Правило действие с рациональными числами. Основные свойства рациональных чисел

На этом уроке мы вспомним основные свойства действий с числами. Мы не только повторим основные свойства, но и научимся применять их к рациональным числам. Все полученные знания закрепим с помощью решения примеров.

Основные свойства действий с числами:

Первые два свойства - это свойства сложения, следующие два - умножения. Пятое свойство относится к обеим операциям.

Ничего нового в этих свойствах нет. Они были справедливы и для натуральных, и для целых чисел. Они также верны для рациональных чисел и будут верны для чисел, которые мы будем изучать дальше (например, иррациональных).

Перестановочные свойства:

От перестановки слагаемых или множителей результат не меняется.

Сочетательные свойства: , .

Сложение или умножение нескольких чисел можно делать в любом порядке.

Распределительное свойство: .

Свойство связывает обе операции - сложение и умножение. Также если его читать слева направо, то его называют правилом раскрытия скобок, а если в обратную сторону - правилом вынесения общего множителя за скобки.

Следующие два свойства описывают нейтральные элементы для сложения и умножения: прибавление нуля и умножение на единицу не меняют исходного числа.

Еще два свойства, которые описывают симметричные элементы для сложения и умножения, сумма противоположных чисел равна нулю; произведение обратных чисел равно единице.

Следующее свойство: . Если число умножить на ноль, в результате всегда будет ноль.

Последнее свойство, которое мы рассмотрим: .

Умножив число на , получаем противоположное число. У этого свойства есть особенность. Все остальные рассмотренные свойства нельзя было доказать, используя остальные. Это же свойство можно доказать, используя предыдущие.

Умножение на

Докажем, что если умножить число на , то получим противоположное число. Используем для этого распределительное свойство: .

Оно верно для любых чисел. Подставим вместо числа и :

Слева в скобках стоит сумма взаимно противоположных чисел. Их сумма равна нулю (у нас есть такое свойство). Слева теперь . Справа , получаем: .

Теперь слева у нас стоит ноль, а справа - сумма двух чисел. Но если сумма двух чисел равна нулю, то эти числа взаимно противоположны. Но у числа только одно противоположное число: . Значит, - это и есть : .

Свойство доказано.

Такое свойство, которое можно доказать, используя предыдущие свойства, называют теоремой

Почему здесь нет свойств вычитания и деления? Например, можно было бы записать распределительное свойство для вычитания: .

Но так как:

  • вычитание любого числа можно эквивалентно записать в виде сложения, заменив число на противоположное:

  • деление можно записать в виде умножения на обратное число:

Значит, свойства сложения и умножения вполне можно применять для вычитания и деления. В итоге список свойства, которые необходимо запомнить, получается короче.

Все рассмотренные нами свойства не являются исключительно свойствами рациональных чисел. Всем этим правилам подчиняются и другие числа, например, иррациональные. Например, сумма и противоположного ему числа равна нулю: .

Теперь мы перейдем к практической части, решим несколько примеров.

Рациональные числа в жизни

Те свойства предметов, которые мы можем описать количественно, обозначить каким-нибудь числом, называются величинами : длина, вес, температура, количество.

Одну и ту же величину можно обозначить и целым, и дробным числом, положительным или отрицательным.

Например, ваш рост м - дробное число. Но ведь можно сказать, что он равен см - это уже целое число (рис. 1).


Рис. 1. Иллюстрация к примеру

Еще один пример. Отрицательная температура по шкале Цельсия будет положительной по шкале Кельвина (рис. 2).


Рис. 2. Иллюстрация к примеру

При строительстве стены дома один человек может ширину и высоту измерить в метрах. У него получаются дробные величины. Все вычисления дальше он будет проводить с дробными (рациональными) числами. Другой человек может все измерить в количестве кирпичей в ширину и высоту. Получив только целые значения, он и вычисления будет проводить с целыми числами.

Сами величины не бывают ни целыми, ни дробными, ни отрицательными, ни положительными. Но число, которым мы описываем значение величины, уже является вполне конкретным (например, отрицательным и дробным). Это зависит от шкалы измерений. И когда мы от реальных величин переходим к математической модели, то работаем с конкретным типом чисел

Начнем со сложения. Слагаемые можно переставлять так, как нам удобно, и действия выполнять можно в любом порядке. Если слагаемые разных знаков оканчиваются на одну цифру, то удобно сначала выполнять действия с ними. Для этого поменяем слагаемые местами. Например:

Обыкновенные дроби с одинаковыми знаменателями легко складываются.

Противоположные числа в сумме дают ноль. Числа с одинаковыми десятичными «хвостами» легко вычитаются. Используя эти свойства, а также переместительный закон сложения, можно облегчить вычисление значения, например, следующего выражения:

Числа с дополняющими друга десятичными «хвостами» легко складываются. С целыми и дробными частями смешанных чисел удобно работать по отдельности. Используем эти свойства при вычислении значения следующего выражения:

Перейдем к умножению. Есть пары чисел, которые легко перемножить. Используя переместительное свойство, можно переставить множители так, чтобы они оказались рядом. Количество минусов в произведении можно посчитать сразу и сделать вывод о знаке результата.

Рассмотрим такой пример:

Если из сомножителей равен нулю, то произведение равно нулю, например: .

Произведение обратных чисел равно единице, а умножение на единицу не меняет значение произведения. Рассмотрим такой пример:

Рассмотрим пример с использованием распределительного свойства. Если раскрыть скобки, то каждое умножение выполняется легко.

Действия с десятичными дробями.
 Сложение и вычитание десятичных дробей.
1. Уравнять количество цифр после запятой.
2. Сложить или вычесть десятичные дроби запятая под запятой по разрядам.
 Умножение десятичных дробей.
1. Умножить, не обращая внимания на запятые.
2. В произведении запятой отделить справа столько цифр, сколько их во всех множителях
вместе после запятой.
 Деление десятичных дробей.
1. В делимом и делителе перенести запятые вправо на столько цифр, сколько их после запятой
в делителе.
2. Разделить целую часть, поставить в частном запятую. (Если целая часть меньше делителя, то
частное начинается с нуля целых)
3. Продолжить деление.
Действия с положительными и отрицательными числами.
Сложение и вычитание положительных и отрицательных чисел.
а – (– в) = а + в
Все остальные случаи рассматриваются как сложение чисел.
 Сложение двух отрицательных чисел:
1. результат записываем со знаком «–»;
2. модули складываем.
 Сложение чисел с разными знаками:
1. ставим знак большего модуля;
2. вычитаем из большего модуля меньший.
 Умножение и деление положительных и отрицательных чисел.
1. При умножении и делении чисел с разными знаками результат записывается со знаком
минус.
2. При умножении и делении чисел с одинаковыми знаками результат записывается со знаком
плюс.
Действия с обыкновенными дробями.
Сложение и вычитание.
1. Привести дроби к общему знаменателю.
2. Сложить или вычесть числители, а знаменатель оставить без изменения.
Умножить числитель на числитель, а знаменатель на знаменатель (по возможности – сократить).
Делитель (вторую дробь) «перевернуть» и выполнить умножение.
Деление.
Умножение.
Выделение целой части из неправильной дроби.
38
5 = 38: 5 = 7(ост.3) = 7
3
5
Перевод смешанного числа в неправильную дробь.
2
7 + =
4
4·7+2
7
30
7
=

1
.
+
Сокращение дроби.
Сократить дробь – разделить числитель и знаменатель на одно и то же число.
6
7
6
7 . Можно короче:
30:5
35:5 =
30
35 =
Например:
30
35 =
.
1.
Разложить знаменатели дробей на простые
множители.
Приведение дробей к общему знаменателю.
5 4
7
16 +

36
80 =
71
80
2. Вычеркнуть одинаковые множители.
3. Оставшиеся множители от знаменателя первой
дроби перемножить и записать как
дополнительный множитель для второй дроби, а
от второй дроби – к первой дроби.
2∙2∙2∙2 2∙2∙5
4. Умножить числитель и знаменатель каждой дроби
на её дополнительный множитель.
9
20 =
35
80 +
Сложение и вычитание смешанных чисел.
Сложить или вычесть отдельно целые части, отдельно ­ дробные.
«Особые» случаи:
«Превратить» 1 в дробь, у которой числитель и

2
2
5
6
3
5 =
3
5 = 2
1
1
Занять 1 и «превратить» её в дробь, у которой числитель и
знаменатель равны знаменателю данной дроби.
Занять 1 и прибавить знаменатель к числителю.
3
5 =
3
5 = 2
5
5 ‒
5
5 ‒

1

3
2
5
1 ‒
3
3
5 = 2
5
5 1 ‒
3
5 = 1
2
5
1
5
1 ‒
3
5 = 2
6
5 1‒
3
3
5 = 1
3
5
Перевести смешанные числа в неправильные дроби и выполнить умножение или деление.
Умножение и деление смешанных чисел.

2
7 + ∙ 2
4
4
5 + =
30
7 ∙
14
5 =
30·14
7·5
6·2
1·1 =
12
1 = 12
=
∙ ∙
6
7