Применение экономико математических методов в экономике. Задания для самостоятельной работы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО - ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

ТУЛЬСКИЙ ФИЛИАЛ

(ТФ ГОУ ВПО РГТЭУ)


Реферат по математике на тему:

«Экономико-математические модели»


Выполнили:

Студентки 2 курса

«Финансы и кредит»

дневное отделение

Максимова Кристина

Витка Наталья

Проверил:

Доктор технических наук,

профессор С.В. Юдин _____________



Введение

1.Экономико-математическое моделирование

1.1 Основные понятия и типы моделей. Их классификация

1.2 Экономико-математические методы

Разработка и применение экономико-математических моделей

2.1 Этапы экономико-математического моделирования

2.2 Применение стохастических моделей в экономике

Заключение

Список литературы

Введение


Актуальность. Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.

Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Почему можно говорить об эффективности применения методов моделирования в этой области? Во-первых, экономические объекты различного уровня (начиная с уровня простого предприятия и кончая макроуровнем - экономикой страны или даже мировой экономикой) можно рассматривать с позиций системного подхода. Во-вторых, такие характеристики поведения экономических систем как:

-изменчивость (динамичность);

-противоречивость поведения;

-тенденция к ухудшению характеристик;

-подверженность воздействию окружающей среды

предопределяют выбор метода их исследования.

Проникновение математики в экономическую науку связано с преодолением значительных трудностей. В этом отчасти была "повинна" математика, развивающаяся на протяжении нескольких веков в основном в связи с потребностями физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки.

Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Цель данной работы - раскрыть понятие экономико-математических моделей и изучить их классификацию и методы, на которых они базируются, а также рассмотреть их применение в экономике.

Задачи данной работы: систематизация, накопление и закрепление знаний об экономико-математических моделях.

1.Экономико-математическое моделирование


1.1 Основные понятия и типы моделей. Их классификация


В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ реального объекта (процессов), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием . Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процессов). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процессов), хотя на самом деле действительность значительно содержательнее и богаче.

Модель - это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Экономико-математические модели - это модели экономических объектов или процессов, при описании которых используются математические средства. Цели их создания разнообразны: они строятся для анализа тех или иных предпосылок и положений экономической теории, логического обоснования экономических закономерностей, обработки и приведения в систему эмпирических данных. В практическом плане экономико-математические модели используются как инструмент прогноза, планирования, управления и совершенствования различных сторон экономической деятельности общества.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По целевому назначению модели делятся на:

·Теоретико-аналитические (используются в исследовании общих свойств и закономерностей экономических процессов);

·Прикладные (применяются в решении конкретных экономических задач, таких как задачи экономического анализа, прогнозирования, управления).

По учету фактора времени модели подразделяются на:

·Динамические (описывают экономическую систему в развитии);

·Статистические (экономическая система описана в статистике, применительно к одному определенному моменту времени; это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени).

По длительности рассматриваемого периода времени различают модели:

·Краткосрочного прогнозирования или планирования (до года);

·Среднесрочного прогнозирования или планирования (до 5 лет);

·Долгосрочного прогнозирования или планирования (более 5 лет).

По цели создания и применения различают модели:

·Балансовые;

·Эконометрические;

·Оптимизационные;

·Сетевые;

·Систем массового обслуживания;

·Имитационные (экспертные).

В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.

Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.

Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.

Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий, и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.

Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.

Имитационная модель, наряду с машинными решениями, содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае персональный компьютер, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.

По учету фактора неопределенности модели подразделяются на:

·Детерминированные (с однозначно определенными результатами);

·Стохастические (вероятностные; с различными, вероятностными результатами).

По типу математического аппарата различают модели:

·Линейного программирования (оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений);

·Нелинейного программирования (оптимальных значений целевой функции может быть несколько);

·Корреляционно-регрессионные;

·Матричные;

·Сетевые;

·Теории игр;

·Теории массового обслуживания и т.д.

С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей и новых признаков их классификации, осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

моделирование математический стохастический


1.2 Экономико-математические методы


Как и всякое моделирование, экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов, во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей, в-третьих, выработка управленческих решений на всех уровнях управления.

Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей, которые следует понимать как продукт процесса экономико-математического моделирования, а экономико-математические методы - как инструмент.

Рассмотрим вопросы классификации экономико-математических методов. Эти методы представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав.

С известной долей условности классификацию этих методов можно представить следующим образом.

·Экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем.

·Математическая статистика: экономические приложения данной дисциплины - выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, теория индексов и др.

·Математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование.

·Методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, сетевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений.

В оптимальное программирование в свою очередь входят линейное и нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, стохастическое программирование и др.

·Методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального ценообразования функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым - методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели теории фирмы и т.д. Многие из методов, разработанных для централизованно планируемой экономики, могут быть оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики.

·Методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отнести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению.

В экономико-математических методах применяются различные разделы математики, математической статистики, математической логики. Большую роль в решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие дисциплины. Использование математического аппарата принесло ощутимые результаты при решении задач анализа процессов расширенного производства, определения оптимальных темпов роста капиталовложений, оптимального размещения, специализации и концентрации производства, задач выбора оптимальных способов производства, определения оптимальной последовательности запуска в производство, задачи подготовки производства методами сетевого планирования и многих других.

Для решения стандартных проблем характерны четкость цели, возможность заранее выработать процедуры и правила ведения расчетов.

Существуют следующие предпосылки использования методов экономико-математического моделирования, важнейшими из которых являются высокий уровень знания экономической теории, экономических процессов и явлений, методологии их качественного анализа, а также высокий уровень математической подготовки, владение экономико-математическими методами.

Прежде чем приступить к разработке моделей, необходимо тщательно проанализировать ситуацию, выявить цели и взаимосвязи, проблемы, требующие решения, и исходные данные для их решения, вести систему обозначений и только тогда описать ситуацию в виде математических соотношений.


2. Разработка и применение экономико-математических моделей


2.1 Этапы экономико-математического моделирования


Процесс экономико-математического моделирования - это описание экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов:

.Постановка экономической проблемы и ее качественный анализ;

2.Построение математической модели;

.Математический анализ модели;

.Подготовка исходной информации;

.Численное решение;

Рассмотрим каждый из этапов более подробно.

1.Постановка экономической проблемы и ее качественный анализ . Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2.Построение математической модели . Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таком образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности т неопределенности и т.д.

Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом.

Одна из важный особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться «изобретать» модель; сначала необходимо попытаться применить для решения этой задачи уже известные модели.

.Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает и следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неищвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

4.Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов.

Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5.Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составление программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6.Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявить некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.


2.2 Применение стохастических моделей в экономике


Основу эффективности банковского менеджмента составляет планомерный контроль за оптимальностью, сбалансированностью и устойчивостью функционирования в разрезе всех элементов, формирующих ресурсный потенциал и определяющих перспективы динамического развития кредитного учреждения. Его методы и инструменты требуют модернизации с учетом изменяющихся экономических условий. В то же время необходимость совершенствования механизма реализации новых банковских технологий обуславливает целесообразность научного поиска.

Используемые в существующих методиках интегральные коэффициенты финансовой устойчивости (КФУ) коммерческих банков зачастую характеризуют сбалансированность их состояния, но не позволяют дать полную характеристику тенденции развития. Следует учитывать, что результат (КФУ) зависит от многих случайных причин (эндогенного и экзогенного характера), которые не могут быть заранее полностью учтены.

В связи с этим оправданно рассматривать возможные результаты исследования устойчивого состояния банков в качестве случайных величин, имеющих одинаковое распределение вероятностей, поскольку исследования проводятся по одной и той же методике с использованием одинакового подхода. Кроме того, они взаимно независимы, т.е. результат каждого отдельного коэффициента не зависит от значений остальных.

Приняв во внимание, что в одном испытании случайная величина принимает одно и только одно возможное значение, заключаем, что события x 1 , x 2 , …, x n образуют полную группу, следовательно, сумма их вероятностей будет равна 1: p 1 +p 2 +…+p n =1 .

Дискретная случайная величина X - коэффициент финансовой устойчивости банка «А»,Y - банка «В», Z - банка «С» за заданный период. В целях получения результата, дающего основание сделать вывод об устойчивости развития банков, оценка была осуществлена на базе 12-летнего ретроспективного периода (табл.1).


Таблица 1

Порядковый номер годаБанк «А»Банк «В»Банк «С» 11,3141,2011,09820,8150,9050,81131,0430,9940,83941,2111,0051,01351,1101,0901,00961,0981,1541,01771,1121,1151,02981,3111,3281,06591,2451,1911,145101,5701,2041,296111,3001,1261,084121,1431,1511,028Min0,8150,9050,811Max1,5701,3281,296Шаг0,07550,04230,0485

Для каждой выборке по определенному банку значения разбиты на N интервалов, определены минимальное и максимальное значение. Процедура определения оптимального числа групп основана на применении формулы Стерджесса:


N =1+3,322 * ln N;

N =1+3,322 * ln12=9,525?10,


Где n - число групп;

N - число совокупности.


h=(КФУ max - КФУ min ) / 10.


Таблица 2

Границы интервалов значений дискретных случайных величин X, Y, Z (коэффициентов финансовой устойчивости) и частоты появлений данных значений в обозначенных границах

Номер интервалаГраницы интерваловЧастота появлений (n )XYZXYZ 10,815-0,8910,905-0,9470,811-0,86011220,891-0,9660,947-0,9900,860-0,90800030,966-1,0420,990-1,0320,908-0,95702041,042-1,1171,032-1,0740,957-1,00540051,117-1,1931,074-1,1171,005-1,05412561,193-1,2681,117-1,1591,054-1,10223371,268-1,3441,159-1,2011,102-1,15131181,344-1,4191,201-1,2431,151-1,19902091,419-1,4951,243-1,2861,199-1,248000101,495-1,5701,286-1,3281,248-1,296111

Исходя из найденного шага интервала, были рассчитаны границы интервалов путем прибавления к минимальному значению найденного шага. Полученное значение - это граница первого интервала (левая граница - LG). Для нахождения второго значения (правой границы PG) к найденной первой границе снова прибавляет я шаг и т.д. Граница последнего интервала совпадает с максимальным значением:


LG 1 =КФУ min ;

PG 1 =КФУ min +h;

LG 2 =PG 1;

PG 2 =LG 2 +h;

PG 10 =КФУ max .


Данные по частоте попадания коэффициентов финансовой устойчивости (дискретных случайных величин X, Y, Z) сгруппированы в интервалы, и определена вероятность попадания их значений в заданные границы. При этом левое значение границы входит в интервал, а правое - нет (табл.3).


Таблица 3

Распределение дискретных случайных величин X, Y, Z

ПоказательЗначения показателяБанк «А»X 0,8530,9291,0041,0791,1551,2311,3061,3821,4571,532P(X) 0,083000,3330,0830,1670,250000,083Банк «В»Y 0,9260,9691,0111,0531,0961,1381,1801,2221,2651,307P(Y) 0,08300,16700,1670,2500,0830,16700,083Банк «С»Z 0,8350,8840,9330,9811,0301,0781,1271,1751,2241,272P(Z) 0,1670000,4170,2500,083000,083

По частоте появлений значений n найдены их вероятности (частота появления делится на 12, исходя из числа единиц совокупности), а также в качестве значений дискретных случайных величин были использованы середины интервалов. Законы их распределения:


P i = n i /12;

X i = (LG i +PG i )/2.


На основании распределения можно судить о вероятности неустойчивого развития каждого банка:


P(X<1) = P(X=0,853) = 0,083

P(Y<1) = P(Y=0,926) = 0,083

P(Z<1) = P(Z=0,835) = 0,167.


Так с вероятностью 0,083 банк «А» может достигнуть значения коэффициента финансовой устойчивости, равное 0,853. Другими словами, вероятность того, что его расходы превысят доходы, составляет 8,3 %. По банку «В» вероятность падения коэффициента ниже единицы также составила 0,083, однако с учетом динамичного развития организации это снижение все же окажется незначительным - до 0,926. Наконец, высока вероятность (16,7%), что деятельность банка «С», при прочих равных условиях, охарактеризуется значением финансовой устойчивости, равным 0,835.

В то же время по таблицам распределений можно увидеть вероятность устойчивого развития банков, т.е. сумму вероятностей, где варианты коэффициентов имеют значение, большее 1:


P(X>1) = 1 - P(X<1) = 1 - 0,083 = 0,917

P(Y>1) = 1 - P(Y<1) = 1 - 0,083 = 0,917

P(Z>1) = 1 - P(Z<1) = 1 - 0,167 = 0,833.


Можно наблюдать, что наименее устойчивое развитие ожидается в банке «С».

В целом закон распределения задает случайную величину, однако чаще целесообразнее пользоваться числами, которые описывают случайную величину суммарно. Их называют числовыми характеристиками случайной величины, к ним относится математическое ожидание. Математическое ожидание приближенно равно среднему значению случайной величины и оно тем больше приближается к среднему значению, чем больше было проведено испытаний.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех возможных величин на ее вероятности:


M(X) = x 1 p 1 +x 2 p 2 +…+x n p n


Результаты расчетов значений математических ожиданий случайных величин представлены в табл.4.


Таблица 4

Числовые характеристики дискретных случайных величин X, Y, Z

БанкМатематическое ожиданиеДисперсияСреднее квадратическое отклонение «А»M(X) = 1,187D(X) =0,027?(x) = 0,164«В»M(Y) = 1,124D(Y) = 0,010?(y) = 0,101«С»M(Z) = 1,037D(Z) = 0,012?(z) = 0,112

Полученные математические ожидания позволяют оценить средние значения ожидаемых вероятных значений коэффициента финансовой устойчивости в будущем.

Так по расчетам можно судить, что математическое ожидание устойчивого развития банка «А» составляет 1,187. Математическое ожидание банков «В» и «С» составляет 1,124 и 1,037 соответственно, что отражает предполагаемую доходность их работы.

Однако, зная лишь математическое ожидание, показывающее «центр» предполагаемых возможных значений случайной величины - КФУ, еще нельзя судить ни о его возможных уровнях, ни о степени их рассеянности вокруг полученного математического ожидания.

Другими словами, математическое ожидание в силу своей природы полностью устойчивости развития банка не характеризует. По этой причине возникает необходимость вычисления других числовых характеристик: дисперсии и среднеквадратического отклонения. Которые позволяют оценить степень рассеянности возможных значений коэффициента финансовой устойчивости. Математические ожидания и средние квадратические отклонения позволяют оценить интервал, в котором будут находиться возможные значения коэффициентов финансовой устойчивости кредитных организаций.

При сравнительно высоком характерном значении математического ожидания устойчивости по банку «А» среднее квадратическое отклонение составило 0,164, что говорит о том, что устойчивость банка может либо повыситься на эту величину, либо снизиться. При отрицательном изменении устойчивости (что все же маловероятно, учитывая полученную вероятность убыточной деятельности, равную 0,083) коэффициент финансовой устойчивости банка останется положительным - 1, 023 (см. табл. 3)

Деятельность банка «В» при математическом ожидании в 1,124, характеризуется меньшим размахом значений коэффициента. Так, даже при неблагоприятном стечении обстоятельств банк останется устойчивым, поскольку среднее квадратическое отклонение от прогнозируемого значения составило 0, 101, что позволит ему остаться в положительной зоне доходности. Следовательно, можно сделать вывод об устойчивости развития данного банка.

Банк «С», напротив, при невысоком математическом ожидании своей надежности (1, 037) столкнется при прочих равных условиях с недопустимым для него отклонением, равным 0,112. При неблагоприятной ситуации, а также учитывая высокий процент вероятности убыточной деятельности (16,7%), данная кредитная организация, скорее всего, снизит свою финансовую устойчивость до 0,925.

Важно заметить, что, сделав выводы об устойчивости развития банков, нельзя заранее уверенно предвидеть, какое из возможных значений примет коэффициент финансовой устойчивости в итоге испытания; это зависит от многих причин, учесть которые невозможно. С этой позиции о каждой случайной величине мы располагаем весьма скромными сведениями. В связи с чем вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин.

Однако оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.

Оценивая устойчивость развития банков, остается оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине положительного числа ?. Дать интересующую нас оценку позволяет неравенство П.Л. Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа ? не меньше, чем :

или в случае обратной вероятности:

Учитывая риск, связанный с потерей устойчивости, проведем оценку вероятности отклонения дискретной случайной величины от математического ожидания в меньшую сторону и, считая равновероятностными отклонения от центрального значения как в меньшую, так и в большую стороны, перепишем неравенство еще раз:

Далее, исходя из поставленной задачи необходимо оценить вероятность того, что будущее значение коэффициента финансовой устойчивости не окажется ниже 1 от предлагаемого математического ожидания (для банка «А» значение ? примем равное 0,187, для банка «В» - 0,124, для «С» - 0.037) и произведем расчет данной вероятности:


банк «А»:

банк «С»:


Согласно неравенству П.Л. Чебышева, наиболее устойчивым в своем развитии является банк «В», поскольку вероятность отклонения ожидаемых значений случайной величины от ее математического ожидания невысокая (0,325), при этом она сравнительно меньше, чем по другим банкам. На втором месте по сравнительной устойчивости развития располагается банк «А», где коэффициент этого отклонения несколько выше, чем в первом случае (0,386). В третьем банке вероятность того, что значение коэффициента финансовой устойчивости отклониться в левую сторону от математического ожидания больше чем на 0, 037, является практически достоверным событием. Тем более, если учесть, что вероятность не может быть больше 1, превышающие значения, согласно доказательству Л.П. Чебышева, необходимо принимать за 1. Другими словами, факт того, что развитие банка может перейти в неустойчивую зону, характеризующуюся коэффициентом финансовой устойчивости меньше 1, является достоверным событием.

Таким образом, характеризуя финансовое развитие коммерческих банков, можно сделать следующие выводы: математическое ожидание дискретной случайной величины (среднее ожидаемое значение коэффициента финансовой устойчивости) банка «А» равно 1,187. Среднее квадратическое отклонение этой дискретной величины составляет 0,164, что объективно характеризует небольшой разброс значений коэффициента от среднего числа. Однако степень неустойчивости этого ряда подтверждается достаточно высокой вероятностью отрицательного отклонения коэффициента финансовой устойчивости от 1, равной 0,386.

Анализ деятельности второго банка показал, что математическое ожидание КФУ равно 1,124 при среднем квадратическом отклонении 0,101. Таким образом, деятельность кредитной организации характеризуется небольшим разбросом значений коэффициента финансовой устойчивости, т.е. является более концентрированной и стабильной, что подтверждается сравнительно низкой вероятностью (0,325) перехода банка в зону убыточности.

Устойчивость банка «С» характеризуется невысоким значением математического ожидания (1,037) и также небольшим разбросом значений (среднеквадратическое отклонение равно 0,112). Неравенство Л.П. Чебышева доказывает тот факт, что вероятность получения отрицательного значения коэффициента финансовой устойчивости равна 1, т.е. ожидание положительной динамики его развития при прочих равных условиях будет выглядеть весьма необоснованным. Таким образом, предложенная модель, базирующаяся на определении существующего распределения дискретных случайных величин (значений коэффициентов финансовой устойчивости коммерческих банков) и подтверждаемая оценкой их равновероятностного положительного или отрицательного отклонения от полученного математического ожидания, позволяет определить ее текущий и перспективный уровень.


Заключение


Применение математики в экономической науке, дало толчок в развитии как самой экономической науке, так и прикладной математике, в части методов экономико-математической модели. Пословица говорит: «Семь раз отмерь - Один раз отрежь». Использование моделей есть время, силы, материальные средства. Кроме того, расчёты по моделям противостоят волевым решениям, поскольку позволяют заранее оценить последствия каждого решения, отбросить недопустимые варианты и рекомендовать наиболее удачные. Экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов; во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей; в-третьих, выработка управленческих решений на всех уровнях управления.

В работе было выяснено, что экономико-математические модели можно разделить по признакам:

·целевого назначения;

·учета фактора времени;

·длительности рассматриваемого периода;

·цели создания и применения;

·учета фактора неопределенности;

·типа математического аппарата;

Описание экономических процессов и явлений в виде экономико-математических моделей базируется на использовании одного из экономико-математических методов, которые применяются на всех уровнях управления.

Особенно большую роль приобретают экономико-математические методы по мере внедрения информационных технологий во всех областях практики. Также были рассмотрены основные этапы процесса моделирования, а именно:

·постановка экономической проблемы и ее качественный анализ;

·построение математической модели;

·математический анализ модели;

·подготовка исходной информации;

·численное решение;

·анализ численных результатов и их применение.

В работе была представлена статья кандидата экономических наук, доцента кафедры финансов и кредита С.В. Бойко, в которой отмечается, что перед отечественными кредитными организациями, подверженными влиянию внешней среды, стоит задача поиска управленческих инструментов, предполагающих реализацию рациональных антикризисных мер, направленных на стабилизацию темпов роста базовых показателей их деятельности. В этой связи повышается важность адекватного определения финансовой устойчивости с помощью различных методик и моделей, одной из разновидностей которых являются стохастические (вероятностные) модели, позволяющие не только выявить предполагаемые факторы роста или снижения устойчивости, но и сформировать комплекс превентивных мероприятий по ее сохранению.

Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Список литературы


1)Красс М.С. Математика для экономических специальностей: Учебник. -4-е изд., испр. - М.: Дело, 2003.

)Иванилов Ю.П., Лотов А.В. Математические модели в экономике. - М.: Наука, 2007.

)Ашманов С.А. Введение в математическую экономику. - М.: Наука, 1984.

)Гатаулин А.М., Гаврилов Г.В., Сорокина Т.М. и др. Математическое моделирование экономических процессов. - М.: Агропромиздат, 1990.

)Под ред. Федосеева В.В. Экономико-математические методы и прикладные модели:Учебное пособие для ВУЗов. - М.: ЮНИТИ, 2001.

)Савицкая Г.В. Экономический анализ: Учебник. - 10-е изд., испр. - М.:Новое знание, 2004.

)Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2002

)Исследование операций. Задачи, принципы, методология: учеб. пособие для вузов / Е.С. Вентцель. - 4-е изд., стереотип. - М. :Дрофа, 2006. - 206, с. : ил.

) Математика в экономике: учебное пособие/ С.В.Юдин. - М.: Изд-во РГТЭУ,2009.-228 с.

)Кочетыгов А.А. Теория вероятностей и математическая статистика: Учеб. Пособие/ Тул. Гос. Ун-т. Тула, 1998. 200с.

)Бойко С.В, Вероятностные модели в оценке финансовой устойчивости кредитных организаций /С.В. Бойко// Финансы и кредит. - 2011. N 39. -


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Группа экономико-математических методов делится на две подгруппы:

· Методы математической экстраполяции;

· Методы математического моделирования.

Математическая экстраполяция представляет собой распространение закона изменения функции из области ее наблюдения на область, лежащую вне отрезка наблюдения.

Методы экстраполяции основываются на предположении о неизменности факторов, определяющих развитие изучаемого объекта, и заключается в распространении закономерностей развития объекта в прошлом на его будущее.

Суть состоит в том, что траектория развития объекта до момента, с которого начинается прогнозирование ею будущего развития, может быть выражена после соответствующей обработки фактических данных какой либо математической функцией, адекватно описывающей закономерности предшествующего развития объекта

В зависимости от особенностей изменения уровней в ряду динамики приемы экстраполяции могут быть простыми и сложными.

Первую группу составляют методы прогнозирования, основанные на предположении относительного постоянства в будущем абсолютных значений уровней, среднего уровня ряда, среднего абсолютного прироста, среднего темпа роста.

Вторая группа методов основана на выявлении основной тенденции, то есть применении статистических формул, описывающих тренд. Их можно разделить на два основных типа: на адаптивные и аналитические (кривые роста). Адаптивные методы прогнозирования основаны на том, что процесс реализации их заключается в вычислении последовательных во времени значений прогнозируемого показателя с учетом степени влияния предыдущих уровней. К ним относятся методы скользящей и экспоненциальной средних, метод гармонических весов, метод авторегрессионых преобразований.

В основе аналитических методов (кривых роста) прогнозирования положен принцип получения с помощью метода наименьших квадратов оценки детерминированной компоненты Ft, характеризующей основную тенденцию.

Суть метода состоит в том, что траектория развития объекта до момента, с которого начинается прогнозирование, может быть выражена после соответствующей обработки фактических данных какой-либо математической функцией адекватно описывающей закономерности предшествующего развития. Она осуществляется следующим образом:



1. необходимо получить достаточно продолжительный во времени ряд показателей;

2. необходимо построить эмпирическую кривую, графически отображающую динамику этого показателя во времени;

3. необходимо выровнять ряд с помощью граф анализа или статистического подбора функций, который максимизирует приближение к фактическим значениям динамического ряда;

4. исчисляем коэффициент или параметр этой функции (a,b,c…), в результате получится простейшая математическая модель, пригодная для прогноза во времени, при этом предполагают, что совокупный фактор, определяющий тенденции динамического ряда в прошлом в среднем сохранит свою силу.

В экономических исследованиях наиболее распространенным методом прогнозной экстраполяции является метод, основанный на сглаживании временных рядов.

Последовательность расположенных в хронологическом порядке статистических показателей, которые характеризуют изменение экономического явления во времени, представляет собой временной (динамический) ряд. Отдельные значения показателей (наблюдения) временного ряда называются уровнями этого ряда.

Временные ряды подразделяются на моментные и интервальные.

Целью анализа временных рядов экономических явлений за определенный интервал времени является установление тенденции их изменения за рассматриваемый период, которая покажет направление развития изучаемого явления.

Для того чтобы выявить общую тенденцию изменения экономических явлений в течение изучаемого периода времени, следует провести сглаживание временного ряда. Необходимость сглаживания временных рядов обусловлена тем, что помимо влияния на уровни ряда главных факторов, которые в конечном итоге формируют конкретное значение неслучайной компоненты (тренда), на них действуют случайные факторы, которые вызывают отклонения фактических (наблюдаемых) значений уровней ряда от тренда.

Под трендом понимается характеристика основной тенденции временного ряда значений определенного показателя, т.е. основная закономерность движения его во времени, свободная от случайных воздействий.

Таким образом, отдельные уровни временного ряда (y t ) представляют собой результат воздействия главных факторов, которые формируют конкретное значение неслучайной (детерминированной) компоненты (), а также случайной компоненты (е t), обусловленной воздействием случайных факторов, значение которой составляет отклонение фактических (наблюдаемых) значений уровней ряда от тренда. Для устранения случайных отклонений осуществляется сглаживание временного ряда.

Неслучайные компоненты уровней временного ряда могут быть выражены некоторой аппроксимирующей функцией, отражающей закономерности развития исследуемого явления.

Рассмотрим прогнозную экстраполяцию, основанную на сглаживании временных рядов по методу наименьших квадратов.

Суть метода наименьших квадратов состоит в определении параметров модели тренда, минимизирующих ее отклонение от точек исходного временного ряда, т.е. в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами.

Таким образом, суть сглаживания временного ряда наблюдаемых значений показателя состоит в том, что фактические (наблюдаемые) уровни ряда заменяются уровнями, рассчитанными на основе определенной функции, которая в наибольшей степени соответствует наблюдаемым значениям показателей динамического ряда.

Графиком линейной функции является прямая.

Для того чтобы определить параметры а и А уравнения прямой, следует решить систему уравнений:

Часто данные временного ряда имеют нелинейную зависимость, которая выражается в виде квадратичной функции: у = ах 2 + bх + с. Графиком квадратичной функции является парабола. Для того чтобы определить параметры а,b, с уравнения параболы, следует решить систему уравнений:

Экономико-математическое моделирование предполагает конструирование модели на основе предварительного изучения объекта или процесса, выделения его существенных характеристик или признаков.

Экономико-математическая модель - это система формализованных соотношений, которые описывают основные взаимосвязи элементов, образующих определенную экономическую систему.

В зависимости от уровня управления экономическими и социальными процессами различают макроэкономические, межотраслевые, отраслевые, региональные модели и модели макроуровня (отдельных предприятий, фирм).

Примером экономико-математической модели на макроуровне может служить модель производственной функции при прогнозировании объема валового внутреннего продукта (ВВП) страны, которая имеет следующий вид:

Следует отметить, что расчет экономико-математических моделей проводится по соответствующим компьютерным программам.

Экономико-математические модели используются для разработки межотраслевого баланса, моделирование капитальных вложений, трудовых ресурсов и т. д.

Методы планирования как составная часть методологии планирования представляют собой совокупность расчетов, которые необходимы для разработки отдельных разделов и показателей плана и их обоснования. При этом широко используются достижения отраслевых экономических наук: экономической статистики; экономики промышленности; экономики сельского хозяйства; экономики строительства и других. При планировании показателей важно не только рассчитать их значение в плановом периоде, но и выявить возможные резервы его улучшения и вовлечь их в хозяйственный оборот.

К основным методам планирования, которые широко используются в экономической практике относятся следующие: балансовый метод; нормативный метод; программно-целевой метод; экономико-статистические методы; экономико-математические методы.

Балансовый метод - обеспечивает увязку потребностей и ресурсов как в масштабе всего общественного производства, так и на уровне отрасли и отдельного предприятия. В практике планирования применяются следующие виды балансов: 1) материальные балансы; 2) стоимостные балансы; 3) балансы трудовых ресурсов.

Принципиальная схема материального баланса в натуральных единицах измерения следующая:

К стоимостным балансам относятся: межотраслевой баланс производства и распределения продукции, работ и услуг; государственный бюджет и др. В качестве баланса трудовых ресурсов в одной из тем курса будет рассмотрен сводный баланс трудовых ресурсов.

Нормативный, метод планирования основан на разработке и использовании в планировании норм и нормативов. В качестве примера можно привести норму расхода различных материалов в натуральном измерении на единицу выпускаемой продукции. В качестве нормативов можно привести, как пример, норматив отчисления денежных средств из прибыли предприятия в виде налогов.

Программно-целевой метод планирования основан на разработке социально-экономических программ для решения отдельных социально-экономических проблем. Этот метод предусматривает определение комплекса взаимосвязанных организационно-правовых и финансово-экономических мероприятий, направленных на реализацию разработанных программ. Использование этого метода предусматривает концентрацию ресурсов на решение важнейших проблем.

Экономико-статистические методы планирования представляют собой совокупность отдельных методов, с помощью которых рассчитываются отдельные социально-экономические показатели на плановый период и их динамика. Определяется абсолютная и относительная динамика показателей, т.е. изменение их во времени.

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Список использованных источников

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Одним из направлений совершенствования анализа хозяйственной деятельности является внедрение экономико-математических методов и современных ЭВМ. Их применение повышает эффективность экономического анализа за счет расширения изучаемых факторов, обоснования принимаемых управленческих решений, выбора оптимального варианта использования хозяйственных ресурсов, выявления и мобилизации резервов повышения эффективности производства.

Математические методы опираются на методологию экономико-математического моделирования и научно обоснованную классификацию задач анализа хозяйственной деятельности. В зависимости от целей экономического анализа различают следующие экономико-математические модели: в детерминированных моделях - логарифмирование, долевое участие, дифференцирование; в стохастических моделях - корреляционно-регрессивный метод, линейное программирование, теорию массового обслуживания, теорию графов и др.

Стохастический анализ - это метод решения широкого класса задач статистического оценивания. Он предполагает изучение массовых эмпирических данных путем построения моделей изменения показателей за счет факторов, не находящихся в прямых связях, в прямой взаимозависимости и взаимообусловленности. Стохастическая связь существует между случайными величинами и проявляется в том, что при изменении одной из них меняется закон распределения другой.

В экономическом анализе выделяются следующие наиболее типичные задачи стохастического анализа:

Изучение наличия и тесноты связи между функцией и факторами, а также между факторами;

Ранжирование и классификация факторов экономических явлений;

Выявление аналитической формы связи между изучаемыми явлениями;

Сглаживание динамики изменения уровня показателей;

Выявление параметров закономерных периодических колебаний уровня показателей;

Изучение размерности (сложности, многогранности) экономических явлений;

Количественное изменение информативных показателей;

Количественное изменение влияния факторов на изменение анализируемых показателей (экономическая интерпретация полученных уравнений).

Стохастическое моделирование и анализ связей между изученными показателями начинаются с корреляционного анализа. Корреляция состоит в том, что средняя величина одного из признаков изменяется в зависимости от значения другого. Признак, от которого зависит другой признак, принято называть факторным. Зависимый признак именуют результативным. В каждом конкретном случае для установления факторного и результативного признаков в неодинаковых совокупностях необходим анализ природы связи. Так, при анализе различных признаков в одной совокупности заработная плата рабочих в связи с их производственным стажем выступает как результативный признак, а в связи с показателями жизненного уровня или культурными потребностями - как факторный. Часто зависимости рассматривают не от одного факторного признака, а от нескольких. Для этого применяется совокупность методов и приемов выявления и количественной оценки взаимосвязей и взаимозависимостей между признаками.

При исследовании массовых общественно-экономических явлений между факторными признаками проявляется корреляционная связь, при которой на величину результативного признака влияет, помимо факторного, множество других признаков, действующих в разных направлениях одновременно или последовательно. Часто корреляционную связь называют неполной статистической или частичной в отличие от функциональной, которая выражается в том, что при определенном значении переменной (независимая переменная - аргумент) другая (зависимая переменная - функция) принимает строгое значение.

Корреляционную связь можно выявить только в виде общей тенденции при массовом сопоставлении фактов. Каждому значению факторного признака будет соответствовать не одно значение результативного признака, а их совокупность. В этом случае для вскрытия связи необходимо найти среднее значение результативного признака для каждого значения факторного.

Если зависимость прямолинейная:

Значения коэффициентов а и b находится из системы уравнений, полученных по способу наименьших квадратов по формуле:

N - число наблюдений.

В случае прямолинейной формы связи между изучаемыми показателями коэффициент корреляции рассчитывается по формуле:

Если коэффициент корреляции возвести в квадрат, то получим коэффициент детерминации.

Дисконтирование - это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка, по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта). Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, то есть сумма денег, имеющаяся в наличии сегодня, обладает большей ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка, характеризующая относительные изменения за определенный период (обычно равный году).

Многие задачи, с которыми приходится сталкиваться экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.

В современных условиях даже незначительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяются в одну группу под общим названием "оптимизационные методы принятия решений в экономике". Чтобы решить экономическую задачу математическими методами, прежде всего, необходимо построить адекватную ей математическую модель, то есть формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.

В общем случае математическая модель оптимизационной задачи имеет вид:

max (min): Z = Z(x),

при ограничениях

f i (x) Rb i , i = ,

где R - отношения равенства, меньше или больше.

Если целевая функция и функции, входящие в систему ограничений, линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция или система ограничений не линейна, такая задача называется задачей нелинейного программирования.

В основном, на практике, задачи нелинейного программирования путем линеаризации сводятся к задаче линейного программирования. Особый практический интерес среди задач нелинейного программирования представляют задачи динамического программирования, которые из-за своей многоэтапности нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых сегодня имеется хорошее математическое и программное обеспечение.

Метод динамического программирования представляет собой особый математический прием оптимизации нелинейных задач математического программирования, который специально приспособлен к многошаговым процессам. Многошаговым обычно считают процесс, развивающийся во времени и распадающийся на ряд "шагов", или "этапов". При этом метод динамического программирования используется и для решения задач, в которых время не фигурирует. Некоторые процессы распадаются на шаги естественным образом (например, процесс планирования хозяйственной деятельности предприятия на отрезок времени, состоящий из нескольких лет). Многие процессы можно расчленить на этапы искусственно.

Суть метода динамического программирования состоит в том, что вместо поиска оптимального решения сразу для всей сложной задачи предпочитают находить оптимальные решения для нескольких более простых задач аналогичного содержания, на которые расчленяется исходная задача.

Метод динамического программирования также характеризуется тем, что выбор оптимального решения на каждом шаге должен производиться с учетом последствий в будущем. Это означает, что, оптимизируя процесс на каждом отдельном шаге, ни в коем случае нельзя забывать обо всех последующих шагах. Таким образом, динамическое программирование - это дальновидное планирование с учетом перспективы.

Принцип выбора решения в динамическом программировании является определяющим и носит название принципа оптимальности Беллмана. Сформулируем его следующим образом: оптимальная стратегия обладает тем свойством, что, каковы бы ни были первоначальное состояние и решение, принятое в начальный момент, последующие решения должны вести к улучшению ситуации относительно состояния, являющегося результатом первоначального решения.

Таким образом, при решении оптимизационной задачи методом динамического программирования необходимо на каждом шаге учитывать последствия, к которым приведет в будущем решение, принимаемое в данный момент. Исключением является последний шаг, которым заканчивается процесс. Здесь можно принимать такое решение, чтобы обеспечить максимальный эффект. Спланировав оптимальным образом последний шаг, можно "пристраивать" к нему предпоследний так, чтобы результат этих двух шагов был оптимальным, и т.д. Именно таким образом - от конца к началу - можно развернуть процедуру принятия решений. Оптимальное решение, найденное при условии, что предыдущий шаг закончился определенным образом, называют условно-оптимальным решением.

Статистическая теория игр является составной частью общей теории игр, которая представляет собой раздел современной прикладной математики, изучающий методы обоснования оптимальных решений в конфликтных ситуациях. В теории статистических игр различают такие понятия, как исходная стратегическая игра и собственно статистическая игра. В этой теории первого игрока называют "природой", под которой понимают совокупность обстоятельств, в условиях которой приходится принимать решения второму игроку - "статистику". В стратегической игре оба игрока действуют активно, предполагая, что противник - "разумный" игрок. Для стратегической игры характерна полная неопределенность в выборе стратегии каждым игроком, то есть игроки ничего не знают о стратегиях друг друга. В стратегической игре оба игрока действуют на основе детерминированной информации, определенной матрицей потерь.

В собственно статистической игре природа не является активно действующим игроком в том смысле, что она "не разумна" и не пытается противодействовать максимальному выигрышу второго игрока. Статистик (второй игрок) в статистической игре стремится выиграть игру у воображаемого противника - природы. Если в стратегической игре игроки действуют в условиях полной неопределенности, то для статистической игры характерна частичная неопределенность. Дело в том, что природа развивается и "действует" в соответствии со своими объективно существующими законами. У статистика есть возможность постепенно изучать эти законы, например, на основе статистического эксперимента.

Теория массового обслуживания - прикладная область теории случайных процессов. Предметом ее исследования являются вероятностные модели реальных систем обслуживания, где в случайные (или не в случайные) моменты времени возникают заявки на обслуживание и имеются устройства (каналы) выполнения заявок. Теория массового обслуживания исследует математические методы количественной оценки процессов массового обслуживания, качества функционирования систем, где случайными могут быть как моменты появления требований (заявок), так и затраты времени на их исполнение.

Система массового обслуживания находит применение в решении следующих задач: например, тогда, когда в массовом порядке поступают заявки (требования) на обслуживание с последующим их удовлетворением. На практике это могут быть поступление сырья, материалов, полуфабрикатов, изделий на склад и их выдача со склада; обработка широкой номенклатуры деталей на одном и том же технологическом оборудовании; организация наладки и ремонта оборудования; транспортные операции; планирование резервных и страховых запасов ресурсов; определение оптимальной численности отделов и служб предприятия; обработка плановой и отчетной документации и др.

Балансовая модель - это система уравнений, характеризующих наличие ресурсов (продуктов) в натуральном или денежном выражении и направления их использования. При этом наличие ресурсов (продуктов) и потребность в них количественно совпадают. В основу решения таких моделей положены методы линейной векторно-матричной алгебры. Поэтому балансовые методы и модели называют матричными методами анализа. Наглядность изображений различных экономических процессов в матричных моделях и элементарные способы разрешения систем уравнений позволяют применять их в различных производственно-хозяйственных ситуациях.

Математическая теория нечетких множеств, разработанная в 60-е годы XX столетия, сегодня все шире применяется в финансовом анализе деятельности предприятия, включающем анализ и прогноз финансового положения предприятия, анализ изменений оборотного фонда, потоков свободных денежных средств, экономического риска, оценки влияния затрат на прибыль, расчета стоимости капитала. В основе данной теории лежат понятия "нечеткое множество" и "функции принадлежности".

В общем случае решение задач такого типа довольно громоздко, так как имеет место большой объем информации. Практическое использование теории нечетких множеств позволяет развивать традиционные методы финансово-хозяйственной деятельности, адаптировать их к новым потребностям учета неопределенности в будущем основных показателей деятельности предприятий.

Задача 1

По приведенным данным о численности персонала промышленного предприятия рассчитать коэффициент оборота по приему и выбытию рабочих и коэффициент текучести. Сделать выводы.

Решение:

Определим:

1) коэффициент по приему (К пр):

Прошлый год: Кпр = 610 / (2490 + 3500) = 0,102

Отчетный год: Кпр. = 650 / (2539 + 4200) = 0,096

В отчетном году коэффициент внешнего оборота по принятию уменьшился на 0,006 (0,096 - 0,102).

2) коэффициент по увольнению (выбытию) работников (К ув):

Прошлый год: Квыб. = 690 / (2490 + 3500) = 0,115

Отчетный год: Квыб. = 725 / (2539 + 4200) = 0,108

В отчетном году коэффициент внешнего оборота по выбытию также снизился на 0,007 (0,108 - 0,115).

3) коэффициент текучести кадров (К тек):

Прошлый год: Ктек. = (110 + 30) / (2490 + 3500) = 0,023

Отчетный год: Ктек. = (192 + 25) / (2539 + 4200) = 0,032

В отчетном году коэффициент текучести кадров также вырос на 0,009 (0,032 - 0,023), что является отрицательной тенденцией в движении кадров.

4) коэффициент общего оборота рабочей силы (К об):

Прошлый год: Коб = (610 + 690) / (2490 + 3500) = 0,217

Отчетный год: Коб. = (650 + 725) / (2539 + 4200) = 0,204

Коэффициент общего оборота рабочей силы снизился на 0,013 (0,204 - 0,217).

Задача 2

Составить исходную модель объема продукции. Определить тип факторной модели. Рассчитать влияние факторов на изменение объема продукции всеми известными приемами.

Решение:

Результативный показатель - фондоотдача.

Исходная математическая модель:

ФО = ВП / ОФ.

Тип модели - кратный. Общее количество используемых для расчета результативных показателей - 3, т. к. рассчитывается влияние 2-х факторов (2 + 1 = 3). Количество условных результативных показателей - 1, т. к. оно равно количеству факторов минус 1.

Для данной модели применимы следующие приемы: цепной подстановки, индексный и интегральный.

1. Рассчитаем уровень влияния факторов изменения результативного показателя способом цепной подстановки.

Алгоритм решения:

ФО пл = ВП пл /ОФ пл = 20433 / 2593 = 7,88 руб.

ФО усл1 = ВП ф /ОФ пл =20193 / 2593 = 7,786 руб.

ФО ф = ВП ф /ОФ ф =20193 / 2577 = 7,836 руб.

Расчет факторов, повлиявших на изменение фондоотдачи, оформим в таблице.

№ фак-торов

Название факторов

Расчет уровня влияния факторов

Уровень влияния факторов изменения общей суммы прибыли

Измените фондоотдачи за счет изменения объема продукции

7,786-7,88 =-0,094

Измените фондоотдачи за счет изменения основных фондов

7,836-7,786 = 0,05

ИТОГО (балансовая увязка)

2. Рассчитаем уровень влияния факторов изменения результативного показателя интегральным способом.

ВП = ВП ф - ВП пл = 20193 - 20433 = -240;

ОФ = ОФ ф - ОФ пл = 2577 - 2593 = -16.

ФО пл = 20433 / 2593 = 7,88 руб.

ФО ф = 20193 / 2577 = 7,836 руб.

ФО вп = = 15 ln|0,99| = -0,09284

ФО оф = ?ФО общ - ?ФО вп = (7,836-7,88) - (-0,09284) = 0,04884

3. Рассчитаем уровень влияния факторов изменения результативного показателя индексным способом.

I ФО = I ВП I ОФ.

I ФО = (ВП ф / ОФ ф) : (ВП пл / ОФ пл) = 7,836/7,88 = 0,99

I ВП = (ВП ф / ОФ пл) : (ВП пл / ОФ пл) = 7,786 /7,88 = 0,988

I ОФ = (ВП ф / ОФ ф) : (ВП ф / ОФ пл) = 7,836/7,786 = 1,006

I ФО = I ВП I ОФ = 0,988 1,006 = 0,99.

Если из числителя вышеприведенных формул вычесть знаменатель, то получим абсолютные приросты фондоотдачи в целом и за счет каждого фактора в отдельности, т. е. те же результаты, что и способом цепной подстановки.

Задача 3

Определить каким будет средний уровень урожайности, если количество внесенных удобрений составит 20 ц. Определить тесноту связи между показателем "у" и фактором "х".

Дано: Уравнение регрессии

где у - среднее изменение урожайности, ц /га

х - количество внесенных удобрений, ц.

Коэффициент детерминации - 0,92.

Решение:

Средний уровень урожайности равен 62 ц /га.

Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна.

Коэффициент корреляции вычисляется по формуле:

Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы (-1 < R x, y <1). Коэффициент корреляции в квадрате () называется коэффициентом детерминации. Коэффициент корреляции R для данной выборки равен 0,9592 (). Чем он ближе к единице, тем теснее связь между признаками. В данном случае связь очень тесная, почти абсолютная корреляция. Коэффициент детерминации R 2 равен 0,92. Это означает, что уравнение регрессии определяется на 92 % дисперсией результативного признака, а на долю сторонних факторов приходится 8 %.

Коэффициент детерминации показывает долю разброса, учитываемого регрессией, в общем разбросе результативного признака. Этот показатель, равный отношению факторной вариации к полной вариации признака, позволяет судить о том, насколько "удачно" выбран вид функции. Чем больше R 2 , тем больше изменение факторного признака объясняет изменение результативного признака и тем, следовательно, лучше уравнение регрессии, лучше выбор функции.

Список использованных источников

Анализ хозяйственной деятельности предприятия: Учеб. пособие/ Под общ. ред. Л. Л. Ермолович. - Мн.: Интерпрессервис; Экоперспектива, 2001. - 576 с.

Савицкая Г. В. Анализ хозяйственной деятельности предприятия, 7-е изд., испр. - Мн.: Новое знание, 2002. - 704 с.

Савицкая Г. В. Теория анализа хозяйственной деятельности. - М.: Инфра-М, 2007.

Савицкая Г. В. Экономический анализ: Учеб. - 10-е изд., испр. - М.: Новое знание, 2004. - 640 с.

Скамай Л. Г., Трубочкина М. И. Экономический анализ деятельности предприятия. - М.: Инфра-М, 2007.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО - ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

ТУЛЬСКИЙ ФИЛИАЛ

(ТФ ГОУ ВПО РГТЭУ)

Реферат по математике на тему:

«Экономико-математические модели»

Выполнили:

Студентки 2 курса

«Финансы и кредит»

дневное отделение

Максимова Кристина

Витка Наталья

Проверил:

Доктор технических наук,

профессор С.В. Юдин _____________

Введение

1.Экономико-математическое моделирование

1.1 Основные понятия и типы моделей. Их классификация

1.2 Экономико-математические методы

Разработка и применение экономико-математических моделей

2.1 Этапы экономико-математического моделирования

2.2 Применение стохастических моделей в экономике

Заключение

Список литературы

Введение

Актуальность. Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.

Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Почему можно говорить об эффективности применения методов моделирования в этой области? Во-первых, экономические объекты различного уровня (начиная с уровня простого предприятия и кончая макроуровнем - экономикой страны или даже мировой экономикой) можно рассматривать с позиций системного подхода. Во-вторых, такие характеристики поведения экономических систем как:

-изменчивость (динамичность);

-противоречивость поведения;

-тенденция к ухудшению характеристик;

-подверженность воздействию окружающей среды

предопределяют выбор метода их исследования.

Проникновение математики в экономическую науку связано с преодолением значительных трудностей. В этом отчасти была "повинна" математика, развивающаяся на протяжении нескольких веков в основном в связи с потребностями физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки.

Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Цель данной работы - раскрыть понятие экономико-математических моделей и изучить их классификацию и методы, на которых они базируются, а также рассмотреть их применение в экономике.

Задачи данной работы: систематизация, накопление и закрепление знаний об экономико-математических моделях.

1.Экономико-математическое моделирование

1.1 Основные понятия и типы моделей. Их классификация

В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ реального объекта (процессов), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием . Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процессов). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процессов), хотя на самом деле действительность значительно содержательнее и богаче.

Модель - это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Экономико-математические модели - это модели экономических объектов или процессов, при описании которых используются математические средства. Цели их создания разнообразны: они строятся для анализа тех или иных предпосылок и положений экономической теории, логического обоснования экономических закономерностей, обработки и приведения в систему эмпирических данных. В практическом плане экономико-математические модели используются как инструмент прогноза, планирования, управления и совершенствования различных сторон экономической деятельности общества.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По целевому назначению модели делятся на:

·Теоретико-аналитические (используются в исследовании общих свойств и закономерностей экономических процессов);

·Прикладные (применяются в решении конкретных экономических задач, таких как задачи экономического анализа, прогнозирования, управления).

По учету фактора времени модели подразделяются на:

·Динамические (описывают экономическую систему в развитии);

·Статистические (экономическая система описана в статистике, применительно к одному определенному моменту времени; это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени).

По длительности рассматриваемого периода времени различают модели:

·Краткосрочного прогнозирования или планирования (до года);

·Среднесрочного прогнозирования или планирования (до 5 лет);

·Долгосрочного прогнозирования или планирования (более 5 лет).

По цели создания и применения различают модели:

·Балансовые;

·Эконометрические;

·Оптимизационные;

·Сетевые;

·Систем массового обслуживания;

·Имитационные (экспертные).

В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.

Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.

Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий, и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.

Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.

Имитационная модель, наряду с машинными решениями, содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае персональный компьютер, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.

По учету фактора неопределенности модели подразделяются на:

·Детерминированные (с однозначно определенными результатами);

·Стохастические (вероятностные; с различными, вероятностными результатами).

По типу математического аппарата различают модели:

·Линейного программирования (оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений);

·Нелинейного программирования (оптимальных значений целевой функции может быть несколько);

·Корреляционно-регрессионные;

·Матричные;

·Сетевые;

·Теории игр;

·Теории массового обслуживания и т.д.

С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей и новых признаков их классификации, осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

моделирование математический стохастический

1.2 Экономико-математические методы

Как и всякое моделирование, экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов, во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей, в-третьих, выработка управленческих решений на всех уровнях управления.

Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей, которые следует понимать как продукт процесса экономико-математического моделирования, а экономико-математические методы - как инструмент.

Рассмотрим вопросы классификации экономико-математических методов. Эти методы представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав.

С известной долей условности классификацию этих методов можно представить следующим образом.

·Экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем.

·Математическая статистика: экономические приложения данной дисциплины - выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, теория индексов и др.

·Математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование.

·Методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, сетевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений.

В оптимальное программирование в свою очередь входят линейное и нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, стохастическое программирование и др.

·Методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального ценообразования функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым - методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели теории фирмы и т.д. Многие из методов, разработанных для централизованно планируемой экономики, могут быть оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики.

·Методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отнести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению.

В экономико-математических методах применяются различные разделы математики, математической статистики, математической логики. Большую роль в решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие дисциплины. Использование математического аппарата принесло ощутимые результаты при решении задач анализа процессов расширенного производства, определения оптимальных темпов роста капиталовложений, оптимального размещения, специализации и концентрации производства, задач выбора оптимальных способов производства, определения оптимальной последовательности запуска в производство, задачи подготовки производства методами сетевого планирования и многих других.

Для решения стандартных проблем характерны четкость цели, возможность заранее выработать процедуры и правила ведения расчетов.

Существуют следующие предпосылки использования методов экономико-математического моделирования, важнейшими из которых являются высокий уровень знания экономической теории, экономических процессов и явлений, методологии их качественного анализа, а также высокий уровень математической подготовки, владение экономико-математическими методами.

Прежде чем приступить к разработке моделей, необходимо тщательно проанализировать ситуацию, выявить цели и взаимосвязи, проблемы, требующие решения, и исходные данные для их решения, вести систему обозначений и только тогда описать ситуацию в виде математических соотношений.

2. Разработка и применение экономико-математических моделей

2.1 Этапы экономико-математического моделирования

Процесс экономико-математического моделирования - это описание экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов:

.Постановка экономической проблемы и ее качественный анализ;

2.Построение математической модели;

.Математический анализ модели;

.Подготовка исходной информации;

.Численное решение;

.

Рассмотрим каждый из этапов более подробно.

1.Постановка экономической проблемы и ее качественный анализ . Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2.Построение математической модели . Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таком образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше «работает» и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности т неопределенности и т.д.

Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом.

Одна из важный особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться «изобретать» модель; сначала необходимо попытаться применить для решения этой задачи уже известные модели.

.Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели. Если удается доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает и следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неищвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

4.Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов.

Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5.Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составление программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6.Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявить некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.

2.2 Применение стохастических моделей в экономике

Основу эффективности банковского менеджмента составляет планомерный контроль за оптимальностью, сбалансированностью и устойчивостью функционирования в разрезе всех элементов, формирующих ресурсный потенциал и определяющих перспективы динамического развития кредитного учреждения. Его методы и инструменты требуют модернизации с учетом изменяющихся экономических условий. В то же время необходимость совершенствования механизма реализации новых банковских технологий обуславливает целесообразность научного поиска.

Используемые в существующих методиках интегральные коэффициенты финансовой устойчивости (КФУ) коммерческих банков зачастую характеризуют сбалансированность их состояния, но не позволяют дать полную характеристику тенденции развития. Следует учитывать, что результат (КФУ) зависит от многих случайных причин (эндогенного и экзогенного характера), которые не могут быть заранее полностью учтены.

В связи с этим оправданно рассматривать возможные результаты исследования устойчивого состояния банков в качестве случайных величин, имеющих одинаковое распределение вероятностей, поскольку исследования проводятся по одной и той же методике с использованием одинакового подхода. Кроме того, они взаимно независимы, т.е. результат каждого отдельного коэффициента не зависит от значений остальных.

Приняв во внимание, что в одном испытании случайная величина принимает одно и только одно возможное значение, заключаем, что события x 1 , x 2 , …, x n образуют полную группу, следовательно, сумма их вероятностей будет равна 1: p 1 +p 2 +…+p n =1 .

Дискретная случайная величина X - коэффициент финансовой устойчивости банка «А»,Y - банка «В», Z - банка «С» за заданный период. В целях получения результата, дающего основание сделать вывод об устойчивости развития банков, оценка была осуществлена на базе 12-летнего ретроспективного периода (табл.1).

Таблица 1

Порядковый номер годаБанк «А»Банк «В»Банк «С» 11,3141,2011,09820,8150,9050,81131,0430,9940,83941,2111,0051,01351,1101,0901,00961,0981,1541,01771,1121,1151,02981,3111,3281,06591,2451,1911,145101,5701,2041,296111,3001,1261,084121,1431,1511,028Min0,8150,9050,811Max1,5701,3281,296Шаг0,07550,04230,0485

Для каждой выборке по определенному банку значения разбиты на N интервалов, определены минимальное и максимальное значение. Процедура определения оптимального числа групп основана на применении формулы Стерджесса:

N =1+3,322 * ln N;

N =1+3,322 * ln12=9,525≈10,

Где n - число групп;

N - число совокупности.

h=(КФУ max - КФУ min ) / 10.

Таблица 2

Границы интервалов значений дискретных случайных величин X, Y, Z (коэффициентов финансовой устойчивости) и частоты появлений данных значений в обозначенных границах

Номер интервалаГраницы интерваловЧастота появлений (n )XYZXYZ 10,815-0,8910,905-0,9470,811-0,86011220,891-0,9660,947-0,9900,860-0,90800030,966-1,0420,990-1,0320,908-0,95702041,042-1,1171,032-1,0740,957-1,00540051,117-1,1931,074-1,1171,005-1,05412561,193-1,2681,117-1,1591,054-1,10223371,268-1,3441,159-1,2011,102-1,15131181,344-1,4191,201-1,2431,151-1,19902091,419-1,4951,243-1,2861,199-1,248000101,495-1,5701,286-1,3281,248-1,296111

Исходя из найденного шага интервала, были рассчитаны границы интервалов путем прибавления к минимальному значению найденного шага. Полученное значение - это граница первого интервала (левая граница - LG). Для нахождения второго значения (правой границы PG) к найденной первой границе снова прибавляет я шаг и т.д. Граница последнего интервала совпадает с максимальным значением:

LG 1 =КФУ min ;

PG 1 =КФУ min +h;

LG 2 =PG 1;

PG 2 =LG 2 +h;

PG 10 =КФУ max .

Данные по частоте попадания коэффициентов финансовой устойчивости (дискретных случайных величин X, Y, Z) сгруппированы в интервалы, и определена вероятность попадания их значений в заданные границы. При этом левое значение границы входит в интервал, а правое - нет (табл.3).

Таблица 3

Распределение дискретных случайных величин X, Y, Z

ПоказательЗначения показателяБанк «А»X 0,8530,9291,0041,0791,1551,2311,3061,3821,4571,532P(X) 0,083000,3330,0830,1670,250000,083Банк «В»Y 0,9260,9691,0111,0531,0961,1381,1801,2221,2651,307P(Y) 0,08300,16700,1670,2500,0830,16700,083Банк «С»Z 0,8350,8840,9330,9811,0301,0781,1271,1751,2241,272P(Z) 0,1670000,4170,2500,083000,083

По частоте появлений значений n найдены их вероятности (частота появления делится на 12, исходя из числа единиц совокупности), а также в качестве значений дискретных случайных величин были использованы середины интервалов. Законы их распределения:

P i = n i /12;

X i = (LG i +PG i )/2.

На основании распределения можно судить о вероятности неустойчивого развития каждого банка:

P(X<1) = P(X=0,853) = 0,083

P(Y<1) = P(Y=0,926) = 0,083

P(Z<1) = P(Z=0,835) = 0,167.

Так с вероятностью 0,083 банк «А» может достигнуть значения коэффициента финансовой устойчивости, равное 0,853. Другими словами, вероятность того, что его расходы превысят доходы, составляет 8,3 %. По банку «В» вероятность падения коэффициента ниже единицы также составила 0,083, однако с учетом динамичного развития организации это снижение все же окажется незначительным - до 0,926. Наконец, высока вероятность (16,7%), что деятельность банка «С», при прочих равных условиях, охарактеризуется значением финансовой устойчивости, равным 0,835.

В то же время по таблицам распределений можно увидеть вероятность устойчивого развития банков, т.е. сумму вероятностей, где варианты коэффициентов имеют значение, большее 1:

P(X>1) = 1 - P(X<1) = 1 - 0,083 = 0,917

P(Y>1) = 1 - P(Y<1) = 1 - 0,083 = 0,917

P(Z>1) = 1 - P(Z<1) = 1 - 0,167 = 0,833.

Можно наблюдать, что наименее устойчивое развитие ожидается в банке «С».

В целом закон распределения задает случайную величину, однако чаще целесообразнее пользоваться числами, которые описывают случайную величину суммарно. Их называют числовыми характеристиками случайной величины, к ним относится математическое ожидание. Математическое ожидание приближенно равно среднему значению случайной величины и оно тем больше приближается к среднему значению, чем больше было проведено испытаний.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех возможных величин на ее вероятности:

M(X) = x 1 p 1 +x 2 p 2 +…+x n p n

Результаты расчетов значений математических ожиданий случайных величин представлены в табл.4.

Таблица 4

Числовые характеристики дискретных случайных величин X, Y, Z

БанкМатематическое ожиданиеДисперсияСреднее квадратическое отклонение «А»M(X) = 1,187D(X) =0,027σ(x) = 0,164«В»M(Y) = 1,124D(Y) = 0,010σ(y) = 0,101«С»M(Z) = 1,037D(Z) = 0,012σ(z) = 0,112

Полученные математические ожидания позволяют оценить средние значения ожидаемых вероятных значений коэффициента финансовой устойчивости в будущем.

Так по расчетам можно судить, что математическое ожидание устойчивого развития банка «А» составляет 1,187. Математическое ожидание банков «В» и «С» составляет 1,124 и 1,037 соответственно, что отражает предполагаемую доходность их работы.

Однако, зная лишь математическое ожидание, показывающее «центр» предполагаемых возможных значений случайной величины - КФУ, еще нельзя судить ни о его возможных уровнях, ни о степени их рассеянности вокруг полученного математического ожидания.

Другими словами, математическое ожидание в силу своей природы полностью устойчивости развития банка не характеризует. По этой причине возникает необходимость вычисления других числовых характеристик: дисперсии и среднеквадратического отклонения. Которые позволяют оценить степень рассеянности возможных значений коэффициента финансовой устойчивости. Математические ожидания и средние квадратические отклонения позволяют оценить интервал, в котором будут находиться возможные значения коэффициентов финансовой устойчивости кредитных организаций.

При сравнительно высоком характерном значении математического ожидания устойчивости по банку «А» среднее квадратическое отклонение составило 0,164, что говорит о том, что устойчивость банка может либо повыситься на эту величину, либо снизиться. При отрицательном изменении устойчивости (что все же маловероятно, учитывая полученную вероятность убыточной деятельности, равную 0,083) коэффициент финансовой устойчивости банка останется положительным - 1, 023 (см. табл. 3)

Деятельность банка «В» при математическом ожидании в 1,124, характеризуется меньшим размахом значений коэффициента. Так, даже при неблагоприятном стечении обстоятельств банк останется устойчивым, поскольку среднее квадратическое отклонение от прогнозируемого значения составило 0, 101, что позволит ему остаться в положительной зоне доходности. Следовательно, можно сделать вывод об устойчивости развития данного банка.

Банк «С», напротив, при невысоком математическом ожидании своей надежности (1, 037) столкнется при прочих равных условиях с недопустимым для него отклонением, равным 0,112. При неблагоприятной ситуации, а также учитывая высокий процент вероятности убыточной деятельности (16,7%), данная кредитная организация, скорее всего, снизит свою финансовую устойчивость до 0,925.

Важно заметить, что, сделав выводы об устойчивости развития банков, нельзя заранее уверенно предвидеть, какое из возможных значений примет коэффициент финансовой устойчивости в итоге испытания; это зависит от многих причин, учесть которые невозможно. С этой позиции о каждой случайной величине мы располагаем весьма скромными сведениями. В связи с чем вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин.

Однако оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.

Оценивая устойчивость развития банков, остается оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине положительного числа ε. Дать интересующую нас оценку позволяет неравенство П.Л. Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа ε не меньше, чем :

или в случае обратной вероятности:

Учитывая риск, связанный с потерей устойчивости, проведем оценку вероятности отклонения дискретной случайной величины от математического ожидания в меньшую сторону и, считая равновероятностными отклонения от центрального значения как в меньшую, так и в большую стороны, перепишем неравенство еще раз:

Далее, исходя из поставленной задачи необходимо оценить вероятность того, что будущее значение коэффициента финансовой устойчивости не окажется ниже 1 от предлагаемого математического ожидания (для банка «А» значение ε примем равное 0,187, для банка «В» - 0,124, для «С» - 0.037) и произведем расчет данной вероятности:

банк «А»:

банк «С»:

Согласно неравенству П.Л. Чебышева, наиболее устойчивым в своем развитии является банк «В», поскольку вероятность отклонения ожидаемых значений случайной величины от ее математического ожидания невысокая (0,325), при этом она сравнительно меньше, чем по другим банкам. На втором месте по сравнительной устойчивости развития располагается банк «А», где коэффициент этого отклонения несколько выше, чем в первом случае (0,386). В третьем банке вероятность того, что значение коэффициента финансовой устойчивости отклониться в левую сторону от математического ожидания больше чем на 0, 037, является практически достоверным событием. Тем более, если учесть, что вероятность не может быть больше 1, превышающие значения, согласно доказательству Л.П. Чебышева, необходимо принимать за 1. Другими словами, факт того, что развитие банка может перейти в неустойчивую зону, характеризующуюся коэффициентом финансовой устойчивости меньше 1, является достоверным событием.

Таким образом, характеризуя финансовое развитие коммерческих банков, можно сделать следующие выводы: математическое ожидание дискретной случайной величины (среднее ожидаемое значение коэффициента финансовой устойчивости) банка «А» равно 1,187. Среднее квадратическое отклонение этой дискретной величины составляет 0,164, что объективно характеризует небольшой разброс значений коэффициента от среднего числа. Однако степень неустойчивости этого ряда подтверждается достаточно высокой вероятностью отрицательного отклонения коэффициента финансовой устойчивости от 1, равной 0,386.

Анализ деятельности второго банка показал, что математическое ожидание КФУ равно 1,124 при среднем квадратическом отклонении 0,101. Таким образом, деятельность кредитной организации характеризуется небольшим разбросом значений коэффициента финансовой устойчивости, т.е. является более концентрированной и стабильной, что подтверждается сравнительно низкой вероятностью (0,325) перехода банка в зону убыточности.

Устойчивость банка «С» характеризуется невысоким значением математического ожидания (1,037) и также небольшим разбросом значений (среднеквадратическое отклонение равно 0,112). Неравенство Л.П. Чебышева доказывает тот факт, что вероятность получения отрицательного значения коэффициента финансовой устойчивости равна 1, т.е. ожидание положительной динамики его развития при прочих равных условиях будет выглядеть весьма необоснованным. Таким образом, предложенная модель, базирующаяся на определении существующего распределения дискретных случайных величин (значений коэффициентов финансовой устойчивости коммерческих банков) и подтверждаемая оценкой их равновероятностного положительного или отрицательного отклонения от полученного математического ожидания, позволяет определить ее текущий и перспективный уровень.

Заключение

Применение математики в экономической науке, дало толчок в развитии как самой экономической науке, так и прикладной математике, в части методов экономико-математической модели. Пословица говорит: «Семь раз отмерь - Один раз отрежь». Использование моделей есть время, силы, материальные средства. Кроме того, расчёты по моделям противостоят волевым решениям, поскольку позволяют заранее оценить последствия каждого решения, отбросить недопустимые варианты и рекомендовать наиболее удачные. Экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Практическими задачами экономико-математического моделирования являются, во-первых, анализ экономических объектов; во-вторых, экономическое прогнозирование, предвидение развития хозяйственных процессов и поведения отдельных показателей; в-третьих, выработка управленческих решений на всех уровнях управления.

В работе было выяснено, что экономико-математические модели можно разделить по признакам:

·целевого назначения;

·учета фактора времени;

·длительности рассматриваемого периода;

·цели создания и применения;

·учета фактора неопределенности;

·типа математического аппарата;

Описание экономических процессов и явлений в виде экономико-математических моделей базируется на использовании одного из экономико-математических методов, которые применяются на всех уровнях управления.

·постановка экономической проблемы и ее качественный анализ;

·построение математической модели;

·математический анализ модели;

·подготовка исходной информации;

·численное решение;

·анализ численных результатов и их применение.

В работе была представлена статья кандидата экономических наук, доцента кафедры финансов и кредита С.В. Бойко, в которой отмечается, что перед отечественными кредитными организациями, подверженными влиянию внешней среды, стоит задача поиска управленческих инструментов, предполагающих реализацию рациональных антикризисных мер, направленных на стабилизацию темпов роста базовых показателей их деятельности. В этой связи повышается важность адекватного определения финансовой устойчивости с помощью различных методик и моделей, одной из разновидностей которых являются стохастические (вероятностные) модели, позволяющие не только выявить предполагаемые факторы роста или снижения устойчивости, но и сформировать комплекс превентивных мероприятий по ее сохранению.

Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Список литературы

1)Красс М.С. Математика для экономических специальностей: Учебник. -4-е изд., испр. - М.: Дело, 2003.

)Иванилов Ю.П., Лотов А.В. Математические модели в экономике. - М.: Наука, 2007.

)Ашманов С.А. Введение в математическую экономику. - М.: Наука, 1984.

)Гатаулин А.М., Гаврилов Г.В., Сорокина Т.М. и др. Математическое моделирование экономических процессов. - М.: Агропромиздат, 1990.

)Под ред. Федосеева В.В. Экономико-математические методы и прикладные модели:Учебное пособие для ВУЗов. - М.: ЮНИТИ, 2001.

)Савицкая Г.В. Экономический анализ: Учебник. - 10-е изд., испр. - М.:Новое знание, 2004.

)Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2002

)Исследование операций. Задачи, принципы, методология: учеб. пособие для вузов / Е.С. Вентцель. - 4-е изд., стереотип. - М. :Дрофа, 2006. - 206, с. : ил.

) Математика в экономике: учебное пособие/ С.В.Юдин. - М.: Изд-во РГТЭУ,2009.-228 с.

)Кочетыгов А.А. Теория вероятностей и математическая статистика: Учеб. Пособие/ Тул. Гос. Ун-т. Тула, 1998. 200с.

)Бойко С.В, Вероятностные модели в оценке финансовой устойчивости кредитных организаций /С.В. Бойко// Финансы и кредит. - 2011. N 39. -


    Характеристика основных экономико-математических методов АХД

    Применение методов линейного программирования для решения конкретных аналитических задач.

    Применение методов динамического программирования для решения конкретных аналитических задач.

1. Экономико-математические методы - это математические методы, применяемые для анализа экономических явлений и процессов. Использование математических методов в экономическом анализе позволяет повысить его эффективность за счет сокращения сроков проведения анализа, более полного охвата влияния факторов на результаты коммерческой деятельности, замены приближенных или упрощенных расчетов точными вычислениями, постановки и решения новых многомерных задач анализа, практически не выполнимых вручную или традиционными методами.

Применение математических методов в экономическом анализе требует соблюдения ряда условий, среди которых:

Системный подход к изучению экономики предприятий, учета всего множества существенных взаимосвязей между различными сторонами деятельности предприятий;

Разработка комплекса экономико-математических моделей, отражающих количественную характеристику экономических процессов и задач, решаемых с помощью экономического анализа;

Совершенствование системы экономической информации о работе предприятий;

Наличие технических средств (ЭВМ и др.), осуществляющих хранение, обработку и передачу экономической информации в целях экономического анализа;

Организация специального коллектива аналитиков, состоящего из экономистов-производственников, специалистов по экономико-математическому моделированию, математиков-вычислителей, программистов-операторов и др.

Современное состояние разработки принципов и конкретных форм использования математики и других точных наук для решения экономических задач отражает примерная схема основных математических методов, применяющихся в анализе хозяйственной деятельности предприятий.

Приведенная схема еще не является классификатором экономико-математических методов, поскольку она составлена безотносительно к какому-либо классификационному признаку. Она необходима для инвентаризации и характеристики основных математических методов, используемых в анализе хозяйственной деятельности предприятий. Рассмотрим ее

Экономико-математические методы в анализе

Методы элементарной математики

Эвристические методы

Методы исследования операций

Математическая теория оптимальных процессов

Методы экономической кибернетики

Классические методы математического анализа

Методы математической статистики

Эконометрические методы

Методы математического программирования

Экономико-математические методы анализа хозяйственной деятельности.

Методы элементарной математики используются в обычныхтрадиционных экономических расчетах при обосновании потребностейв ресурсах, учете затрат на производство, разработке планов, проектов,при балансовых расчетах и т. д. Выделение методов классической высшей математики на схемеобусловлено тем, что они применяются не только в рамках другихметодов, например, методов математической статистики иматематического программирования, но и отдельно. Так, факторныйанализ изменения многих экономических показателей может бытьосуществлен с помощью дифференцирования и интегрирования.

Методы математической статистики широко применяются в экономическом анализе. Они используются в тех случаях, когда изменение анализируемых показателей можно представить как случайным процесс. Статистические методы, являясь основным средством изучения массовых, повторяющихся явлений, играют важную роль в прогнозировании поведения экономических показателей. Когда связь между анализируемыми характеристиками не детерминированная, а стохастическая, то статистические и вероятностные методы - это практически единственный инструмент исследования. Наибольшее распространение из математико-статистических методов в экономическом анализе получили методы множественного и парного корреляционного анализа.

Для изучения одномерных статистических совокупностей используются: вариационный ряд, законы распределения, выборочный метод. Для изучения многомерных статистических совокупностей применяют корреляции, регрессии, дисперсионный, ковариационный, спектральный, компонентный, факторный виды анализа, изучаемые в курсах теории статистики.

Следующая группа экономико-математических методов - эконометрические методы. Эконометрия - научная дисциплина, изучающая количественные стороны экономических явлений и процессов средствами математического и статистического анализа на основе моделирования экономических процессов. Соответственно эконометрические методы строятся на синтезе трех областей знаний: экономики, математики и статистики. Основой эконометрии является экономическая модель, под которой понимается схематическое представление экономического явления или процесса с помощью научной абстракции, отражения их характерных черт. Из э ко неметрических методов наибольшее распространение в современной экономике получил метод анализа "затраты - выпуск". За его разработку выдающийся экономист В. Леонтьев в 1973 году получил Нобелевскую премию. Метод анализа "затраты-выпуск" - это эконометрический метод анализа, заключающийся в построении матричных (балансовых) моделей, по шахматной схеме и позволяющих в наиболее компактной форме представить взаимосвязь затрат ирезультатов производства. Удобство расчетов и четкость экономической интерпретации - главные преимущества использования матричных моделей. Это важно при создании систем механизированной обработки данных, при планировании производства продукции с использованием ЭВМ.

Методы математического программирования в экономике - это многочисленные методы решения задач оптимизации производственно-хозяйственной и прежде всего плановой деятельности хозяйствующего субъекта. По своей сути эти методы - средство плановых расчетов. Ценность их для экономического анализа выполнения бизнес-планов состоит в том, что они позволяют оценивать напряженность плановых заданий, определять лимитирующие группы оборудования, виды сырья и материалов, получать оценки дефицитности производственных ресурсов и т. п.

Под исследованием операций понимается метод целенаправленных действий (операций), количественная оценка полученных решений и выбор из них наилучшего. Предметом исследования операций являются экономические системы, в том числе производственно-хозяйственная деятельность предприятий. Целью является такое сочетание структурных взаимосвязанных элементов систем, которое в наибольшей степени отвечает задаче получения наилучшего экономического показателя из ряда возможных.

Как раздел исследования операций теория игр - это теория построения математических моделей для принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Теория массового обслуживания - это теория, разрабатывающая математические методы количественной оценки процессов массового обслуживания на основе теории вероятности. Так, любое из структурных подразделений промышленного предприятия можно представить как объект системы обслуживания.

Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений. Количество требований на обслуживание и временные интервалы между их поступлением носят случайный характер, их нельзя предсказать с однозначной определенностью. Однако в своей совокупности множество таких требований подчиняется определенным статистическим закономерностям, количественное изучение которых и является предметом теории массового обслуживания.

Методы экономической кибернетики разрабатываются экономической кибернетикой - научной дисциплиной, анализирующей экономические явления и процессы в качестве очень сложных систем, с точки зрения законов и механизмов управления и движения информации в них. Из методов экономической кибернетики наибольшее распространение в экономическом анализе получили

31методы моделирования и системного анализа.

В последние годы в экономической науке усилился интерес к методам эмпирического поиска оптимальных условий протекания процесса, использующих человеческий опыт и интуицию. Это нашло отражение в применении эвристических методов (решений), которые представляют собой неформализованные методы решения экономических задач, связанных со сложившейся хозяйственной ситуацией, на основе интуиции, прошлого опыта, экспертных оценок специалистов и т. п.

Для анализа производственно-хозяйственной, коммерческой деятельности многие методы из приведенной примерной схемы не нашли практического применения и только разрабатываются в теории экономического анализа. В то же время в этой схеме не нашли отражения некоторые экономико-математические методы, рассматриваемые в специальной литературе по экономическому анализу: теория нечетких множеств, теория катастроф и др. В данном учебном пособии внимание сосредоточено на основных экономико-математических методах, получивших уже широкое применение в практике экономического анализа.

Применение того или иного математического метода в экономическом анализе опирается на методологию экономико-математического моделирования хозяйственных процессов и научно обоснованную классификацию методов и задач анализа.

По классификационному признаку оптимальности все экономико-математические методы (задачи) подразделяются на две группы: оптимизационные и неоптимизационные. Оптимизационные методы - группа экономико-математических методов анализа, позволяющих искать решение задачи по заданному критерию оптимальности. Неоптимизационные методы - группа экономико-математических методов анализа, использующихся для решения задач без критерия оптимальности.

По признаку получения точного решения все экономико-математические методы делятся на точные и приближенные. К точным методам относят группу экономико-математических методов, алгоритм которых позволяет получить только одно решение по заданному критерию оптимальности или без него. К приближенным методам относят группу экономико-математических методов, применяемых в случае, когда при поиске решения используется стохастическая информация и решение задачи можно получить с любой степенью точности, а также такие, при применении которых не гарантируется получение единственного решения по заданному критерию оптимальности или без него.

Таким образом, на основе использования только двух признаков классификации, все экономико-математические методы делятся на четыре группы:

1) оптимизационные точные методы;

2} оптимизационные приближенные методы;

3) неоптимизационные точные методы;

4) неоптимизационные приближенные методы.

Так, к оптимизационным точным методам можно отнести методы теории оптимальных процессов, некоторые методы математического программирования и методы исследования операций. К оптимизационным приближенным методам относятся: отдельные методы математического программирования; методы исследования операций, методы экономической кибернетики; методы математической теории планирования экстремальных экспериментов; эвристические методы. К неоптимизационным точным методам относятся: методы элементарной математики и классические методы математического анализа, эконометрические методы. К неоптимизационным приближенным методам относятся: метод статистических испытаний и другие методы математической статистики.

Из представленных нами укрупненных групп экономико-математических методов, некоторые методы из этих групп используются для решения различных задач - как оптимизационных, так и неоптимизационных; как точных, так и приближенных.

2 . Методы линейного программирования. Все экономические задачи, решаемые с применением методов линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу - значит выбрать из значительного количества всех допустимых вариантов лучший, оптимальный. В этом состоит важность и ценность использования в экономике методов линейного программирования. При помощи других способов решать такие задачи практически невозможно.

Линейное программирование основано на решении системы линейных уравнений (с преобразованием в уравнения и неравенства), когда зависимость между изучаемыми явлениями строго функциональна. Для него характерны: математическое выражение переменных величин, определенный порядок, последовательность расчетов (алгоритм), логический анализ. Применять его можно только в тех случаях, когда изучаемые переменные величины и факторы имеют математическую определенность и количественную ограниченность, когда в результате известной последовательности расчетов происходит взаимо­заменяемость факторов, когда логика в расчетах, математическая логика совмещаются с логически обоснованным пониманием сущности изучаемого явления.

С помощью методов линейного программирования в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок}. В сельском хозяйстве они используются для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этими же методами решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.

3. Методы динамического программирования. Методы динамического программирования применяются при решении оптимизационных задач, в которых целевая функция и/или ограничения, характеризуются нелинейными зависимостями.

Признаками нелинейности является, в частности, наличие переменны/, у которых показатель степени отличается от единицы, а также наличие переменной в показателе степени, под корнем, под знаком логарифма.

В экономике вообще и в экономике предприятия, в частности, примеров нелинейных зависимостей достаточно много. Так, экономическая эффективность производства возрастает или убывает непропорционально изменению масштабов производства; величина затрат на производство партии деталей возрастает вместе с увеличением размеров партии, но не пропорционально им. Нелинейной связью характеризуется изменение величины износа производственного оборудования в зависимости от времени его работы, удельный расход бензина (на 1 км пути) - от скорости движения автотранспорта и многие другие хозяйственные ситуации.