Примеры аксиоматических теорий.

Сущность аксиоматического метода

Евклид

П.Дирак

Если теорему так и не смогли доказать – она становится аксиомой.

Математика строится на основе понятий. Понятия бывают определяемые и неопределяемые. Под определением понимают точную формулировку того или иного понятия. Определить математическое понятие – это значит указать его характерные признаки или свойства, которые выделяют это понятие среди остальных. Обычный способ определения математического понятия заключается в указании: 1) ближнего рода, то есть более общего понятия, к которому относится определяемое понятие; 2) видового отличия, то есть тех характерных признаков или свойств, которые присущи именно этому понятию.

Пример 1. Определение: «Квадрат – это прямоугольник, у которого все стороны равны». Ближайшим родом, то есть более общим понятием является понятие прямоугольника, а видовым отличием будет указание, что у квадрата все стороны равны. В свою очередь для прямоугольника более общим понятием является понятие параллелограмма, для параллелограмма - понятие четырехугольника, для четырехугольника - понятие многоугольника и так далее. Но указанная цепочка не является бесконечной.

Существуют понятия, которые нельзя определить через другие, более общие понятия. Их в математике называют основными неопределяемыми понятиями . Примерами основных понятий являются точка, прямая, плоскость, расстояние, множество и так далее.

Связи и отношения между основными понятиями формулируются с помощью аксиом.

Аксиома - это математическое предложение, принимаемое в данной теории без доказательств.

К системе аксиом, на которой строится та или иная математическая теория, предъявляются требования непротиворечивости, независимости, полноты.

Система аксиом называется непротиворечивой , если из нее нельзя одновременно вывести два взаимоисключающих друг друга предложения: А , неА .

Система аксиом называется независимой , если ни одна из аксиом этой системы не является следствием других аксиом этой системы.

Система аксиом называется полной , если в ней доказуемо обязательно одно из двух: либо утверждение А , либо неА.

Предложение, которого нет в списке аксиом, должно быть доказано. Такое предложение называется теоремой .

Теорема - это математическое предложение, истинность которого устанавливается в процессе рассуждения, называемого доказательством.

Аксиома: «Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и точки, не принадлежащие ей».

Теорема: «Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм».


Одним из основных методов современной математики является аксиоматический метод . Сущность его состоит в следующем:

1) перечисляются основные неопределяемые понятия и отношения строящейся теории (примеры отношений: следовать за..., лежать между...);

2) формулируются аксиомы, принимаемые в данной теории без доказательства, которые выражают связь между основными понятиями и их отношениями;

3) предложения, которых нет среди основных понятий и основных отношений, должны быть определены;

4) предложения, которых нет в списке аксиом, должны быть доказаны на основе этих аксиом и ранее доказанных предложений.

1.2 Геометрия Евклида – первая естественно научная теория

Исторический обзор обоснования геометрии. Геометрия, прежде чем стать аксиоматической теорией, прошла долгий путь эмпирического развития.

Первые сведения о геометрии были получены цивилизациями Древнего Востока (Египет, Китай, Индия) в связи с развитием земледелия, ограниченностью плодородных земель и др. В этих странах геометрия носила эмпирический характер и представляла собой набор отдельных «рецептов-правил» для решения конкретных задач. Уже во II тысячелетии до н.э. египтяне умели точно вычислить площадь треугольника, объем усеченной пирамиды, площадь круга, а вавилоняне знали теорему Пифагора. Заметим, что доказательств не было, а указывались правила для вычислений.

Греческий период развития геометрии начался в VII-VI вв. до н.э. под влиянием египтян. Отцом греческой математики считается знаменитый философ Фалес (640-548 гг. до н.э.). Фалесу, точнее, его математической школе принадлежат доказательства свойств равнобедренного треугольника, вертикальных углов. В дальнейшем геометром Древней Греции были получены результаты, охватывающие почти все содержание современного школьного курса геометрии.

Философская школа Пифагора (570-471 гг. до н.э.) открыла теорему о сумме углов треугольника, доказала теорему Пифагора, установила существование пяти типов правильных многогранников и несоизмеримых отрезков. Демокрит (470-370 гг. до н.э.) открыл теоремы об объемах пирамиды и конуса. Евдокс (410-356 гг. до н.э.) создал геометрическую теорию пропорций (т.е. теорию пропорциональных чисел).

Менехм и Аполлоний изучили конические сечения. Архимед (289-212 гг. до н.э.) открыл правила вычисления площади поверхности и объема шара и других фигур. Он же нашел приближенное значение числа π.

Особая заслуга древнегреческих ученых состоит в том, что они первыми поставили задачу строгого построения геометрических знаний и решили ее в первом приближении. Проблему поставил Платон (428-348 гг. до н.э.). Аристотелю (384-322 гг. до н.э.) – крупнейшему философу, основателю формальной логики – принадлежит четкое оформление идеи построения геометрии в виде цепи предложений, которые вытекают одно из другого на основе лишь правил логики. Эту задачу пытались решить многие греческие ученые (Гиппократ, Федий).

Евклид (330-275 гг. до н. э.) – крупнейший геометр древности, воспитанник школы Платона, жил в Египте (в Александрии). Составленные им «Начала» дают систематическое изложение начал геометрии, выполненное на таком научном уровне, что многие века преподавание геометрии велось по его сочинению. «Начала» состоят из 13 книг (глав):

I-VI – планиметрия;

VII-IХ – арифметика в геометрическом изложении;

X – несоизмеримые отрезки;

ХI-ХII – стереометрия.

В «Начала» были включены не все сведения, известные в геометрии. Например, в эти книги не вошли: теория конических сечений, кривые высших порядков.

Каждая книга начинается с определения тех понятий, которые в ней встречаются. Например, в книге I даны 23 определения. Приведем определения первых четырех понятий:

1 Точка есть то, что не имеет частей.

2 Линия есть длина без ширины.

3 Границы линии суть точки.

Евклид приводит предложения, принимаемые без доказательства, разделяя их на постулаты и аксиомы. Постулатов у него пять, а аксиом – семь. Вот некоторые из них:

IV И чтобы все прямые углы были равны.

V И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Аксиомы

I Равные порознь третьему равны между собой.

II И если к равным прибавить равные, то получим равные.

VII И совмещающиеся равны.

Евклид не указал, в чем заключается различие между постулатами и аксиомами. До сих пор нет окончательного решения этого вопроса.

Евклид излагает теорию геометрии так, как требовали греческие ученые, особенно Аристотель, т.е. теоремы расположены так, что каждая следующая доказывается только на основе предыдущих. Иначе говоря, Евклид развивает геометрическую теорию строго логическим путем. В этом и заключается историческая заслуга Евклида перед наукой.

«Начала» Евклида сыграли огромную роль в истории математики и всей человеческой культуры. Эти книги переведены на все основные языки мира, после 1482 г. они выдержали около 500 изданий.

Недостатки системы Евклида. С точки зрения современной математики изложение «Начал» следует признать несовершенным. Назовем основные недостатки этой системы:

1) многие понятия включают такие, которые в свою очередь должны быть определены (например, в определениях 1-4 главы 1 используются понятия ширины, длины, границы, которые также должны быть определены);

2) список аксиом и постулатов недостаточен для построения геометрии строго логическим путем. Например, в этом списке нет аксиом порядка, без которых нельзя доказать многие теоремы геометрии; заметим, что на это обстоятельство обратил внимание Гаусс. В указанном списке отсутствуют также определения понятия движения (совмещения) и свойств движения, т.е. аксиом движения. В списке не хватает также аксиомы Архимеда (одной из двух аксиом непрерывности), которая играет важную роль в теории измерений длин отрезков, площадей фигур и объектов тел. Заметим, что на это обратил внимание современник Евклида Архимед;

3) постулат IV явно лишний, его можно доказать как теорему. Особо отметим пятый постулат. В книге I «Начал» первые 28 предложений доказаны без ссылок на пятый постулат. Попытка минимизировать список аксиом и постулатов, в частности доказать постулат V как теорему, проводилась со времен самого Евклида. Прокл (V в. н. э.), Омар Хайям (1048-1123 гг.), Валлис (XVII в.), Саккери и Ламберт (XVIII в.), Лежандр (1752-1833 гг.) также пытались доказать постулат V как теорему. Их доказательства были ошибочными, но они привели к положительным результатам – к рождению еще двух геометрий (Римана и Лобачевского).

Неевклидовы геометрические системы. Н.Лобачевский (1792-1856 гг.), который открыл новую геометрию – геометрию Лобачевского, также начал с попытки доказательства постулата V.

Николай Иванович развил свою систему до объема «Начал» в надежде получить противоречие. Не получил, но сделал в 1826 г. правильный вывод: существует геометрия, отличная от геометрии Евклида.

На первый взгляд этот вывод кажется недостаточно обоснованным: может быть, развивая его дальше, можно прийти к противоречию. Но этот же вопрос относится и к геометрии Евклида. Иначе говоря, обе геометрии равноправны перед вопросом о логической непротиворечивости. Дальнейшие исследования показали, что из непротиворечивости одной следует непротиворечивость другой геометрии, т.е. имеет место равноправие логических систем.

Лобачевский был первым, но не единственным, кто сделал вывод о существовании другой геометрии. Гаусс (1777-1855 гг.) высказал эту идею еще в 1816 г. в частных письмах, но в официальных публикациях заявление не сделал.

Три года спустя после публикации результатов Лобачевского (в 1829 г.), т.е. в 1832 г., вышла работа венгра Я. Бойяи (1802-1860 гг.), который в 1823 г. пришел к выводу о существовании другой геометрии, но опубликовал позже и в менее развитом, чем у Лобачевского, виде. Поэтому справедливо, что эта геометрия носит имя Лобачевского.

Общему признанию геометрии Лобачевского в значительной степени способствовали работы геометров после Лобачевского. В 1868 г. итальянский математик Э.Бельтрами (1825-1900 гг.) доказал, что на поверхности постоянной отрицательной кривизны (так называемая псевдосфера) имеет место геометрия Лобачевского. Уязвимым местом доказательства непротиворечивости геометрии Лобачевского, основанного на интерпретации Бельтрами, было то, что, как показал Д.Гильберт (1862-1943 гг.), в евклидовом пространстве не существует полной поверхности постоянной отрицательной кривизны без особенностей. Поэтому на поверхности постоянной отрицательной кривизны можно интерпретировать только часть плоской геометрии Лобачевского. Этот недостаток был устранен А.Пуанкаре (1854-1912 гг.) и Ф.Клейном (1849-1925 гг.).

Доказательство непротиворечивости геометрии Лобачевского было вместе с тем и доказательством независимости пятого постулата от остальных. Действительно, в случае зависимости геометрия Лобачевского была бы противоречивой, так как она содержала бы два взаимно исключающих утверждения.

Дальнейшие исследования евклидовой геометрии показали неполноту системы аксиом и постулатов Евклида. Исследование аксиоматики Евклида завершил в 1899 г. Гильберт.

Аксиоматика Гильберта состоит из пяти групп:

Аксиомы связи (принадлежности);

Аксиомы порядка;

Аксиомы конгруэнтности (равенства, совпадения);

Аксиомы непрерывности;

Аксиома параллельности.

Эти аксиомы (всего их 20) относятся к объектам трех родов: точек, прямых, плоскостей, а также к трем отношениям между ними: «принадлежит», «лежит между», «конгруэнтен». Конкретный смысл точек, прямых, плоскостей и отношений не указан. Они косвенно определены через аксиомы. Благодаря этому построенная на основе аксиом Гильберта геометрия допускает различные конкретные реализации.

Геометрическая система, построенная на перечисленных аксиомах, называется евклидовой геометрией, так как совпадает с геометрией, изложенной Евклидом в «Началах».

Геометрические системы, отличные от евклидовой, называются неевклидовыми геометриями. Согласно общей теории относительности, в пространстве ни та, ни другая не являются абсолютно точными, однако в малых масштабах (земные масштабы являются также достаточно «малыми») они вполне пригодны для описания пространства. Причиной того, что на практике применяются евклидовы формулы, является их простота.

Гильберт всесторонне исследовал свою систему аксиом, показал, что она непротиворечива, если не противоречива арифметика (т.е. на самом деле доказана содержательная или так называемая внешняя непротиворечивость). Он завершил многовековые исследования геометров по обоснованию геометрии. Эта работа была высоко оценена и в 1903 г. отмечена премией имени Лобачевского.

В современном аксиоматическом изложении геометрии Евклида не всегда пользуются аксиомами Гильберта: учебники по геометрии построены на различных модификациях этой системы аксиом.

В XX в. было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики как одна из возможных геометрий, но и непосредственно связана с приложениями математики. Оказалось, что взаимосвязь пространства и времени, открытая А.Эйнштейном и другими учеными в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского.

Аксиомой называют отправное, исходное положение какой-либо теории, находящееся в основе доказательств других положений (например, теорем) этой теории, в пределах которой оно принимается без доказательств. В обыденном сознании и языке аксиомой называют некую истину, настолько бесспорную, что она не требует доказательств.

Итак, аксиоматический метод – это один из способов дедуктивного построения научной теории, при котором выбирается некоторое множество принимаемых без доказательства положений, называемых «началами», «постулатами» или «аксиомами», а все остальные предложения теории получается как логическое следствие этих аксиом.

Аксиоматический метод в математике берет начало по меньшей мере от Евклида, хотя термин «аксиома» часто встречается и у Аристотеля: «… Ибо невозможны доказательства для всего: ведь доказательство должно даваться исходя из чего-то относительно чего-то и для обоснования чего-то. Таким образом, выходит, что все, что доказывается, должно принадлежать к одному роду, ибо все доказывающие науки одинаково пользуются аксиомами. <…> Аксиома обладает наивысшей степенью общности и суть начала всего. <…> Началами доказательства я называю общепринятые положения, на основании которых все строят свои доказательства. <…> О началах знания не нужно спрашивать «почему», а каждое из этих начал само по себе должно быть достоверным. Правдоподобно то, что кажется правильным всем или большинству людей или мудрым – всем или большинству из них или самым известным и славным». (См., например, Аристотель. Сочинения в четырех томах. Т. 2. Топика. М.: Мысль, 1978. С. 349).

Как видно из последнего фрагмента «Топики» Аристотеля, основанием принятия аксиомы служит некая «достоверность» и даже авторитет «известных и славных» людей. Но в настоящее время это не считается достаточным основанием. Современные точные науки, в том числе сама математика, не прибегают к очевидности как к аргументу истинности: аксиома просто вводится, принимается без доказательств.

Давид Гильберт (1862-1943), немецкий математик и физик, указывал, что термин аксиоматический употребляется иногда в более широком, а иногда и в более узком смысле слова. При самом широком понимании этого термина построение какой-либо теории мы называем «аксиоматическим». В этом отношении Д. Гильберт различает содержательную аксиоматику и формальную аксиоматику .

Первая «…вводит свои основные понятия со ссылкой на имеющийся у нас опыт, а свои основные положения либо считает очевидными фактами, в которых можно непосредственно убедиться, либо формулирует их как итог определенного опыта и тем самым выражает нашу уверенность в том, что нам удалось напасть на след законов природы, а заодно и наше намерение подкрепить эту уверенность успехом развиваемой теории. Формальная аксиоматика тоже нуждается в признании очевидности за вещами определенного рода – это необходимо как для осуществления дедукции, так и для установления непротиворечивости самой аксиоматики – однако с тем существенным различием, что этот род очевидности не основывается на каком-либо особом гносеологическом отношении к рассматриваемой конкретной области науки, а остается одним и тем же в случае любой аксиоматики: мы имеем здесь в виду столь элементарный способ познания, что он вообще является предварительным условием любого точного теоретического исследования. <…> Формальная аксиоматизация по необходимости нуждается в содержательной как в своем дополнении, поскольку именно эта последняя поначалу руководит нами в процессе выбора соответствующих формализмов, а затем, когда формальная теория уже имеется в нашем распоряжении, она подсказывает нам, как эта теория должна быть применена к рассматриваемой области действительности. С другой стороны, мы не можем ограничиться содержательной аксиоматикой по той простой причине, что в науке – если не всегда, то все же по преимуществу – мы имеем дело с такими теориями, которые отнюдь не полностью воспроизводят действительное положение вещей, а являются лишь упрощающей идеализацией этого положения, в чем и состоит их значение. Такого рода теория, конечно, не может быть обоснована путем ссылки на очевидность ее аксиом или опыт. Более того, ее обоснование и может быть осуществлено только в том смысле, что будет установлена непротиворечивость произведенной в ней идеализации, т.е. той экстраполяции, в результате которой введенные в этой теории понятия и ее основные положения переступают границы наглядно очевидного или данных опыта» (курсив мой, – Ю.Е.). (Гильберт Д., Бернайс П. Основания математики. М.: Наука, 1979. С. 23.)


Таким образом, современно понимаемый аксиоматический метод сводится к следующему: а) выбирается множество принимаемых без доказательств аксиом; б) входящие в них понятия явно не определяются в рамках данной теории; в) фиксируются правила определения и правила вывода данной теории, позволяющие логически выводить одни предположения из других; г) все остальные теоремы выводятся из «а» на основе «в». Таким методом в настоящее время построены различные разделы математики (геометрия, теория вероятностей, алгебра и др.), физики (механика, термодинамика); делаются попытки аксиоматизации химии и биологии . Гёделем доказана невозможность полной аксиоматизации достаточно развитых научных теорий (например, арифметики натуральных чисел), откуда следует невозможность полной формализации научного знания. При исследовании естественнонаучного знания аксиоматический метод выступает в форме гипотетико-дедуктивного метода . Употребление в обыденной речи понятия «аксиома» как некоей априорной очевидности уже не отражает сути этого понятия. Такое аристотелевское понимание данного термина в математике и естествознании в настоящее время преодолено. Обсуждение аксиоматики уместно сопроводить фрагментом классического сочинения Карла Раймунда Поппера:

«Теоретическую систему можно назвать аксиоматизированной, если сформулировано множество высказываний-аксиом, удовлетворяющее следующим четырем фундаментальным требованиям: (а) система аксиом должна быть непротиворечивой (то есть в ней не должно быть ни самопротиворечивых аксиом, ни противоречий между аксиомами). Это эквивалентно требованию, что не всякое произвольное высказывание выводимо в такой системе. (b) Аксиомы данной системы должны быть независимыми, то есть система не должна содержать аксиом, выводимых из остальных аксиом. (Иными словами, некоторое высказывание можно назвать аксиомой только в том случае, если оно не выводимо в оставшейся после его удаления части системы). Эти два условия относятся к самой системе аксиом. Что же касается отношения системы аксиом к основной части теории, то аксиомы должны быть: (c) достаточными для дедукции всех высказываний, принадлежащих к аксиоматизируемой теории, и d) необходимыми в том смысле, что система не должна содержать излишних предположений. <…> Я считаю допустимыми две различные интепретации любой системы аксиом. Аксиомы можно рассматривать либо (1) как конвенции , либо (2) как эмпирические, или научные гипотезы » (Поппер К. Р. Логика научного исследования. М.: Республика, 2005. С. 65).

В истории науки можно найти ряд примеров перехода на аксиоматический способ изложения теории. Более того, последовательное применение этого метода к логике доказательства теорем в геометрии позволило переосмыслить эту древнюю науку, открыв мир «неевклидовых геометрий» (А. И. Лобачевский, Я. Бойаи, К.Гаусс, Г. Ф. Б. Риман и др.). Этот метод оказался удобным и продуктивным, позволяющим выстраивать научную теорию буквально как монокристалл (так, в частности, излагается сейчас теоретическая механика и классическая термодинамика). Несколько позже, уже в 30-х годах XX столетия отечественный математик Андрей Николаевич Колмогоров (1903-1987) дал аксиоматическое обоснование теории вероятностей, которая, как уверенно полагают историки науки, до этого опиралась на эмпирические образы азартных игр («орлянка», кости, карты). В связи с этим есть смысл предложить вниманию читателя два фрагмента из текстов классиков науки и педагогики, которые умели писать, как говорил Бердяев, не только «о чем-то», но и «что-то».

Р. Курант и Г. Роббинс: «В системе Евклида имеется одна аксиома, относительно которой – на основе сопоставления с эмпирическими данными, с привлечением туго натянутых нитей или световых лучей – никак нельзя сказать, является ли она «истинной». Это знаменитый постулат о параллельных , утверждающий, что через данную точку, расположенную вне данной прямой, можно провести одну и только одну прямую, параллельную данной. Своеобразной особенностью этой аксиомы является то, что содержащееся в ней утверждение касается свойств прямой на всем ее протяжении , причем прямая предполагается неограниченно продолженной в обе стороны: сказать, что две прямые параллельны, – значит утверждать, что у них нельзя обнаружить общей точки, как бы далеко их ни продолжать, Вполне очевидно, что в пределах некоторой ограниченной части плоскости, как бы эта часть ни была обширна, напротив, можно провести через данную точку множество прямых, не пересекающихся с данной прямой. Так как максимально возможная длина линейки, нити, даже светового луча, прослеживаемого с помощью телескопа, непременно конечна и так как внутри круга конечного радиуса существует много прямых, проходящих через данную точку и в пределах круга не встречающихся с данной прямой, то отсюда следует, что постулат Евклида никогда не может быть проверен экспериментально. <…> Венгерский математик Бойаи и русский математик Лобачевский положили конец сомнениям, построивши во всех деталях геометрическую систему, в которой аксиома параллельности была отвергнута. Когда Бойаи послал свою работу «королю математики» Гауссу, от которого с нетерпением ждал поддержки, то получил в ответ уведомление, что самим Гауссом открытие было сделано раньше, но он воздержался в свое время от публикации результатов, опасаясь слишком шумных обсуждений.

Посмотрим, что же означает независимость аксиомы параллельности. Эту независимость следует понимать в том смысле, что возможно свободное от внутренних противоречий построение «геометрических» предложений о точках, прямых и т.д., исходя из системы аксиом, в которой аксиома параллельности заменена противоположной. Такое построение называется неевклидовой геометрией (курсив мой, – Ю.Е.). Нужно было интеллектуальное бесстрашие Гаусса, Бойаи и Лобачевского, чтобы осознать, что геометрия, основанная не на евклидовой системе аксиом, может быть абсолютно непротиворечивой (курсив мой, – Ю.Е.). <…> Мы умеем теперь строить простые «модели» такой геометрии, удовлетворяющие всем аксиомам Евклида, кроме аксиомы параллельности» (Курант Р., Роббинс Г. Что такое математика? М.: Просвещение, 1967. С. 250).

Различные варианты неевклидовых геометрий (например, геометрия Римана, а также геометрия в пространстве более чем трех измерений) позже нашли применение в построении теорий, относящихся к микромиру (релятивистская квантовая механика, физика элементарных частиц) и, напротив, к мегамиру (общая теория относительности).

Наконец, мнение отечественного математика Андрея Николаевича Колмогорова: «Теория вероятностей или математическая дисциплина может и должна быть аксиоматизирована совершенно в том же смысле, как геометрия или алгебра. Это означает, что, после того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, все дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений (курсив мой, – Ю.Е.). <…> Всякая аксиоматическая (абстрактная) теория допускает, как известно, бесконечное число конкретных интерпретаций. Таким образом, и математическая теория вероятностей допускает наряду с теми интерпретациями, из которых она возникла, также много других. <…> Аксиоматизация теории вероятностей может быть проведена различными способами как в отношении выбора аксиом, так и выбора основных понятий и основных соотношений. Если преследовать цель возможной простоты как самой системы аксиом, так и построения из нее дальнейшей теории, то представляется наиболее целесообразным аксиоматизирование понятий случайного события и его вероятности. Существуют также другие системы аксиоматического построения теории вероятностей, а именно такие, в которых понятие вероятностей не относится к числу основных понятий, а само выражается через другие понятия [сноска: Ср., например, von Mises R. Wahrscheinlichkeitsrechnung, Leipzig u. Wien, Fr. Deuticke, 1931; Бернштейн С.Н. Теория вероятностей, 2-е изд., Москва, ГТТИ, 1934.]. При этом стремятся, однако, к другой цели, а именно, по возможности к наиболее тесному смыканию математической теории с эмпирическим возникновением понятия вероятности» (Колмогоров А.Н. Основные понятия теории вероятностей. М.: Наука, 1974. С. 9).

Приведём примеры аксиоматических теорий возникших разными путями.

Пример1. Теория групп - одна из теорий, возникших на втором пути. Было известно не мало объектов, обладающих многочисленными общими чертами. Среди них, в частности, множество F1-1(М) всех взаимнооднозначных отображений множества М на себя, рассматриваемое вместе с операцией суперпозиции отображений, множество Z всех целых чисел, рассматриваемое вместе с операцией сложения целых чисел, множество V2 всех векторов плоскости, рассматриваемое вместе с операцией сложения векторов по правилу треугольника или параллелограмма. Обозначив каждое из этих множеств через G, а каждую из операций через * (и называя её композицией элементов из G), обнаруживаем, что все три указанные объекта обладают следующими свойствами:

G0. Для любых а и в из G композиция а? в есть однозначно определённый элемент из G.

G1. Для любых а и в и с из G (а? в) ? с = а? (в? с).

G2. В G имеется такой элемент е, что для любого а из G а? е = е? а = а.

G3. Для любого а из G имеется такой а" из G, что а? а" = а"? а = е.

Например, элемент е, существование которого утверждается в свойстве G2, в случае F1-1(М) есть тождественное отображение М на М, в случае Z - целое число 0, в случае V2 - нуль вектор. В свойстве G3 элемент а" есть обратное преобразование f-1, противоположное число -m, противоположный вектор ВА для преобразования f, целого числа m и вектора АВ соответственно. Утверждения G0 - G3 и составляют систему аксиом теории групп. Из этих аксиом можно выводить разнообразные теоремы и тем самым строить аксиоматическую теорию групп. Докажем несколько теорем этой теории.

Теорема 1. В группе имеется точно один единичный элемент.

Доказательство: Ввиду G2 нужно доказать лишь единственность. Допустим, что в G имеется два единичных элемента -е1 и е2, т.е. на основании G2, для любого ае1?=а и а?е2= а. Тогда, в частности, е1* е2= е2 и е1* е2= е1. Следовательно, в силу G0 и свойств равенства е1= е2.

Теорема 2. Для каждого элемента группы имеется точно один обратный.

Доказательство: Ввиду G3 остаётся доказать лишь его единственность. Допустим, что в G для элемента а имеется два обратных а" и а"", т.е. таких элементов, что а"" ? а = е и а? а" = е. Тогда, в силу G1 (а"" ? а) ? а" = а"" и, следовательно, е? а" = а"" ? е. Отсюда следует, согласно G2, что а" = а"".

В мультипликативной терминологии обратный элемент для а обозначается через а-1, так что а-1? а = а? а-1= е, где единственный единичный элемент из G.

Теорема 3. Для любых элементов а, в, с, группы G из а * в = а * с следует в = с, и из в * а = с * а следует в = с.

Доказательство: Пусть а * в = а * с. Тогда а-1 * (а * в)=(а-1 * а) * в = е * в = в. С другой стороны, а-1 * (а * в)= а-1 * (а * с) = (а-1 * а) * с = е * с = с. следовательно, в = с. Пусть в * а = с * а. Тогда (в * а) * а-1= в * (а * а-1) = в * е = в. С другой стороны (с * а) * а-1= с * (а * а-1) = с * е = в. Значит в = с.

Пример 2. Теория конгруэнтности (равенства) отрезков. S множество всех отрезков и? отношение, называемое отношением конгруэнтности, так, что выражение х? у читается так: отрезок х конгруэнтен отрезку у. Выберем в качестве аксиом следующие утверждения:К1. Для всякого х из S х? х.

К2. Для любых элементов х, у, z из S, если х? z и у? z, то х? у.

Докажем теорему.

Теорема 1. Для любых элементов у и z из S, если у? z, то z ? у.

Доказательство: По аксиоме К2, подставив z вместо х, получим, что если z ? z и у? z, то z ? у. Поскольку член конъюнкции z ? z истинен на основании аксиомы К1, то из конъюнкции его можно убрать. Получим, что если у? z, то z ? у.

Пример 3. Аксиоматическая теория натуральных чисел построена итальянским математиком Дж. Пеано на рубеже XIX и XX веков. Её первоначальными понятиями являются: непустое множество N, бинарное отношение " и выделенный элемент 1. Аксиомы выбираются следующие:

(Р1) (? х) (х" ? 1).

(Р2) (? х, у) (х = у? х" = у")

(Р3) (? х, у) (х" = у" ? х = у)

(Р4) (Аксиома индукции) (1?М ^ (? х)(х?М? х"?М)) ?М=N.

Правилами вывода служат обычные логические правила Modus Ponens и правило подстановки.

Приведём доказательства двух теорем, непосредственно вытекающих из этих аксиом.

Теорема 1. (? х) (х" ? х)

Доказательство: Рассмотрим множество. М = {х? N: х" ? х }. Покажем, используя аксиому индукции (Р4), что М = N.

А) 1?М, так как 1"? 1 по аксиоме Р1.

Б) Пусть х?М, т.е. х" ? х. Тогда, по аксиоме Р3, (х") " ? х". Следовательно, по определению, х" ?М.

Условия аксиомы Р4 выполнены. Тогда, по аксиоме Р4, М = N. Это и означает, что (? х) (х" ? х).

Пример 4. Аксиоматическое построение канторовской («наивной») теории множеств на основе нескольких систем аксиом. Всего рассмотрим три системы аксиом.

Первоначальными понятиями теории Т, являются бинарные операции?, ? (пересечение и объединение), унарная операция " (дополнение), нульарные операции 0 и 1, фиксирующие два различных элемента - нулевой и единичный. Система аксиом?1 этой теории симметрична относительно операций?, ?, 0, 1.

(А1) х? у = у? х.

(А2) х? у = у? х.

(А3) х? (у? z) = (х? у) ? (х? z).

(А4) х? (у? z) = (х? у) ? (х? z).

(А5) х? 1 = х.

(А6) х? 0 = х.

(А7) х? х" = 0.

(А8) х? х" = 1.

Первоначальными понятиями второй теории Т2 являются бинарная операция? и унарная операция ". Система аксиом?2 этой теории, наоборот, ассиметрична, «смещена» в сторону операции?.

(В1) х? у = у? х.

(В2) (х? у) ? z = х? (у? z).

(В3) х? у" = z ? z" ? х? у = х.

(В4) х? у = х? х? у" = z ? z".

Наконец, в третий теории Т3 , в которой первоначальными понятиями являются бинарное отношение С, бинарные операции? и?, унарная операция " и нульарные операции 0 и 1, система аксиом?3 следующая:

(С2) х? у ^ у? z = х? z.

(С3) х? у? z ? х? z ^ у? z.

(С4) z ? х? у? z ? х ^ z ? у.

(С5) х? (у? z) ? (х? у) ? (х? z).

(С8) 1 ? х? х".

Математика - это орудие, специально приспособленное для того, чтобы иметь дело с отвлеченными понятиями любого вида, и в этой области нет предела ее могуществу.

П.Дирак

Если теорему так и не смогли доказать – она становится аксиомой.

Евклид

1.1 Сущность аксиоматического метода

Математика строится на основе понятий. Понятия бывают определяемые и неопределяемые. Под определением понимают точную формулировку того или иного понятия. Определить математическое понятие – это значит указать его характерные признаки или свойства, которые выделяют это понятие среди остальных. Обычный способ определения математического понятия заключается в указании: 1) ближнего рода, то есть более общего понятия, к которому относится определяемое понятие; 2) видового отличия, то есть тех характерных признаков или свойств, которые присущи именно этому понятию.

Пример 1. Определение: «Квадрат – это прямоугольник, у которого все стороны равны». Ближайшим родом, то есть более общим понятием является понятие прямоугольника, а видовым отличием будет указание, что у квадрата все стороны равны. В свою очередь для прямоугольника более общим понятием является понятие параллелограмма, для параллелограмма - понятие четырехугольника, для четырехугольника - понятие многоугольника и так далее. Но указанная цепочка не является бесконечной.

Существуют понятия, которые нельзя определить через другие, более общие понятия. Их в математике называют основными неопределяемыми понятиями . Примерами основных понятий являются точка, прямая, плоскость, расстояние, множество и так далее.

Связи и отношения между основными понятиями формулируются с помощью аксиом.

Аксиома - это математическое предложение, принимаемое в данной теории без доказательств.

К системе аксиом, на которой строится та или иная математическая теория, предъявляются требования непротиворечивости, независимости, полноты.

Система аксиом называется непротиворечивой , если из нее нельзя одновременно вывести два взаимоисключающих друг друга предложения: А , неА .

Система аксиом называется независимой , если ни одна из аксиом этой системы не является следствием других аксиом этой системы.

Система аксиом называется полной , если в ней доказуемо обязательно одно из двух: либо утверждение А , либо неА.

Предложение, которого нет в списке аксиом, должно быть доказано. Такое предложение называется теоремой .

Теорема - это математическое предложение, истинность которого устанавливается в процессе рассуждения, называемого доказательством.

Пример 2.

Аксиома: «Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и точки, не принадлежащие ей».

Теорема: «Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм».

Одним из основных методов современной математики является аксиоматический метод . Сущность его состоит в следующем:

      перечисляются основные неопределяемые понятия и отношения строящейся теории (примеры отношений: следовать за..., лежать между...);

      формулируются аксиомы, принимаемые в данной теории без доказательства, которые выражают связь между основными понятиями и их отношениями;

      предложения, которых нет среди основных понятий и основных отношений, должны быть определены;

      предложения, которых нет в списке аксиом, должны быть доказаны на основе этих аксиом и ранее доказанных предложений.

(греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются...

(греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость A.M. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные (“принципы”) и требующие доказательства (“доказываемые”). В своем развитии A.M. прошел три этапа. На первом этапе A.M. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат “Начала” Евклида. На втором этапе Д. Гильберт внес формальный критерий применения A.M. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе A.M. становится формализованным. Соответственно, изменилось и понятие “аксиома”. Если на первом этапе развития A.M. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в A.M. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. К. Геделем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А. М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как “полуаксиоматический”) и методом математической гипотезы. Гипотетико-дедуктивный метод, в отличие от A.M., предполагает построение иерархии гипотез, в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений A.M.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики “во всех мирах”; снять требование равноправности аксиом. С другой стороны, A.M., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.

В.Л. Абушенко

Аксиоматический Метод

Один из способов дедуктивного построения научных теорий, при к-ром: 1) выбирается нек-рое множество принимаемых без...

Один из способов дедуктивного построения научных теорий, при к-ром: 1) выбирается нек-рое множество принимаемых без доказательства предложений определенной теории (аксиом); 2) входящие в них понятия явно не определяются в рамках данной теории; 3) фиксируются правила определения и правила вывода данной теории, позволяющие вводить новые термины (понятия) в теорию и логически выводить одни предложения из других; 4) все остальные предложения данной теории (теоремы) выводятся из (1) на основе (3). Первые представления об А. м. возникли в Древн. Греции (Элеаты, Платон. Аристотель, Евклид). В дальнейшем делались попытки аксиоматического изложения различных разделов философии и науки (Спиноза, Ньютон и др) Для этих исследований было характерно содержательное аксиоматическое построение определенной теории (и только ее одной), при этом осн внимание уделялось определению и выбору интуитивно очевидных аксиом Начиная со второй половины 19 в, в связи с интенсивной разработкой проблем обоснования математики и математической логики, аксиоматическую теорию стали рассматривать как формальную (а с 20-30-х гг. 20 в - как формализованную) систему, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, к-рые ей удовлетворяют. При этом осн. внимание стали обращать на установление непротиворечивости системы, ее полноты, независимости системы аксиом и т д В связи с тем что знаковые системы могут рассматриваться или вне зависимости от содержания, к-рое может быть в них представлено, или с его учетом, различаются синтаксические и семантические аксиоматические системы (лишь вторые представляют собой собственно научные знания) Это различение вызвало необходимость формулирования осн. требований, предъявляемых к ним, в двух планах синтаксическом и семантическом (синтаксическая и семантическая непротиворечивость, полнота, независимость аксиом и т д) Анализ формализованных аксиоматических систем привел к установлению их принципиальных ограниченностей, гл из к-рых является доказанная Гёделем невозможность полной аксиоматизации достаточно развитых научных теорий (напр, арифметики натуральных чисел), откуда следует невозможность полной формализации научного знания Аксиоматизация является лишь одним из методов построения научного знания, но ее использование в качестве средства научного открытия весьма ограниченно. Аксиоматизация осуществляется обычно после того, как содержательно теория уже в достаточной мере построена, и служит целям более точного ее представления, в частности строгого выведения всех следствий из принятых посылок В последние 30-40 лет большое внимание уделяется аксиоматизации не только математических дисциплин, но и определенных разделов физики, биологии, психологии, экономики, лингвистики и др, включая теории структуры и динамики научного знания. При исследовании естественнонаучного (вообще любого нематематического) знания А. м. выступает в форме гипотетико-дедуктивно-го метода (см. также Формализация)

Аксиоматический Метод

Способ построения теории, при котором в ее основу кладутся некоторые исходные положения – аксиомы или постулаты,...

Способ построения теории, при котором в ее основу кладутся некоторые исходные положения – аксиомы или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем.

Аксиоматический Метод

Способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные...

Способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные ее положения выводятся из них чисто логическим путем, посредством доказательств. Положения, доказываемые на основе аксиом, называются теоремами.

А. м. – особый способ определения объектов и отношений между ними (см.: Аксиоматическое определение). А. м. используется в математике, логике, а также в отдельных разделах физики, биологии и др. А. м. зародился еще в античности и приобрел большую известность благодаря “Началам” Евклида, появившимся около 330 – 320 гг. до н. э. Евклиду не удалось, однако, описать в его “аксиомах и постулатах” все свойства геометрических объектов, используемые им в действительности; его доказательства сопровождались многочисленными чертежами. “Скрытые” допущения геометрии Евклида были выявлены только в новейшее время Д. Гильбертом (1862-1943), рассматривавшим аксиоматическую теорию как формальную теорию, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, удовлетворяющих ей. Сейчас аксиоматические теории нередко формулируются как формализованные системы, содержащие точное описание логических средств вывода теорем из аксиом. Доказательство в такой теории представляет собой последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул последовательности по одному из принятых правил вывода.

К аксиоматической формальной системе предъявляются требования непротиворечивости, полноты, независимости системы аксиом и т. д.

A.M. является лишь одним из методов построения научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизируемой содержательной теории.

Как показал известный математик и логик К. Гёдель, достаточно богатые научные теории (напр., арифметика натуральных чисел) не допускают полной аксиоматизации. Это свидетельствует об ограниченности A.M. и невозможности полной формализации научного знания (см.: Гёделя теорема).