Постройте сечение проходящее через точки. §16

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

В предыдущих задачах для построения сечения нам оказалось достаточно знаний теории. Рассмотрим другую задачу. Задача 1. Построить сечение тетраэдра, проходящее через точку М, параллельно плоскости ABD. M Одна точка нам ничем не поможет, но в задаче есть дополнительное условие: сечение должно быть параллельно плоскости ABD. Что это нам дает? 1. Плоскости ADB и DBC пересекаются по прямой DB, следовательно сечение, параллельное ADB, пересекает DBC по (Если две параллельные прямой, параллельной DB. плоскости пересечены третьей, то линии пересечения параллельны) M Точка М принадлежит грани DBC. Проведем через нее N прямую MK, параллельную DB. 2. Аналогично: (ADB) (ABC)=AB, K следовательно сечение будет пересекать (ABC) по прямой, параллельной AB. K (ABC). Через точку K в плоскости ABC проведет прямую KN, параллельную AB. M N K N (ADC), M (ADC), следовательно MN (ADC) (и плоскости сечения). Проведем NM. MKN – искомое сечение. Итак: M N 1. Построение: 1. В плоскости (DBC) MK // DB, MK BC = K. 2. В плоскости (ABC) KN // AB, KN AC = N. 3. MN Докажем, что MKN – искомое сечение K 2. Доказательство. 1. Сечение проходит через точку М 2. N (ADC), M (ADC) => NM (ADC) 3. MK // DB, NK // AB по построению, следовательно (NMK) // (ABD) по признаку. Следовательно, MKN – искомое сечение ч.т.д. Задача 2. Постройте сечение параллелепипеда ABCDA1B1C1D1, проходящее через середину ребра D1C1 и точку D, параллельно прямой a. B1 C1 Рассуждения. M A1 D1 B A C D 1. Отметим указанную в условии точку (назовем ее произвольным образом). M – середина D1C1. 2. Точки M и D лежат B1 C1 M A1 A значит их можно соединить. D1 B C D в одной плоскости DD1C1, Больше соединять нечего. 3. Воспользуемся дополнительным условием: секущая плоскость должна быть параллельна прямой a. B1 C1 M A1 B C S A Для этого она должна содержать прямую, параллельную прямой a. Проще всего провести такую прямую в плоскости ABC, т.к. в ней лежат прямая a и точка D, принадлежащая сечению. D Проведем в плоскости ABC через точку D прямую DS, параллельную прямой a. DS AB = S. 4. Т.к. (ABC) // (A1B1C1), проведем в плоскости (A1B1C1), через точку M, прямую MP // SD. MP B1C1 = P 5. Т.к. (DD1C1) // (AA1B1), то в P B C плоскости (AA1B1) можно через точку S провести прямую M N A D SN, параллельную DM. SN BB1 = N 1 1 1 1 B C S A D 6. Точки N и P лежат в плоскости (A1B1C1). Соединим их. SNPMD - искомое сечение. Итак: 1. Построение. 1. MD B1 A1 N P C1 S A M 3. В (A1B1C1), через точку M, MP // DS, MP B1C1 = P C 4. В плоскости (AA1B1), через точку S, SN // DM, SN BB1 = N 5. NP D1 B D 2. В (ABC), через точку D, DS // a, DS AB = S Докажем, что SNPMD искомое сечение. 2. Доказательство. B1 A1 N 1. Сечение проходит через точку D и середину ребра D1C1 - точку M по построению. P C1 M C S A 3. PM // SD, P B1C1 по построению D1 B D 2. DS // a, (S AB) по построению, следовательно (KNP) // a по признаку. 4. SN // DM, N BB1 по построению 5. P (BB1C1), N (BB1C1) => PN (BB1C1). Следовательно, SNPMD искомое сечение ч.т.д. Задача 3. Построить сечение параллелепипеда, параллельное B1A и проходящее через точки M и N. Рассуждения. 1. Соединим M и N (они лежат в плоскости (C1A1B1)). B1 N M A1 D1 B A C1 C D Больше соединять нечего. Воспользуемся дополнительным условием: секущая плоскость должна быть параллельна прямой B1A 2. Для того, чтобы секущая плоскость оказалась параллельна AB1, нужно, чтобы в ней лежала прямая, параллельная AB1 (или DC1, т.к. DC // AB1 по свойству параллелепипеда). Удобнее всего изображать такую прямую в грани DD1C1C, т.к. (DD1C1) // (AA1B1), а AB1 (AA1B1). Проведем в плоскости (DD1C1) прямую NK // AB1, NK DD1 = K. B1 N M A1 D1 B 3. Теперь в плоскости AA1D1 есть две точки, M и K, принадлежащие сечению. Соединим их. C K A C1 D MNK – искомое сечение. Итак: 1. Построение. 1. MN 2. В плоскости (DD1C1) NK // AB1, NK DD1 = K. . B1 N A1 A M D1 C1 3. MK Докажем, что MNK – искомое сечение 2. Доказательство. B C 1. Сечение проходит через точки M и N. K 2. M (A1B1C1), N (A1B1C1) => D MN (A1B1C1). 3. M (ADD1), K (ADD1) => MK (ADD1). 4. Т.к. NK // AB1 по построению, то (MNK) // AB1 по признаку параллельности прямой и плоскости. Следовательно, MNK - искомое сечение ч.т.д. Задание 3. 1. В тетраэдре DABC постройте сечение плоскостью, проходящей через середину ребра DC, вершину B и параллельной прямой AC. 2. Постройте сечение параллелепипеда плоскостью, проходящей через середину ребра B1C1 и точку K, лежащую на ребре CD, параллельной прямой BD, если DK: KC = 1: 3. M 3. Построить сечение тетраэдра плоскостью, проходящей через точки M и C, параллельно прямой a (рис. 1). рис.1 4. В параллелепипеде ABCDA1B1C1D1 точка E принадлежит ребру CD. Постройте сечение параллелепипеда плоскостью, проходящей через эту точку и параллельной плоскости BC1D. 5. Постройте сечение параллелепипеда плоскостью, проходящей через AA1, параллельно MN, где M – середина AB, N – середина BC. 6. Постройте сечение параллелепипеда плоскостью, проходящей через середину ребра B1C1 параллельно плоскости AA1C1.

Аксиомы планиметрии:

В различных учебниках свойства прямых и плоскостей могут быть представлены по-разному, в виде аксиомы, следствия из нее, теоремы, леммы и т.д. Рассмотрим учебник Погорелова А.В.

    Прямая разбивает плоскость на две полуплоскости.

    0

    От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180 0 , и только один.

    Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой.

    Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Аксиомы стереометрии:

    Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие этой плоскости, и точки не принадлежащие ей.

    Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

    Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.

    Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

Через любые две точки можно провести прямую, и только одну.

    Из трех точек на прямой одна и только одна лежит между двумя другими.

    Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.

    Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости.

    Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180 0 . Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один.

    От полупрямой на содержащей ее плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180 0 , и только один.

    Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости.

    На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.

Сечение

В пространстве две фигуры, для нашего случая плоскость и многогранник могут иметь следующее взаимное расположение: не пересекаются, пересекаются в точке, пересекаются по прямой и плоскость пересекает многогранник по его внутренности (рис.1), и при этом образуют следующие фигуры:

а) пустая фигура (не пересекаются)

б) точка

в) отрезок

г) многоугольник

Если в пересечении многогранника и плоскости есть многоугольник, то этот многоугольник называется сечением многогранника с плоскостью .

рис.1

Определение. Сечением пространственного тела (например, многогранника) называется фигура, получающаяся в пересечении тела с плоскостью.

Секущей плоскостью многогранника назовем любую плоскость, по обе стороны от которой имеются точки данного многогранника.

Будем рассматривать только случай, когда плоскость пересекает многогранник по его внутренности. При этом, пересечением данной плоскости с каждой гранью многогранника будет некоторый отрезок.

Если плоскости пересекаются по прямой, то прямую называют следом одной из этих плоскостей на другой.

В общем случае секущая плоскость многогранника пересекает плоскость каждой его грани (а также любую другую секущую плоскость этого многогранника). Она пересекает и каждую из прямых, на которых лежат ребра многогранника.

Прямую, по которой секущая плоскость пересекает плоскость какой-либо грани многогранника, называют следом секущей плоскости на плоскости этой грани, а точку, в которой секущая плоскость пересекает прямую, содержащую какое – либо ребро многогранника, называют следом секущей плоскости на этой прямой. Эта точка является и следом прямой на секущей плоскости. Если секущая плоскость пересекает непосредственно грань многогранника, то можно говорить о следе секущей плоскости на грани, и, аналогично, о следе секущей плоскости на ребре многогранника, то есть о следе ребра на секущей плоскости.

Так как прямая однозначно определяется двумя точками, то для нахождения следа секущей плоскости на любой другой плоскости и, в частности, на плоскости любой грани многогранника, достаточно построить две общие точки плоскостей

Для построения следа секущей плоскости, а также для построения сечения многогранника этой плоскостью, должен быть задан не только многогранник, но и секущая плоскость. А построение плоскости сечения проходит в зависимости от задания этой плоскости. Основными способами задания плоскости, и в частности секущей плоскости, являются следующие:

    тремя точками не лежащих на одной прямой;

    прямой и не лежащей на ней точкой;

    двумя параллельными прямыми;

    двумя пересекающимися прямыми;

    точкой и двумя скрещивающимися прямыми;

Возможны и другие способы задания секущей плоскости.

Поэтому все способы построения сечений многогранников можно разделить на методы.

Методы построения сечений многогранников

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Существует три основных метода построения сечений многогранников:

    Аксиоматический метод:

    Метод следов.

    Комбинированный метод.

    Координатный метод.

Заметим , что метод следов и метод вспомогательных сечений являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

    построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;

    построение сечения, проходящего через заданную прямую параллельно, другой заданной прямой;

    построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;

    построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;

    построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

Основными действиями, составляющие методы построения сечений, являются нахождение точки пересечения прямой с плоскостью, построения линии пересечения двух плоскостей, построение прямой параллельной плоскости, перпендикулярной плоскости. Для построения прямой пересечения двух плоскостей обычно находят две ее точки и проводят через них прямую. Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную. Тогда искомая точка получается в пересечении найденной прямой с данной.

Рассмотрим отдельно перечисленные нами методы построения сечений многогранников:

Метод следов.

Метод следов основывается (операеться) на аксиомах стереометрии, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют основным следом секущей плоскости . Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.

Отметим, что при построении основного следа секущей плоскости используется следующее утверждение.

Если точки принадлежат секущей плоскости и не лежат на одной прямой, а их проекция (центральными или параллельными) на плоскость, выбранную в качестве основной, являются соответственно точки то точки пересечения соответственных прямых, то есть точки и лежат на одной прямой (рис.1, а, б).

рис.1.а рис.1.б

Эта прямая является основным следом секущей плоскости. Так как точки лежат на основном следе, то для его построения достаточно найти две точки из этих трех.

Метод вспомогательных сечений.

Этот метод построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь ввиду, что построения, выполняемые при использовании этого метода, зачастую получаются “скученными”. Тем не менее, в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.

Комбинированный метод

Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

Координатный метод построения сечений.

Суть координатного метода заключается в вычислении координат точек пересечения ребер или многогранника с секущей плоскостью, которая задается уравнением плоскости. Уравнение плоскости сечения вычисляется на основе условий задачи.

Заметим , что это способ построения сечения многогранника приемлем для компьютера, так как он связан с большим объемом вычислений и поэтому этот метод целесообразно реализовать с помощью ЭВМ.

Наша основная задача будет состоять в построении сечения многогранника с плоскостью, т.е. в построении пересечения этих двух множеств.

Построение сечений многогранников

Прежде всего заметим, что сечение выпуклого многогранника есть выпуклый плоский многоугольник, вершины которого в общем случае являются точками пересечения секущей плоскости с ребрами многогранника, а стороны с его гранями.

Примеры построения сечений:

Способы задания сечения весьма разнообразны. Наиболее распространенным из них является способ задания секущей плоскости тремя точками, не лежащими на одной прямой.

Пример 1. Для параллелепипеда ABCDA 1 B 1 C 1 D 1 . Построить сечение проходящее через точки M, N, L.

Решение:

Соединим точки M и L, лежащие в плоскости AA 1 D 1 D.

Пересечем прямую ML (принадлежащую сечению) с ребром A 1 D 1 1 D 1 D. Получим точку X 1 .

Точка X1 лежит на ребре A 1 D 1 , а значит и плоскости A 1 B 1 C 1 D 1 , соединим ее сточкой N, лежащей в этой же плоскости.

X 1 N пересекается с ребром A 1 B 1 в точке К.

Соединим точки K и M, лежащие в одной плоскости AA 1 B 1 B.

Найдем прямую пересечения плоскости сечения с плоскостью DD 1 C 1 C:

Пересечем прямую ML (принадлежащую сечению) с ребром DD 1 , они лежат в одной плоскости AA 1 D 1 D, получим точку X 2 .

Пересечем прямую KN (принадлежащую сечению) с ребром D 1 C 1 , они лежат в одной плоскости A 1 B 1 C 1 D 1 , получим точку X3;

Точки X2 и X3 лежат в плоскости DD 1 C 1 C. Проведем прямую X 2 X 3 , которая пересечет ребро C 1 C в точке T, а ребро DC в точке P. И соединим точки L и P, лежащие в плоскости ABCD.

Таким образом, задача считается решенной, если найдены все отрезки, по которым плоскость пересекает грани многогранника, что и мы сделали. MKNTPL - искомое сечение.

Заметим. Эту же самую задачу на построение сечения, можно решить воспользуевавшийся свойством параллельных плоскостей.

Из выше сказанного можно составить алгоритм (правило) решения задач, данного типа.

Правила построения сечений многогранников:

    1. проводим прямые через точки, лежащие в одной плоскости;

      ищем прямые пересечения плоскости сечения с гранями многогранника, для этого:

Пример 2. D L , M

Решим аксиоматическим методом:

Проведем вспомогательную плоскость DKM , которая пересекает ребра АВ и ВС в точках Е и F (ход решение на рис 2.). Построим «след» КМ плоскости сечения на этой вспомогательной плоскости, найдем точку пересечения КМ и Е F – точку Р. Точка Р, как и L , лежит в плоскости АВС, и можно провести прямую, по которой плоскость сечения пересекает плоскость АВС(«след» сечения в плоскости АВС).

Пример 3. На ребрах AB и AD пирамиды MABCD зададим соответственно точки P и Q - середины этих ребер, а на ребре MC зададим точку R. Построим сечение пирамиды плоскостью, проходящей через точки P, Q и R.

Решение проведем комбинированным методом:

1). Ясно, что основным следом плоскости PQR является прямая PQ.

2). Найдем точку К, в которой плоскость МАС пересекает прямую PQ. Точки К и R принадлежат и плоскости PQR, и плоскости MAC. Поэтому, проведя прямую KR, мы получим линию пересечения этих плоскостей.

3). Найдем точку N=AC BD, проведем прямую MN и найдем точку F=KR MN.

4). Точка F является общей точкой плоскостей PQR и MDB, то есть эти плоскости пересекаются по прямой, проходящей через точку F. Вместе с тем так как PQ - средняя линия треугольника ABD, то PQ параллена BD, то есть прямая PQ параллельна и плоскости MDB. Тогда плоскость PQR, проходящая через прямую PQ, пересекает плоскость MDB по прямой, параллельной прямой PQ, то есть параллельной и прямой BD. Поэтому в плоскости MDB через точку F проведем прямую, параллельную прямой BD.

5). Дальнейшие построения понятны из рисунка. В итоге получаем многоугольник PQD"RB" - искомое сечение

Рассмотрим сечения призмы для простоты, то есть удобства логических размышлений рассмотрим сечения куба (рис.3.а):

Рис. 3.а

Сечения призмы плоскостями, параллельными боковым ребрам, является параллелограммами. В частности, параллелограммами являются диагональные сечения (рис. 4).

Опр. Диагональным сечением призмы называется сечение плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Многоугольник, получающийся при диагональном сечении призмы, является параллелограммом. Вопрос о числе диагональных сечений n -угольной призмы труднее, чем вопрос о числе диагоналей. Сечений будет столько же сколько диагоналей у основания. Мы знаем, что у выпуклой призмы в основаниях – выпуклые многоугольники, а у выпуклого n -угольника диагоналей. И так можно говорить, что диагональных сечений вдвое меньше, чем диагоналей.

Заметим: При построении сечений параллелепипеда на рисунке следует учитывать тот факт, что если секущая плоскость пересекает две противоположные грани по каким – то отрезкам, то эти отрезки параллельны «по свойству параллелепипеда т.е. противоположные грани параллелепипеда параллельны и равны.»

Дадим ответы на часто возникающие вопросы:

    Какие многоугольники получаются в сечении куба плоскостью?

«треугольник, четырехугольник, пятиугольник, шестиугольник ».

    Может ли в сечении куба плоскостью получиться семиугольник? А восьмиугольник?

«не могут».

3)Возникает вопрос чему равно наибольшее число сторон многоугольника, полученного сечением многогранника с плоскостью?

Наибольшее число сторон многоугольника, полученного в сечении многогранника плоскостью, равно числу граней многогранника .

Пример 3. Построить сечение призмы A 1 B 1 C 1 D 1 ABCD плоскостью, проходящей через три точки M, N, K.

Рассмотрим случай расположения точек M, N, K на поверхности призмы (рис. 5).

Рассмотрим случай: В данном случае очевидно, что M1 = B1.

Построение:

Пример 4. Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.6)).

Решение:

Рис. 6

Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проходящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.

Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.

Так как точка M также принадлежит плоскости сечения и пересекает прямую АА 1 в некоторой точке Х.

Точки X и N лежат в одной плоскости грани АА 1 D 1 D, соединим их и получим прямую XN.

Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A 1 B 1 C 1 D 1 , параллельную прямой NP. Эта прямая пересечет сторону В 1 С 1 в точке Y.

Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два не соседних боковых ребра пирамиды.

Пример 4. Построить сечение пирамиды АВС D плоскостью, проходящей через точки К, L , M .

Решение:


    1. Проведем еще одну вспомогательную плоскость DCK и построим точку пересечения В L и D К – точку Е. Эта точка принадлежит обеим вспомогательным плоскостям (рис. 7, б);

      Найдем точку пересечения отрезков LM и ЕС (эти отрезки лежат в плоскости BLC , рис.7, в) – точку F . Точка F лежит в плоскости сечения и в плоскости DCK ;

      Проведем прямую KF и найдем точку пересечения этой прямой с DC – точку N (точка N принадлежит сечению). Четырехугольник KLNM – искомое сечение.

Этот же пример решим по другому .

Допустим что по точкам К, L , и М построено сечение KLNM (рис. 7). Обозначим через F точку пересечения диагоналей четырехугольника KLNM . Проведем прямую DF и обозначим через F 1 ее точку пересечения с гранью АВС. Точка F 1 совпадает с точкой пересечения прямых АМ и СК (F 1 одновременно принадлежит плоскостям АМ D и D СК). Точку F 1 легко построить. Далее строим точку F как точку пересечения DF 1 и LM . Далее находим точку N .

Рассмотренный прием называют методом внутреннего проектирования . (Для нашего случая речь идет о центральном проектировании. Четырехугольник K МСА есть проекция четырехугольника KMNL из точки D . При этом точка пересечения диагоналей KMNL – точка F – переходит в точку пересечения диагоналей четырехугольника K МСА – точку F 1 .

Площадь сечения многогранника.

Задача на вычисление площади сечения многогранника обычно решается в несколько этапов. Если в задаче говориться, что сечение построено (или что секущая плоскость проведена и т.п.), то на первом этапе решения выясняют вид фигуры полученной в сечении.

Это необходимо сделать, чтобы выбрать соответствующую формулу для вычисления площади сечения. После того как вид фигуры, полученной в сечении, выяснен и выбрана формула для подсчета площади этой фигуры, переходят непосредственно к вычислительной работе.

В некоторых случаях может оказаться проще, если, не выясняя вида фигуры, полученной в сечении, перейти сразу к вычислениям ее площади по формуле, которая следует из теоремы.

Теорема о площади ортогональной проекции многоугольника: площадь ортогональной проекции многоугольника на плоскость равна произведению его площади на косинус угла между плоскостью многоугольника и плоскостью проекции: .

Справедлива формула для вычисления площади сечения: где это площадь ортогональной проекции фигуры, полученной в сечении, аэто угол между секущей плоскостью и плоскостью, на которую фигура спроектирована. При таком ходе решения необходимо построить ортогональную проекцию фигуры, полученной в сечении, и подсчитать

Если в условии задачи говориться, что сечение требуется построить и найти площадь полученного сечения, то на первом этапе следует обосновано выполнить построение заданного сечения, и затем, естественно, определить вид фигуры, полученной в сечении, и т.д.

Отметим следующий факт: так как строятся сечения выпуклых многогранников, то многоугольник сечения будет тоже выпуклым, поэтому его площадь можно найти разбиением на треугольники, то есть площадь сечения равна сумме площадей треугольников из которых оно составлено.

Задача 1.

правильная треугольная пирамида со стороной основания равной и высотой равной Постройте сечение пирамиды плоскостью, проходящей через точки, где – середина стороны, и найдите его площадь (рис.8).

Решение.

Сечением пирамиды является треугольник. Найдем его площадь.

Так как основание пирамиды – равносторонний треугольник и точка – середина стороны, то является высотой и тогда, .

Площадь треугольника можно найти:

Задача 2.

Боковое ребро правильной призмы равно стороне основания. Построить сечения призмы плоскостями, проходящими через точку A , перпендикулярно прямой Если найти площадь полученного сечения призмы.

Решение.

Построим заданное сечение. Сделаем это из чисто геометрических соображений, например, следующим образом.

В плоскости проходящей через заданную прямую и заданную точку проведем через эту точку прямую, перпендикулярную прямой (рис. 9). Воспользуемся с этой целью тем, что в треугольнике то есть его медиана является и высотой этого треугольника. Таким образом, прямая.

Через точку проведем еще одну прямую, перпендикулярную прямой. Проведем ее, например, в плоскости, проходящей через прямую. Ясно, что этой прямой является прямая

    Итак, построены две пересекающиеся прямые, перпендикулярные прямой. Этими прямимы определяется плоскость, проходящая через точку перпендикулярно прямой то есть задана секущая плоскость.

    Построим сечение призмы этой плоскостью. Заметим, что так как, то прямая параллельна плоскости. Тогда плоскость, проходящая через прямую, пересекает плоскость по прямой, параллельной прямой, то есть и прямой. Проведем через точку прямую и полученную точку соединим точкой.

Четырехугольник заданное сечение. Определим его площадь.

Понятно что четырехугольник является прямоугольником, то есть его площадь

рис. 9

Преподаватель математики Щелковского филиала ГБПОУ МО "Красногорский колледж" Артемьев Василий Ильич.

Изучение темы «Решение задач на построение сечений» начинается в 10 классе или на первом курсе учреждений НПО. В случае, если кабинет математики оснащен средствами мультимедиа, то решение проблемы изучения облегчается с помощью различных программ. Одной из таких программ является программное обеспечение динамической математики GeoGebra 4.0.12. Она подходит для изучения и обучения на любом из этапов образования, облегчает создание математических построений и моделей обучающимися, которые позволяют проводить интерактивные исследования при перемещении объектов и изменение параметров.

Рассмотрим применение этого программного продукта на конкретном примере.

Задача. Построить сечение пирамиды плоскостью PQR, если точка P лежит на прямой SA, точка Q лежит на прямой SB, точка R лежит на прямой SC.

Решение. Рассмотрим два случая. Случай 1. Пусть точка P принадлежит ребру SA.

1. Отметим с помощью инструмента «Точка» произвольные точки A, B, C, D. Щелкнем правой клавишей на точку D, выберем «Переименовать». Переименуем D на S и установим положение этой точки, как показано на рисунке 1.

2. С помощью инструмента «Отрезок по двум точкам» построим отрезки SA, SB, SC, AB, AC, BC.

3. Щелкнем правой клавишей мыши по отрезку AB и выбираем «Свойства» - «Стиль». Устанавливаем пунктирную линию.

4. Отметим на отрезках SA, SB, CS точки P, Q, R.

5. Инструментом «Прямая по двум точкам» построим прямую PQ.

6. Рассмотрим прямую PQ и точку R. Вопрос учащимся: Сколько плоскостей проходит через прямую PQ и точку R? Ответ обоснуйте. (Ответ. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна).

7. Строим прямые PR и QR.

8. Выбираем инструмент «Многоугольник» и по очереди щелкнем по точкам PQRP.

9. Инструментом « Перемещать» меняем положение точек и наблюдаем за изменениями сечения.

Рисунок 1.

10. Щелкнем по многоугольнику правой клавишей и выбираем «Свойства» - «Цвет». Заливаем многоугольник каким-нибудь нежным цветом.

11. На панели объектов щелкнем по маркерам и скроем прямые.

12. В качестве дополнительного задания можно измерить площадь сечения.

Для этого выберем инструмент «Площадь» и щелкнем левой клавишей мыши по многоугольнику.

Случай 2. Точка P лежит на прямой SA. Для рассмотрения решения задачи для этого случая можно пользоваться чертежом прежней задачи. Скроем лишь многоугольник и точку Р.

1. Инструментом «Прямая по двум точкам» построим прямую SA.

2. Отметим на прямой SA точку P1, как показано на рисунке 2.

3. Проведем прямую P1Q.

4. Выбираем инструмент «Пересечение двух объектов» , и щелкнем левой клавишей мыши по прямым АВ и P1Q. Найдем точку их пересечения К.

5. Проведем прямую P1R. Найдем точку пересечения М этой прямой с прямой АС.

Вопрос учащимся: сколько плоскостей можно провести через прямые P1Q и P1R? Ответ обоснуйте. (Ответ. Через две пересекающиеся прямые проходит плоскость, и притом только одна).

6. Проведем прямые КМ и QR. Вопрос учащимся. Каким плоскостям одновременно принадлежат точки К, М? Пересечением каких плоскостей является прямая КМ?

7. Построим многоугольник QRKMQ. Зальем нежным цветом и скроем вспомогательные прямые.

Рисунок 2.

С помощью инструмента «Перемещение» двигаем точку вдоль прямой AS.Рассматриваем различные положения плоскости сечения.

Задания для построения сечений:

1. Построить сечение, определяемое параллельными прямыми АА1 и СС1. Сколько плоскостей проходит через параллельные прямые?

2. Построить сечение проходящее через пересекающиеся прямые. Сколько плоскостей проходит через пересекающиеся прямые?

3. Построение сечений с использованием свойств параллельных плоскостей:

а) Построить сечение параллелепипеда плоскостью, проходящей через точку М и прямую АС.

б) Построить сечение призмы плоскостью, проходящей через ребро АВ и середину ребра В1С1.

в) Построить сечение пирамиды плоскостью, проходящей через точку К и параллельно плоскости основаниям пирамиды.

4. Построение сечений методом следов:

а) Дана пирамида SABCD. Построить сечение пирамиды плоскостью, проходящей через точки P, Q и R.

5) Проведем прямую QF и найдем точку Н пересечения с ребром SB.

6) Проведем прямые HR и PG.

7) Выделим инструментом «Многоугольник» полученное сечение и изменим цвет заливки.

б) Самостоятельно постройте сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки P, K и M. Список источников.

1. Электронный ресурс http://www.geogebra.com/indexcf.php

2. Электронный ресурс http://geogebra.ru/www/index.php (Сайт Сибирского института GeoGebra)

3. Электронный ресурс http://cdn.scipeople.com/materials/16093/projective_geometry_geogebra.PDF

4. Электронный ресурс. http://nesmel.jimdo.com/geogebra-rus/

5. Электронный ресурс http://forum.sosna24k.ru/viewforum.php?f=35&sid=(Форум GeoGebra для учителей и школьников).

6. Электронный ресурс www.geogebratube.org (Интерактивные материалы по работе с программой)

Само же задание обычно звучит так: "построить натуральный вид фигуры сечения" . Конечно же, мы решили не оставлять этот вопрос в стороне и постараться по возможности объяснить, как происходит построение наклонного сечения.

Для того, чтобы объяснить, как строится наклонное сечение, я приведу несколько примеров. Начну конечно же с элементарного, постепенно наращивая сложность примеров. Надеюсь, что проанализировав эти примеры чертежей сечений, вы разберетесь в том, как это делается, и сможете сами выполнить свое учебное задание.

Рассмотрим "кирпичика" с размерами 40х60х80 мм произвольной наклонной плоскостью. Секущая плоскость разрезает его по точкам 1-2-3-4. Думаю, тут все понятно.

Перейдем к построению натурального вида фигуры сечения.
1. Первым делом проведем ось сечения. Ось следует чертить параллельно плоскости сечения - параллельно линии, в которую проецируется плоскость на главном виде - обычно именно на главном виде задают задание на построение наклонного сечения (Далее я всегда буду упоминать про главный вид, имея в виду что так бывает почти всегда в учебных чертежах).
2. На оси откладываем длину сечения. На моем чертеже она обозначена как L. Размер L определяется на главном виде и равен расстоянию от точки вхождения сечения в деталь до точки выхода из нее.
3. Из получившихся двух точек на оси перпендикулярно ей откладываем ширины сечения в этих точках. Ширину сечения в точке вхождения в деталь и в точке выхода из детали можно определить на виде сверху. В данном случае оба отрезка 1-4 и 2-3 равны 60 мм. Как видно из рисунка выше, края сечения прямые, поэтому просто соединяем два наших получившихся отрезка, получив прямоугольник 1-2-3-4. Это и есть - натуральный вид фигуры сечения нашего кирпичика наклонной плоскостью.

Теперь давайте усложним нашу деталь. Поставим кирпичик на основание 120х80х20 мм и дополним фигуру ребрами жесткости. Проведем секущую плоскость так, чтобы она проходила через все четыре элемента фигуры (через основание, кирпичик и два ребра жесткости). На рисунке ниже вы можете увидеть три вида и реалистичое изображение этой детали


Попробуем построить натуральный вид этого наклонного сечения. Начнем опять с оси сечения: проведем ее параллельно плоскости сечения обозначенного на главном виде. На ней отложим длину сечения равную А-Е. Точка А является точкой входа сечения в деталь, а в частном случае - точкой входа сечения в основание. Точкой выхода из основания является точка В. Отметим точку В на оси сечения. Аналогичным образом отметим и точки входа-выхода в ребро, в "кирпичик" и во второе ребро. Из точек А и В перпендикулярно оси отложим отрезки равные ширине основания (в каждую сторону от оси по 40, всего 80мм). Соединим крайние точки - получим прямоугольник, являющийся натуральным видом сечения основания детали.

Теперь настал черед построить кусочек сечения, являющийся сечением ребра детали. Из точек В и С отложим перпендикуляры по 5 мм в каждую сторону - получатся отрезки по 10 мм. Соединим крайние точки и получим сечение ребра.

Из точек С и D откладывем перпендикулярные отрезки равные ширине "кирпичика" - полностью аналогично первому примеру этого урока.

Отложив перпендикуляры из точек D и Е равные ширине второго ребра и соединив крайние точки получим натуральный вид его сечения.

Остается стереть перемычки между отдельными элементами получившегося сечения и нанести штриховку. Должно получиться что-то вроде этого:


Если же по заданному сечению произвести разделение фигуры, то мы увидим следующий вид:


Я надеюсь, что вас не запугали нудные абзацы описания алгоритма. Если вы прочли все вышенаписанное и еще не до конца поняли, как начертить наклонное сечение , я очень советую вам взять в руки лист бумаги и карандаш и попытаться повторить все шаги за мной - это почти 100% поможет вам усвоить материал.

Когда-то я пообещал продолжение данной статьи. Наконец-то я готов представить вам пошагового построения наклонного сечения детали, более приближенной к уровню домашних заданий. Более того, наклонное сечение задано на третьем виде (наклонное сечение задано на виде слева)


или запишите наш телефон и расскажите о нас своим друзьям - кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки - и кто-то еще сможет освоить черчение.

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое на более сложной детали, с фасками и конусовидным отверстием например.

Спасибо. А разве на разрезах ребра жесткости не штрихуются?
Именно. Именно они и не штрихуются. Потому что таковы общие правила выполнения разрезов. Однако их обычно штрихуют при выполнении разрезов в аксонометрических проекциях - изометрии, диметрии и т.д. При выполнении наклонных сечений, область относящаяся к ребру жесткости так же заштриховывается.

Спасибо,очень доступно.Скажите,а наклонное сечение можно выполнить на виде с верху,или на виде слева?Если да,то хотелось бы увидеть простейший пример.Пожалуйста.

Выполнить такие сечения можно. Но к сожалению у меня сейчас нет под рукой примера. И есть еще один интересный момент: с одной стороны, там ничего нового, а с другой стороны на практике такие сечения чертить реально сложнее. Почему-то в голове все начинает путаться и у большинства студентов возникают сложности. Но вы не сдавайтесь!

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое, но с отверстиями (сквозными и несквозными), а то в элипс они в голове так и не превращаются

помогите мне по комплексной задаче

Жаль, что вы именно тут написали. Написали бы в почту - может мы смогли бы успеть все обсудить.

Хорошо объясняете. Как быть если одна из сторон детали полукруглая? А также в детали есть отверстия.

Илья, используйте урок из раздела по начертательной геометрии "Сечение цилиндра наклонной плоскостью". С его помощью сможете разобраться, что делать с отверстиями (они же по сути тоже цилиндры) и с полукруглой стороной.

благодарю автора за статью!кратко и доступно пониманию.лет 20 назад сам грыз гранит науки,теперь сыну помогаю. многое забыл,но Ваша статья вернула фундаментальное понимание темы.Пойду с наклонным сечением цилиндра разбираться)

Добавьте свой комментарий.