Применение кристаллов. Основные области применения искусственных кристаллов

Живя на Земле, сложенной кристаллическими породами, мы, безусловно, никак не можем отвлечься от проблемы кристалличности: мы ходим по кристаллам, строим из кристаллов, обрабатываем кристаллы на заводах, выращиваем их в лабораториях, широко применяем в технике и науке, едим кристаллы, лечимся ими... Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов - явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк - кристалличны. По мере совершенствования методов исследования кристалличными оказались вещества, до этого считавшиеся аморфными. Сейчас мы знаем, что даже некоторые части организма кристалличны, например, роговица глаза, витамины, мелиновая оболочка нервов - это кристаллы. Долгий путь поисков и открытий, от измерения внешней формы кристаллов в глубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.

Кристаллы – это красиво, можно сказать чудо какое-то, они притягивают к себе; говорят же "кристальной души человек" о том, в ком чистая душа. Кристальная – значит, сияющая светом, как алмаз … И если говорить о кристаллах с философским настроем, то можно сказать, что это материал, который является промежуточным звеном между живой и неживой материей. Кристаллы могут зарождаться, стареть, разрушаться. Кристалл, когда растет на затравке (на зародыше), наследует дефекты этого самого зародыша. Вообще можно привести множество примеров, настраивающих на такой философский лад, хотя конечно здесь много от лукавого… Например, по телевидению теперь можно услышать о непосредственной связи степени упорядоченности молекул воды со словом, с музыкой и о том, что вода изменяется в зависимости от мыслей, от состояния здоровья наблюдателя. Я не воспринимаю этого всерьез. Вообще-то, шарлатанства и спекуляций около науки много. А молитва опосредована, действует через Духа Святаго и не надо смешивать научный подход и духовные вещи.

Но если говорить совсем серьезно, сейчас пожалуй нельзя назвать ни одну дисциплину, ни одну область науки и техники, которая бы обходилась без кристаллов. Когда я работала, ко мне валом валили медики, показывали почечные камни пациентов: их интересовали среды, в которых кристаллообразование произошло. И фармацевтов много побывало, ведь таблетки – это спрессованные кристаллы. Усвоение, растворение таблеток зависит от того, какими гранями покрыты эти микрокристаллики. Витамины, миелиновая оболочка нервов, белки, и вирусы – это все кристаллы. И наши консультации приносили большое удовлетворение, отвечая на возникающие вопросы….

Кристалл чудодейственен своими свойствами, он выполняет самые разные функции. Эти свойства заложены в его строении, которое имеет решетчатую трехмерную структуру.

Как пример использования кристаллов можно взять кристалл кварца, который используется в телефонных трубках. Если на пластинку из кварца воздействовать механически, то в ней в соответствующем направлении возникнет электрический заряд. В трубке микрофона кварц преобразует механические колебания воздуха, вызванные говорящим, в электрические. Электрические колебания в трубке Вашего абонента преобразуются в колебательные, и, соответственно, он слышит речь.

Будучи решетчатым, кристалл ограняется и каждая грань, как личность, своеобразна. Если грань плотно упакована в решетке материальными частицами (атомами или молекулами), то это очень медленно растущая грань. Например, алмаз. У него грани имеют форму октаэдра, они очень плотно упакованы атомами углерода, и отличаются в силу этого и блеском, и прочностью.

Кристаллография – наука не новая. У её истоков стоит М. В. Ломоносов. А вот выращивание искусственных кристаллов дело более позднее. Популярная книга Шубникова "Образование кристаллов" вышла в 1947 году. Эта научная практика выросла из минералогии, науки о кристаллах и аморфных телах. Выращивание кристаллов стало возможным благодаря изучению данных минералогии о кристаллообразовании в природных условиях. Изучая природу кристаллов, определяли состав, из которого они выросли и условия их роста. И теперь эти процессы имитируют, получая кристаллы с заданными свойствами. В деле получения кристаллов принимают участие химики и физики. Если первые разрабатывают технологию роста, то вторые определяют их свойства. Можно ли искусственные кристаллы отличить от природных? Вот вопрос. Ну, например, искусственный алмаз до сих пор уступает природному по качеству, в том числе и по блеску. Искусственные алмазы не вызывают ювелирной радости, но для использования в технике они вполне подходят, выступают в этом смысле на равных с природными. Опять же, нахрапистые ростовики (так называют химиков, выращивающих искусственные кристаллы) научились выращивать тончайшие кристаллические иглы, обладающие чрезвычайно высокой прочностью. Это достигается манипулированием химизмом среды, температурой, давлением, воздействием некоторых других дополнительных условий. И это уже целое искусство, творчество, мастерство – тут точные науки не помогут, они в этой области работают плохо. Еще покойный академик Николай Васильевич Белов говорил, что искусством выращивать кристалл обладает тот специалист, который тонко чувствует кристалл.

Цели : показать роль моно- и поликристаллов в технике и науке, многообразие форм кристаллических решёток; рассмотреть различные методы выращивания монокристаллов и способы повышения их прочности.

Ход урока

1. Организационный этап (1 мин)

2. Изложение нового материала (43 мин)

Физика твёрдого тела (раздел физики, изучающий структуру и свойства твёрдых тел) – это одна из основ современного технологического общества. В сущности, огромная армия инженеров всего мира работает над созданием твёрдых материалов с заданными свойствами, необходимыми для использования в самых разнообразных станках, механизмах и устройствах в области связи, транспорта и компьютерной техники. Сегодня на уроке речь пойдёт о кристаллах. Наша задача: узнать, как устроены кристаллы; объяснить с физической точки зрения многообразие их форм и свойств; рассмотреть методы искусственного выращивания кристаллов и способы увеличения их прочности; увидеть, как и для чего используются кристаллы в быту и технике.

Кристаллическими считаются вещества, атомы которых расположены регулярно, так что образуют правильную трёхмерную решётку, называемую кристаллической . Кристаллам ряда химических элементов и их соединений присущи замечательные механические, электрические, магнитные и оптические свойства. (Слайд-шоу «Многообразие кристаллов» .)

Главным отличием кристаллов от других твёрдых тел является, как уже говорилось, наличие кристаллической решётки – совокупности периодически расположенных атомов, молекул или ионов.

Сообщение ученика. Русский учёный Е.С.Фёдоров установил, что в природе может существовать только 230 различных пространственных групп, охватывающих все возможные кристаллические структуры. Большинство из них (но не все) обнаружены в природе или созданы искусственно. Кристаллы могут иметь форму различных призм, основанием которых могут быть правильный треугольник, квадрат, параллелограмм и шестиугольник. (Слайд .)

Примеры простых кристаллических решёток: 1 – простая кубическая; 2 – гранецентрированная кубическая; 3 – объёмно-центрированная кубическая; 4 – гексагональная

Кристаллические решётки металлов часто имеют форму гранецентрированного (медь, золото) или объёмно-центрированного куба (железо), а также шестигранной призмы (цинк, магний).

В основе классификации кристаллов и объяснения их физических свойств может лежать не только форма элементарной ячейки, но и другие виды симметрии, например, поворот вокруг оси. Осью симметрии называют прямую, при повороте вокруг которой на 360° кристалл несколько раз совмещается сам с собой. Число этих совмещений называют порядком оси . Существуют кристаллические решётки, обладающие осями симметрии 2-го, 3-го, 4-го и 6-го порядков. Возможна симметрия кристаллической решётки относительно плоскости симметрии, а также комбинация разных видов симметрии. (Слайд .)

Большинство кристаллических тел являются поликристаллами, т.к. в обычных условиях вырастить монокристаллы достаточно сложно, этому мешают всевозможные примеси. В свете растущей потребности техники в кристаллах высокой степени чистоты перед наукой встал вопрос о разработке эффективных методов искусственного выращивания монокристаллов различных химических элементов и их соединений.

Сообщение ученика. Существует три способа образования кристаллов: кристаллизация из расплава, из раствора и из газовой фазы. Примером кристаллизации из расплава может служить образование льда из воды (ведь вода – это расплавленный лёд), а также образования вулканических пород. Пример кристаллизации из раствора в природе – выпадение сотен миллионов тонн соли из морской воды. При охлаждении газа (или пара) электрические силы притяжения объединяют атомы или молекулы в кристаллическое твёрдое вещество – так образуются снежинки.

Наиболее распространёнными способами искусственного выращивания монокристаллов являются кристаллизация из раствора и из расплава. В первом случае кристаллы растут из насыщенного раствора при медленном испарении растворителя или при медленном понижении температуры. Такой процесс можно продемонстрировать в лаборатории с водным раствором поваренной соли. Если дать воде возможность медленно испаряться, то в конце концов раствор станет насыщенным, и дальнейшее испарение приведёт к выпадению соли.

Если твёрдое вещество нагреть, оно перейдёт в жидкое состояние – расплав. Трудности выращивания монокристаллов из расплавов связаны с высокой температурой плавления. Например, для получения кристалла рубина нужно расплавить порошок оксида алюминия, а для этого его нужно нагреть до температуры 2030 °С. Порошок высыпают тонкой струйкой в кислородно-водородное пламя, где он плавится и каплями падает на стержень из тугоплавкого материала. На этом стержне постепенно и вырастает монокристалл рубина.

3. Применение кристаллов

1. Алмаз . Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности. Алмазные инструменты используются для обработки деталей из самых твёрдых материалов, для бурения скважин при разведке и добыче полезных ископаемых, служат опорными камнями в хронометрах высшего класса для морских судов и других, особо точных приборах. На алмазных подшипниках не обнаруживается никакого износа даже после 25 млн оборотов. Высокая теплопроводность алмаза позволяет использовать его в качестве теплоотводящей подложки в полупроводниковых электронных микросхемах.

Конечно, алмазы используются и в ювелирных изделиях – это бриллианты.

2. Рубин . Высокая твёрдость рубинов, или корундов, обусловила их широкое применение в промышленности. Из 1 кг синтетического рубина получается около 40 000 опорных камней для часов. Незаменимыми оказались рубиновые стержни-нитеводители на фабриках по изготовлению химического волокна. Они практически не изнашиваются, в то время как нитеводители из самого твёрдого стекла при протяжке через них искусственного волокна изнашиваются за несколько дней.

Новые перспективы для широкого применения рубинов в научных исследованиях и в технике открылись с изобретением рубинового лазера, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого луча.

3. . Это необычные вещества, которые совмещают в себе свойства кристаллического твёрдого тела и жидкости. Подобно жидкостям они текучи, подобно кристаллам обладают анизотропией. Строение молекул жидких кристаллов таково, что концы молекул очень слабо взаимодействуют друг с другом, в то же время боковые поверхности взаимодействуют очень сильно и могут прочно удерживать молекулы в едином ансамбле.

Жидкие кристаллы: смектические (слева) и холестерические (справа)

Наибольший интерес для техники представляют холестерические жидкие кристаллы. В них направление осей молекул в каждом слое немного отличается друг от друга. Углы поворота осей зависят от температуры, а от угла поворота зависит окраска кристалла. Эта зависимость используется в медицине: можно непосредственно наблюдать распределение температуры по поверхности человеческого тела, а это важно для выявления скрытых под кожей очагов воспалительного процесса. Для исследования изготовляют тонкую полимерную плёнку с микроскопическими полостями, заполненными холестериком. Когда такую плёнку накладывают на тело, то получается цветное отображение распределения температуры. Этот же принцип используется в жидкокристаллических термометрах.

Наиболее широкое применение жидкие кристаллы получили в буквенно-цифровых индикаторах электронных часов, микрокалькуляторов и т.д. Нужная цифра или буква воспроизводится с помощью комбинации небольших ячеек, выполненных в виде полосок. Каждая ячейка заполнена жидким кристаллом и имеет два электрода, на которые подаётся напряжение. В зависимости от величины напряжения, «загораются» те или иные ячейки. Индикаторы можно делать чрезвычайно миниатюрными, они потребляют мало энергии.

Жидкие кристаллы применяются в различного рода управляемых экранах, оптических затворах, плоских телевизионных экранах.

4. Полупроводники . Исключительная роль выпала на долю кристаллов в современной электронике. Многие вещества в кристаллическом состоянии не являются такими хорошими проводниками электричества, как металлы, но их нельзя отнести и к диэлектрикам, т.к. они не являются и хорошими изоляторами. Такие вещества относят к полупроводникам. Это большинство веществ, их общая масса составляет 4/5 массы земной коры: германий, кремний, селен и др., множество минералов, различные оксиды, сульфиды, теллуриды и др.

Наиболее характерным свойством полупроводников является резкая зависимость их удельного электрического сопротивления под воздействием различных внешних воздействий: температуры, освещения. На этом явлении основана работа таких приборов, как термисторы, фоторезисторы.

Объединяя полупроводники различного типа проводимости, можно пропускать электрический ток только в одном направлении. Это свойство широко используется в диодах, транзисторах.

Исключительно малые размеры полупроводниковых приборов, иногда всего в несколько миллиметров, долговечность, связанная с тем, что их свойства мало меняются со временем, возможность легко изменять их электропроводность открывают широкие перспективы использования полупроводников сегодня и в будущем.

5. Полупроводники в микроэлектронике . Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов – транзисторов, диодов, резисторов, конденсаторов, соединительных проводов, изготовленных на одном кристалле. При изготовлении интегральной схемы на пластинку из полупроводника (обычно это кристаллы кремния) наносятся последовательно слои примесей, диэлектриков, напыляются слои металла. В результате на одном кристалле формируется несколько тысяч электрических микроприборов. Размеры такой микросхемы обычно 5 5 мм, а отдельных микроприборов – порядка 10 –6 м.

В последнее время всё чаще стали обсуждать возможность создания электронных микросхем, в которых размеры элементов будут сопоставимы с размерами самих молекул, т.е. порядка 10 –9 –10 –10 м. Для этого на очищенную поверхность монокристалла никеля или кремния с помощью туннельного микроскопа напыляются небольшие количества атомов или молекул других веществ. Поверхность кристалла охлаждается до –269 °С, чтобы исключить заметные перемещения атомов вследствие теплового движения. Размещение отдельных атомов в заданных местах открывают фантастические возможности создания хранилищ информации на атомном уровне. Это уже предел «миниатюризации».

6. Вольфрам и молибден . На современном уровне технического развития резко возросли скорости нагрева и охлаждения деталей приборов и машин, значительно увеличился интервал температур, при которых им приходится работать. Очень часто требуется длительная работа при очень высоких температурах, в агрессивных средах. Также необходимы машины, способные выдерживать большое число температурных циклов.

При таких сложных условиях эксплуатации детали и целые узлы многих машин и приборов очень быстро изнашиваются, покрываются трещинами и разрушаются. Для работы при высоких температурах широко применяются тугоплавкие металлы, например, молибден и вольфрам. монокристаллы вольфрама и молибдена, полученные при помощи зонной плавки, используются для изготовления сопел реактивных и прямоточных воздушно-реактивных двигателей, обшивок головных частей ракет, ионных двигателей, турбин, атомных силовых установок и во многих других устройствах и механизмах. Поликристаллические вольфрам и молибден применяются для изготовления анодов, катодов, нитей накаливания в лампах, высокотемпературных электрических печей.

7. Кварц . Это диоксид кремния, один из самых распространённых минералов земной коры, по сути, песок. Природные кристаллы кварца имеют размеры от песчинок до нескольких десятков сантиметров, встречаются кристаллы размером до одного метра и более. Чистый кристалл кварца бесцветен. Ничтожные посторонние примеси вызывают разнообразную окраску. Прозрачные бесцветные кристаллы – это горный хрусталь, фиолетовые – аметист, дымчатые – раухтопаз. Оптические свойства кварца обусловили широкое применение его в оптическом приборостроении: из него делают призмы для спектрографов, монохроматоров. Кварц в отличие от стекла хорошо пропускает ультрафиолетовое излучение, поэтому из него изготавливают специальные линзы, применяемые в ультрафиолетовой оптике.

Кварц также обладает пьезоэлектрическими свойствами, т.е. способен преобразовывать механическое воздействие в электрическое напряжение. Благодаря этому свойству кварц широко применяется в радиотехнике и электронике – в стабилизаторах частоты (в том числе и в часах), всевозможных фильтрах, резонаторах и т.д. С помощью кристаллов кварца возбуждают (и измеряют) малые механические и акустические воздействия.

Из плавленного кварца изготавливают тигли, сосуды и другие ёмкости для химических лабораторий.

4. Способы повышения прочности твёрдых тел

Поликристаллическими являются стальные каркасы зданий и мостов, рельсы железных дорог, станки, детали машин и самолётов. Значения реальной и теоретической прочности расходятся в десятки, даже сотни раз. Причина кроется в наличии внутренних и поверхностных дефектов в кристаллических решётках.

Для получения высокопрочных материалов нужно выращивать монокристаллы по возможности без дефектов. Это очень сложная задача. Большинство современных методов упрочнения материалов основано на другом способе: в кристалле создаются препятствия перемещению дефектов. Ими могут служить дислокации (нарушения порядка расположения атомов в кристаллической решётке) и другие, специально созданные, дефекты.

Примеры точечных дислокаций – нарушений порядка расположения атомов в кристалле

К таким методам относятся, например:

легирование стали : вводят в расплав небольшие добавки хрома или вольфрама, при этом прочность возрастает в три раза;

высокоскоростная кристаллизация : чем быстрее отводится тепло от затвердевшего слитка, тем меньше размеры кристаллов. При этом улучшаются физические и механические характеристики. Для быстрого отвода тепла расплавленный металл струёй нейтрального газа распыляется в мельчайшую пыль, которую затем спрессовывают при высоких давлении и температуре.

Статья подготовлена при поддержке компании «АВЕРС». Надежность и качество-это девиз компании «АВЕРС». Компания «АВЕРС» специализируется на комплексе работ по водоснабжению частных и коллективных объектов, поэтому каждый заказ должен быть выполнен добросовестно. Перейдя в раздел: «бурение глубоких скважин », вы сможете, узнать об услугах, акциях, предоставляемых компанией «АВЕРС», а также заказать обратный звонок для связи со специалистом, который сможет ответить на ваши вопросы. В компании «АВЕРС» работают только высококвалифицированные специалисты с огромным опытом работы с клиентами.

Повышение прочности кристаллических тел даёт выигрыш в размерах различных агрегатов, позволяет уменьшить их массу, повышает рабочую температуру и увеличивает срок службы.

5. Закрепление

Учащимся предлагается заполнить тест-таблицу «Применение кристаллов в технике». В конце урока как итог самостоятельной работы учащихся демонстрируется экспресс-газета, нарисованная двумя учениками в течение урока.

Литература

Учебник «Физика-10»: Под ред. А.А.Пинского. – М: Просвещение, 2001.

Физическая энциклопедия, т. 3: Под ред. А.М.Прохорова. – М: Советская энциклопедия, 1990.

Ресурсы интернета.

Ирина Александровна Дороговцева – выпускница ГПИ г. Комсомольск-на-Амуре (1997 г.), учитель физики высшей квалификационной категории, педагогический стаж 8 лет. Участница финала профессионального конкурса «Учитель года-2003». Дочери 4 года. Увлекается компьютерным дизайном, программированием, научной фантастикой.

В природе монокристаллы большинства веществ без трещин, загрязнений и других дефектов встречаются крайне редко. Это привело к тому, что многие кристаллы на протяжении тысячелетий люди называют драгоценными камнями. Алмаз, рубин, сапфир, аметист и другие драгоценные камни долгое время ценились людьми очень высоко в основном не за особые механические пли другие физические свойства, а лишь из-за своей редкости.

Развитие науки и техники привело к тому, что многие драгоценные камни или просто редко встречающиеся в природе кристаллы стали очень нужными для изготовления деталей приборов и машин, для выполнения научных исследований. Потребность во многих кристаллах возросла настолько, что удовлетворить ее за счет расширения масштабов выработки старых и поисков новых природных месторождений оказалось невозможно.

Кроме того, для многих отраслей техники и особенно для выполнения научных исследований все чаще требуются монокристаллы очень высокий химической чистоты с совершенной кристаллической структурой. Кристаллы, встречающиеся в природе, этим требованиям не удовлетворяют, так как они растут в условиях, весьма далеких от идеальных.

Таким образом, возникла задача разработки технологии искусственного изготовления монокристаллов многих элементов и химических соединений.

Разработка сравнительно простого способа изготовления «драгоценного камня» приводит к тому, что он перестает быть драгоценным. Объясняется это тем, что большинство драгоценных камней является кристаллами широко распространенных в природе химических элементов и соединений. Так, алмаз - это кристалл углерода, рубин и сапфир - кристаллы окиси алюминия с различными примесями.

Рассмотрим основные способы выращивания монокристаллов. На первый взгляд может показаться, что осуществить кристаллизацию из расплава очень просто. Достаточно нагреть вещество выше температуры плавления, получить расплав, а затем охладить его. В принципе это правильный путь, но если не принять специальных мер, то в лучшем случае получится поликристаллический образец. А если опыт проводить, например, с кварцем, серой, селеном, сахаром, способными в зависимости от скорости охлаждения их расплавов затвердевать в кристаллическом или аморфном состоянии, то нет никакой гарантии, что не будет получено аморфное тело.

Для того чтобы вырастить один монокристалл, недостаточно медленного охлаждения. Нужно сначала охладить один небольшой участок расплава и получить в нем «зародыш» кристалла, а затем, последовательно охлаждая расплав, окружающий «зародыш», дать возможность разрастись кристаллу по всему объему расплава. Этот процесс можно обеспечить медленным опусканием тигля с расплавом сквозь отверстие в вертикальной трубчатой печи. Кристалл зарождается на дне тигля, так как оно раньше попадает в область более низких температур, а затем постепенно разрастается по всему объему расплава. Дно тигля специально делают узким, заостренным на конус, чтобы в нем мог расположиться только один кристаллический зародыш.

Этот способ часто применяется для выращивания кристаллов цинка, серебра, алюминия, меди и других металлов, а также хлористого натрия, бромистого калия, фтористого лития и других солей, используемых оптической промышленностью. За сутки можно вырастить кристалл каменной соли массой порядка килограмма.

Недостатком описанного метода является загрязнение кристаллов материалом тигля.

Этого недостатка лишен бестигельный способ выращивания кристаллов из расплава, которым выращивают, например, корунд, (рубины, сапфиры). Тончайший порошок окиси алюминия из зерен размером 2-100 мкм высыпается тонкой струёй из бункера, проходит через кислородно-водородное пламя, плавится и в виде капель попадает на стержень из тугоплавкого материала. Температура стержня поддерживается несколько ниже температуры плавления окиси алюминия (2030°С). Капли окиси алюминия охлаждаются на нем и образуют корку спекшейся массы корунда. Часовой механизм медленно (10-20 мм/ч) опускает стержень, и на нем постепенно вырастает не ограненный кристалл корунда.

Как и в природе, получение кристаллов из раствора сводится к двум способам. Первый из них состоит в медленном испарении растворителя из насыщенного раствора, а второй - в медленном понижении температуры раствора. Чаще применяют второй способ. В качестве растворителей используют воду, спирты, кислоты, расплавленные соли и металлы. Недостатком методов выращивания кристаллов из раствора является возможность загрязнения кристаллов частицами растворителя.

Кристалл растет из тех участков пересыщенного раствора, которые его непосредственно окружают. В результате этого вблизи кристалла раствор оказывается менее пересыщенным, чем вдали от него. Так как пересыщенный раствор тяжелее насыщенного, то над поверхностью растущего кристалла всегда имеется направленный вверх поток «использованного» раствора. Без такого перемешивания раствора рост кристаллов быстро бы прекратился. Поэтому часто дополнительно перемешивают раствор или закрепляют кристалл на вращающемся держателе. Это позволяет выращивать более совершенные кристаллы.

Чем меньше скорость роста, тем лучше получаются кристаллы. Это правило справедливо для всех методов выращивания. Кристаллы сахара и поваренной соли легко получить из водного раствора в домашних условиях. Но, к сожалению, не все кристаллы можно вырастить так просто. Например, получение кристаллов кварца из раствора происходит при температуре 400°С и давлении 1000 ат.

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз. За всю историю человечества его добыто всего около 150 т, хотя в мировой алмазодобывающей промышленности сейчас работает почти миллион человек. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности. Роль алмазов в современной технике так велика, что, по подсчетам американских экономистов, прекращение применения алмазов привело бы к уменьшению мощности промышленности США вдвое.

Примерно 80% применяемых в технике алмазов идет на заточку инструментов и резцов "сверхтвердых сплавов". Алмазы служат опорными камнями (подшипниками) в хронометрах высшего класса для морских судов и в других особо точных навигационных приборах. На алмазных подшипниках не обнаруживается никаких следов износа даже после 25 000 000 оборотов.

Несколько уступая алмазу по твердости, соревнуется с ним но разнообразию технических применении рубин - благородный корунд, окись алюминия Al 2 O 3 с красящей примесью окиси хрома. Из 1 кг синтетического рубина удается изготовить около 40 000 опорных камней для часов. Незаменимыми оказались рубиновые стержни на фабриках по изготовлению тканей из химического волокна. На изготовление 1 м ткани из искусственного волокна требуется израсходовать сотни тысяч метров волокна. Нитеводители из самого твердого стекла изнашиваются за несколько дней при протяжке через них искусственного волокна, агатовые способны работать до двух месяцев, рубиновые нитеводители оказываются практически вечными.

Новая область для широкого применения рубинов в научных исследованиях и в технике открылась с изобретением рубинового лазера - прибора, в котором рубиновый стержень служит мощным источником света, испускаемого в виде тонкого светового луча.

Исключительная роль выпала на долю кристаллов в современной электронике. Большинство полупроводниковых электронных приборов изготовлено из кристаллов германия или кремния.

Применение кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение.

Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила – это большой (до 2-х метров а диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Колоссальное значение имеет алмаз при бурении горных пород, в горных работах.

В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.

Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и синий сапфир – это родные братья, это вообще один и тот же минерал – корунд, окись алюминия. Корунд со всеми его разновидностями – это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.

Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами.

В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.

Новая жизнь рубина – это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ), чудесный прибор наших дней. В 1960 г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц.

Мощный луч лазера обладает громадной мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает стальные трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. В глазной хирургии также применяются лазеры. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кремень, аметист, яшма, опал, халцедон – все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца – это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.

Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это – пьезоэлектрический эффект в кристаллах.

В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезированные вещества.

Пьезоэлектрические кристаллы широко применяются для воспроизведения, записи и передачи звука.

Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений.

В технике также нашел свое применение поликристаллический материал – поляроид.

Поляроид – это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества. Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют водителя, и он не видит этой машины.

Кристаллы сыграли важную роль во многих технических новинках ХХ века.

Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследовательская работа

КРИСТАЛЛЫ И ИХ ПРИМЕНЕНИЕ

Автор работы: Кривошеев Евгений

ученик 7«Б» класса МБОУСОШ №1

Г.Завитинска Амурской области

Руководитель работы : Конченко Н.С.

учитель физики МБОУСОШ №1

Г.Завитинска Амурской области

Завитинск.

2013г.

  • Введение
  • 1. Кристалл. Его свойства, строение и форма
  • 2. Жидкие кристаллы
  • 3. Применение ЖК
  • 4. Применение кристаллов в науке и технике
  • 5. Практическая часть
  • Заключение
  • Список литературы
  • Введение
  • Актуальность работы :
  • Так как кристаллы имеют широкое применение в науке и технике, то трудно назвать такую отрасль производства, где не использовались бы кристаллы. Поэтому знать и разбираться в свойствах кристаллов очень важно для каждого человека.
  • Цель исследования : Выращивание кристалла из раствора в домашних условиях, изучение практического применения кристаллов в науке и технике.
  • Задачи:
  • 1.Изучение теории о кристаллах.
  • 2.Изучение материала по выращиванию кристалла в обычных условиях и в лабораторных условиях.
  • 3.Наблюдение за образованием кристалла.
  • 4.Описание наблюдений.
  • 5.Изучение области применения кристаллов в современной жизни.

1. Кристалл. Его свойства, строение и форма

Слово «кристалл» происходит от греческого «crustallos », то есть «лед». Твердые тела, атомы или молекулы которых образуют упорядоченную периодическую структуру (кристаллическую решетку).

Образование кристаллов.

Кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава может служить образование льда из воды. кристалл жидкий выращивание лабораторный

Вокружающем нас мире часто можно наблюдать образование кристаллов непосредственно из газовой среды, из растворов и из расплава. В тихую морозную ночь при ясном небе, в ярком свете луны или фонаря, мы иногда видим поблескивающие искорками медленно опускающиеся чешуйки инея. Это пластинчатые кристаллики льда, образующиеся тут же около нас из влажного и остывшего воздуха.

Структура твердых тел зависит от условий, в которых происходит переход из жидкого в твёрдое состояние. Если такой переход происходит очень быстро, например, при резком охлаждении жидкости, то частицы не успевают выстроиться в правильную структуру и образуется мелкокристаллическое тело. При медленном охлаждении жидкости получаются крупные и правильной формы кристаллы. В некоторых случаях, для того чтобы вещество закристаллизовалось, его приходиться выдерживать при различных температурах. Также на рост кристалла влияет внешнее давление. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Строение кристаллов

Разнообразие кристаллов по форме очень велико.

Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. На форму оказывают влияние такие факторы, как температура, давление, частота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм.

Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же -- 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах -- кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала.

Простейшим прибором для измерения углов кристаллов является прикладной гониометр.

Виды кристаллов

Кроме того различают монокристаллы и поликристаллы.

Монокристалл представляет собой монолит с единой ненарушенной кристаллической решеткой. Природные монокристаллы больших размеров встречаются очень редко.

Монокристаллами являются кварц, алмаз, рубин и многие другие драгоценные камни.

Большинство кристаллических тел являются поликристаллическими, то есть состоят из множества мелких кристалликов, иногда видных только при сильном увеличении.

Поликристаллами являются все металлы.

2. Жидкие кристаллы

Жидкий кристалл - это особое состояние вещества, промежуточное между жидким и твердым состояниями. В жидкости молекулы могут свободно вращаться и перемещаться в любых направлениях. В жидком кристалле имеется некоторая степень геометрической упорядоченности в расположении молекул, но допускается и некоторая свобода перемещения.

Консистенция жидких кристаллов может быть разной - от легкотекучей жидкой до пастообразной. Жидкие кристаллы имеют необычные оптические свойства, что используется в технике.Жидкие кристаллы образуются из молекул, имеющих разную геометрическую форму. таких, как цвет, прозрачность и др. На всем этом основаны многочисленные применения жидких кристаллов.

3. Применение ЖК

Расположение молекул в жидких кристаллах изменяется под действием таких факторов, как температура, давление, электрические и магнитные поля; изменения же расположения молекул приводят к изменению оптических свойств, таких, как цвет, прозрачность и способность к вращению плоскости поляризации проходящего света. На всем этом основаны многочисленные применения жидких кристаллов. Например, зависимость цвета от температуры используется для медицинской диагностики. Нанося на тело пациента некоторые жидкокристаллические материалы, врач может легко выявлять затронутые болезнью ткани по изменению цвета в тех местах, где эти ткани выделяют повышенные количества тепла. Температурная зависимость цвета позволяет также контролировать качество изделий без их разрушения. Если металлическое изделие нагревать, то его внутренний дефект изменит распределение температуры на поверхности. Эти дефекты выявляются по изменению цвета нанесенного на поверхность жидкокристаллического материала.

Тонкие пленки жидких кристаллов, заключенные между стеклами или листками пластмассы, нашли широкое применение в качестве индикаторных устройств. Жидкие кристаллы широко применяются в производстве наручных часов и небольших калькуляторов. Создаются плоские телевизоры с тонким жидкокристаллическим экраном.

4. Применение кристаллов в науке и технике

В наше время кристаллы имеют очень широкое применение в науке, технике и медицине.

Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Огромное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвёрдые сплавы. Сам алмаз можно резать, шлифовать и гравировать только самим же алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки и пасты. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами.

Гранат также используется в абразивной промышленности. Из гранатов изготовляют шлифовальные порошки, точильные круги, шкурки. Они иногда заменяют в приборостроении рубин.

Из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Искусственное «горное солнце» - аппарат, широко применяемый в медицине. При включении данный аппарат излучает ультрафиолетовый свет, эти лучи являются целебными. В данном аппарате лампа сделана из кварцевого стекла. Кварцевая лампа используется не только в медицине, но и в органической химии, минералогии, помогает отличить фальшивые марки, денежные купюры от настоящих. Чистые бездефектные кристаллы горного хрусталя используются при изготовлении призм, спетрографов, поляризующих пластинок.

Флюорит используется для изготовления линз телескопов и микроскопов, для изготовления призм спектрографов и в других оптических приборах.

5. Практическая часть

Выращивание кристаллов медного купороса.

Медный купорос -- пятиводный сульфат меди, так как крупные кристаллы напоминают цветное синее стекло. Медный купорос применяют в сельском хозяйстве для борьбы с вредителями и болезнями растений, в промышленности при производстве искусственных волокон, органических красителей, минеральных красок, мышьяковистых химикатов.

Способ выращивания в домашних условиях:

1) Для начала приготовим раствор концентрированного купороса. После этого слегка подогреем смесь, чтобы добиться полного растворения соли. Для этого стакан поставим в кастрюлю с теплой водой.

2) Полученный концентрированный раствор перельем в банку или химический стакан; туда же подвесим на нитке кристаллическую "затравку" - маленький кристаллик той же соли - так, чтобы он был погружен в раствор. На этой "затравке" и предстоит расти будущему экспонату вашей коллекции кристаллов.

3) Сосуд с раствором поставим в открытом виде в теплое место. Когда кристалл вырастет достаточно большим, вынем его из раствора, обсушим мягкой тряпочкой или бумажной салфеткой, обрежем нитку и покроем грани кристалла бесцветным лаком, чтобы предохранить от "выветривания" на воздухе.

Наблюдение за процессом роста кристаллов медного купороса.

Для начала мы налили в химический стакан раствор медного купороса, привязали на нитку затравку. И опустили в стакан кристалл. Уже на следующий день у нас появился поликристалл довольно больших размеров, около 2 сантиметров в длине. Сам кристалл был очень неровный, с небольшими столбцами. Дальше кристаллизация не продолжалась, сколько бы мы не ждали.

Но мы на этом не останавливались и сделали ещё два кристалла медного купороса. Только затравку мы взяли из столбца неполучившегося кристалла. В одном растворе температура постоянно менялась, а в другом стакане была неизменной. Через несколько суток у нас получились два полноценных монокристалла медного купороса. Они получились с ровными гранями, абсолютно симметричные. Так я понял что для того чтобы сделать ровный кристалл надо чтобы затравка тоже была ровной и симметричной.

Наблюдение за процессом роста кристаллов в растворах солей под микроскопом.

Рассматривать кристаллы под микроскопом очень интересно, так как чем "моложе" кристалл, тем более правильную форму он имеет. Изучение кристаллов под микроскопом не занимает много времени и ресурсов: для приготовления раствора необходимо всего несколько грамм соли, да и времени на рост кристалла уходит не так много.

Наносили на предметное стекло микроскопа несколько капель насыщенного раствора различных солей. Стекло слегка подогревали пламенем спиртовки и помещали на столик микроскопа. Перемещением предметного стекла и регулированием увеличения добивались такого положения, чтобы капля заняла все поле зрения микроскопа. Через небольшой промежуток времени (около 1 мин) на краю капли, где она высыхает быстрее, начиналась кристаллизация. Возникшие мелкие кристаллы образовывали по краям капли сплошную непрозрачную корку, которая в проходящем свете кажется темной. Постепенно из этой массы кристаллов начинали проступать направленные внутрь капли отдельные острия индивидуальных кристаллов, которые, разрастаясь, образуют разнообразные формы. Чаще всего новые центры кристаллизации в свободном пространстве внутри капли, как правило, самопроизвольно не возникали. Через некоторое время все поле зрения заполнялось кристаллами, и кристаллизация практически заканчивалась.

Заключение

Таким образом, кристаллы одни из самых красивых и загадочных творений природы. Мы живем в мире, состоящем из кристаллов, строим из них, обрабатываем их, едим их, лечимся ими… Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов - явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк - кристалличны. Даже некоторые части организма кристалличны, например, роговица глаза, витамины, оболочка нервов. Долгий путь поисков и открытий, от измерения внешней формы кристаллов вглубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.

В результате проведенной работы я могу сделать следующие выводы:

1. Кристалл - это твердое состояние вещества. Он имеет определенную форму и определенное количество граней.

2. Кристаллы бывают разных цветов, но в большинстве своём прозрачны.

3. Кристаллы - совсем не музейная редкость. Кристаллы окружают нас повсюду. Твёрдые тела, из которых мы строим дома и делаем станки, вещества, которые мы употребляем в быту, - почти все они относятся к кристаллам. Песок и гранит, поваренная соль и сахар, алмаз и изумруд, медь и железо - всё это кристаллические тела.

4. Самые ценные среди кристаллов - драгоценные камни.

5. Я вырастил кристалл в домашних условиях из насыщенного раствора медного купороса.

Таким образом, цели и задачи, которые были обозначены мной в начале работы, достигнуты. В результате проведенной работы я опытным путём нашёл доказательство для предположения, которое было высказано английским кристаллографом Франком о ступенчатом росте кристаллов.

Проведенная работа была очень интересной и занимательной. Мне бы хотелось ещё вырастить кристаллы из других веществ, ведь их так много вокруг нас…

Размещено на Allbest.ru

...

Подобные документы

    Твёрдые кристаллы: структура, рост, свойства. "Наличие порядка" пространственной ориентации молекул как свойство жидких кристаллов. Линейно поляризованный свет. Нематические, смектические и холестерические кристаллы. Общее понятие о сегнетоэлектриках.

    курсовая работа , добавлен 17.11.2012

    Примеры применения монокристаллов. Семь кристаллических систем: триклинная, моноклинная, ромбическая, тетрагональная, ромбоэдрическая, гексагональная и кубическая. Простые формы кристаллов. Получение перенасыщенного раствора и выращивание кристалла.

    презентация , добавлен 09.04.2012

    История открытия жидких кристаллов, особенности их молекулярного строения, структура. Классификация и разновидности жидких кристаллов, их свойства, оценка преимуществ и недостатков практического использования. Способы управления жидкими кристаллами.

    курсовая работа , добавлен 08.05.2012

    Общая характеристика поверхностных явлений в жидких кристаллах. Рассмотрение отличительных особенностей смектических жидких кристаллов, различных степеней их упорядочения. Исследование анизотропии физических свойств мезофазы, степени упорядочения.

    реферат , добавлен 10.10.2015

    Жидкокристаллическое (мезоморфное) состояние вещества. Образование новой фазы. Типы жидких кристаллов: смекатические, нематические и холестерические. Термотропные и лиотропные жидкие кристаллы. Работы Д. Форлендера, способствовавшие синтезу соединений.

    презентация , добавлен 27.12.2010

    История открытия жидких кристаллов. Их классификация, молекулярное строение и структура. Термотропные жидкие кристаллы: смектический, нематический и холестерический тип. Лиотропные ЖК. Анизотропия физических свойств. Как управлять жидкими кристаллами.

    реферат , добавлен 27.05.2010

    Понятие строения вещества и основные факторы, влияющие на его формирование. Основные признаки аморфного и кристаллического вещества, типы кристаллических решеток. Влияние типа связи на структуру и свойства кристаллов. Сущность изоморфизма и полиморфизма.

    контрольная работа , добавлен 26.10.2010

    Физические и физико-химические свойства ферритов. Структура нормальной и обращенной шпинели. Обзор метода спекания и горячего прессования. Магнитные кристаллы с гексагональной структурой. Применение ферритов в радиоэлектронике и вычислительной технике.

    курсовая работа , добавлен 12.12.2016

    Эпитаксия - ориентированный рост одного кристалла на поверхности другого (подложки). Исследование форм кристаллов NaCl, образуемых при сублимации из водного раствора; структурное соответствие эпитаксиальных пар по срастающимся граням и отдельным рядам.

    курсовая работа , добавлен 04.04.2011

    Изучение понятия, видов и способов образования кристаллов - твердых тел, в которых атомы расположены закономерно, образуя трехмерно-периодическую пространственную укладку - кристаллическую решетку. Образование кристаллов из расплава, раствора, пара.