАЯ РЕАКЦИЯ НА СОЛНЦЕ

УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ

ТОРОИДАЛЬНАЯ КАМЕРА С МАГНИТНЫМИ КАТУШКАМИ (ТОКАМАК)

НЕОБХОДИМОСТЬ ОСВОЕНИЯ ТЕРМОЯДЕРНОГО СИНТЕЗА

Извлечение ядерной энергии основано на том фундаментальном факте, что ядра химических элементов из середины таблицы Менделеева упакованы плотно, а по краям таблицы, т.е. самые лёгкие и самые тяжёлые ядра – менее плотно. Наиболее плотно упакованы ядра железа и его соседи по периодической системе. Поэтому мы выигрываем энергию в двух случаях: когда мы делим тяжёлые ядра на более мелкие осколки, и когда мы склеиваем лёгкие ядра в более крупные.

Соответственно, энергию можно извлекать двумя способами: в ядерных реакциях деления тяжёлых элементов – урана, плутония, тория или в ядерных реакциях синтеза (слипания) лёгких элементов – водорода, лития, бериллия и их изотопов. В природе, в естественных условиях реализуются оба типа реакций. Реакции синтеза идут во всех звёздах, включая солнце, и являются практически единственным исходным источником энергии на Земле – если не непосредственно через солнечный свет, то опосредованно – через нефть, уголь, газ, воду и ветер. Природная реакция деления имела место на Земле около 2-х миллиардов лет назад на территории нынешнего Габона в Африке: там случайно скопилось много урана в одном месте, и в течение 100 миллионов лет работал природный ядерный реактор! Потом концентрация урана уменьшилась, и природный реактор заглох.

В середине XX века человечество приступило к искусственному освоению гигантской энергии, заключённой в ядрах. Атомная бомба (урановая, плутониевая) «работает» на реакции деления, водородная бомба (которая вовсе не из водорода, но называется так) – на реакции синтеза. В бомбе реакции идут одно мгновение и носят взрывной характер. Можно уменьшить интенсивность ядерных реакций, растянуть их во времени и использовать их разумно в качестве управляемого источника энергии. В мире построены многие сотни ядерных реакторов разного типа, где идут реакции деления, и «сжигаются» тяжёлые элементы – уран, торий или плутоний. Возникла также задача сделать управляемой реакцию синтеза, чтобы и она служила источником энергии.

На осуществление управляемой реакции деления человечеству потребовалось лишь несколько лет. Однако управляемая реакция синтеза оказалась намного более трудной задачей, с которой до конца ещё не справились. Дело в том, что для того, чтобы два лёгких ядра, например, дейтерия и трития, могли слиться, им надо преодолеть большой потенциальный барьер.

Наиболее прямолинейный способ добиться этого – разогнать два лёгких ядра до высокой энергии, так чтобы они сами проскочили барьер. Это подразумевает, что смесь дейтерия и трития должна быть разогрета до очень высокой температуры – порядка 100 млн. градусов! При такой температуре смесь, разумеется, ионизована, т.е. представляет собой плазму. Плазму удерживают в сосуде в форме бублика магнитным полем сложной конфигурации и разогревают. Эта установка, изобретение И.Е.Тамма,А.Д.Сахарова, Л.А.Арцимовича и др., называется «токамак». Главная проблема здесь – добиться стабильности очень горячей плазмы, чтобы она не «высадилась на стенки» сосуда. Это требует больших размеров установки и соответственно очень сильных магнитных полей в большом объёме. Принципиальных трудностей здесь почти нет, но есть множество технических проблем, которые пока не решены.

Недавно начали строить международную установку ИТЭРв районе Экс-ан-Прованса во Франции. В проекте активно участвует и Россия, внося 1/11 финансирования. К 2018 году международный токамак должен заработать и продемонстрировать принципиальную возможность генерации энергии за счёт термоядерной реакции синтеза

где d – ядро дейтерия (один протон и один нейтрон), t – ядро трития (один протон и два нейтрона), He – ядро гелия (два протона и два нейтрона), n – нейтрон, рождающийся в результате реакции, а «17.6 МэВ» – энергияв мега-электрон-вольтах, выделяющаяся в единичной реакции. Эта энергия в десятки миллионов раз больше той, которая выделяется при химических реакциях, например при горении органического топлива.

Здесь «топливом», как мы видим, служит смесь дейтерия и трития. Дейтерий («тяжёлая вода») содержится в виде малой примеси в любой воде, и технически выделить его несложно. Запасы его, действительно, не ограничены. Тритий же в природе не встречается, так как он радиоактивен и распадается за 12 лет. Стандартный способ получения трития – из лития путём бомбардировки его нейтронами. Предполагается, что в ИТЭРе будет нужна только малая «затравка» трития для запуска реакции, а дальше он будет нарабатываться сам собой за счёт бомбардировки нейтронами из реакции (1) литиевого «бланкета», т.е. «одеяла», оболочки токамака. Поэтому фактически топливом служит литий. В земной коре его тоже много, но нельзя сказать, что лития неограниченное количество: если бы вся энергия в мире производилась сегодня за счёт реакции (1), разведанных месторождений необходимого для этого лития хватило бы на 1000 лет. Примерно на столько же лет хватит разведанного урана и тория, если производить энергию в обычных ядерных котлах .

Так или иначе, самоподдерживающуюся термоядерную реакцию синтеза (1) на современном уровне науки и техники реализовать, по-видимому, можно, и есть надежда, что это будет успешно продемонстрировано лет через десять на установке ИТЭР. Это очень интересный проект и в научном, и в технологическом плане, и хорошо, что наша страна участвует в нём. Тем более, что это тот не слишком частый случай, когда Россия не только находится на мировом уровне, но во многом и задаёт этот мировой уровень.

Вопрос в другом – может ли «термояд» служить основой для промышленного получения «чистой» и «неограниченной» энергии, как утверждают энтузиасты проекта. Ответ, по-видимому, отрицательный, и вот почему.

Дело в том, что нейтроны, образующиеся при синтезе (1), сами по себе гораздо ценнее, чем та энергия, которая при этом выделяется.

Но чайники греть на нейтронах – разбой,

И здесь мы дадим расточителям бой:

Укроем активную зону

Урановым бланкетом – вона!

(из «Баллады о мюонном катализе», Ю.Докшицер и Д.Дьяконов, 1978 )

Действительно, если обложить поверхность токамака толстым «бланкетом» из самого обыкновенного природного урана-238, то под действием быстрого нейтрона из реакции (1), ядро урана расщепляется с выделением дополнительной энергии около 200 МэВ. Обратим внимание на числа:

Реакция синтеза (1) даёт энергию 17,6 МэВ в токомаке, плюс нейтрон

Последующая реакция деления в урановом бланкете даёт около 200 МэВ.

Таким образом, если уж мы построили сложную термоядерную установку, то сравнительно простая добавка к нему в виде уранового бланкета позволяет увеличить производство энергии в 12 раз!

Примечательно, что уран-238 в бланкете не обязан быть очень чистым или обогащённым: наоборот, годится и обеднённый уран, которого остаётся много в отвалах после обогащения, и даже отработанное ядерное топливо из обычных тепловых атомных станций. Вместо того, чтобы хоронить отработанное топливо, можно с большой пользой употребить его в урановом бланкете.

На самом деле, эффективность увеличивается ещё больше, если учесть, что быстрый нейтрон, попадая в урановый бланкет, вызывает много разнообразных реакций, в результате которых, помимо выделения 200 МэВ энергии, образуется ещё несколько ядер плутония. Таким образом, урановый бланкет служит ещё и мощным производителем нового ядерного топлива. Плутоний можно потом «сжечь» на обычной тепловой атомной станции, с эффективным выделением ещё примерно 340 МэВ на каждое ядро плутония.

Даже с учётом того, что один из дополнительных нейтронов надо использовать на воспроизводство топливного трития, добавление к токамаку уранового бланкета и нескольких обычных атомных станций, которые «питаются» плутонием из этого бланкета, позволяет увеличить энергоэффективность токамака по меньшей мере раз в двадцать пять , а по некоторым оценкам – в пятьдесят раз! Это всё – сравнительно простая и отработанная технология. Ясно, что ни один здравомыслящий человек, ни одно правительство, ни одна коммерческая организация не упустит такой возможности многократно повысить эффективность производства энергии.

Если дело дойдёт до промышленного производства, то термоядерный синтез на токомаке будет по существу всего лишь «затравкой», всего лишь источником драгоценных нейтронов, а 96% энергии всё равно будет производиться в реакциях деления, и основным топливом соответственно будет уран-238. «Чистого» термояда, таким образом, не будет никогда.

Более того, если наиболее сложная, дорогостоящая и наименее отработанная часть этой цепочки – термоядерный синтез – производит менее 4% от окончательной мощности, то возникает естественный вопрос, а нужно ли вообще это звено? Может быть, существуют более дешёвые и эффективные источники нейтронов?

Возможно, что в недалёком будущем будет придумано что-то совсем новое, но уже сейчас имеются наработки, как вместо термояда использовать другие источники нейтронов, чтобы беспрепятственно «сжигать» природный уран-238 или торий. Имеются в виду

Реакторы-размножители (бридеры) на быстрых нейтронах

(2-ой пункт недавней саровской программы)

Электроядерный бридинг

Ядерный синтез при невысокой температуре с помощью мюонного катализа.

Каждый метод имеет свои сложности и свои достоинства, и каждый достоин отдельного рассказа. Отдельного разговора заслуживает также ядерный цикл, основанный на тории, что особенно актуально для нас, поскольку в России тория больше, чем урана. Индия, где похожая ситуация, уже выбрала торий как основу своей будущей энергетики. Многие люди и в нашей стране склоняются к тому, что ториевый цикл – наиболее экономичный и безопасный метод производства энергии практически в неограниченном количестве.

Сейчас Россия стоит на распутье: надо выбрать стратегию развития энергетики на много десятилетий вперёд. Для выбора оптимальной стратегии необходимо открытое и критическое обсуждение научным и инженерным сообществом всех аспектов программы.

Эта заметка посвящается памяти Юрия Викторовича Петрова (1928-2007), замечательного учёного и человека, доктора физ.-мат. наук, заведующего сектором Петербургского института ядерной физики РАН, который научил автора тому, что здесь написано .

Ю.В.Петров, Гибридные ядерные реакторы и мюонный катализ , в сборнике «Ядерная и термоядерная энергетика будущего», М., Энергоатомиздат (1987), с. 172.

С.С.Герштейн, Ю.В.Петров и Л.И.Пономарёв, Мюонный катализ и ядерный бридинг, Успехи физических наук, т. 160, с. 3 (1990).

На снимке: Ю.В Петров (справа) и лауреат Нобелевской премии по физике Ж.‘т Хофт, фото Д.Дьяконова (1998).