Построение изображений с помощью итерационных функций. «Геометрические построения с помощью циркуля и линейки

Известная с античных времён.

В задачах на построение возможны следующие операции:

  • Выбрать произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий.
  • С помощью циркуля провести окружность с центром в построенной точке с радиусом, равным расстоянию между двух построенных точек.
  • С помощью линейки провести прямую, проходящую через две построенные точки.

Простой пример

Задача. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружность с центром в точке A радиусом AB .
  • Проводим окружность с центром в точке B радиусом AB .
  • Находим точки пересечения P и Q двух построенных окружностей.
  • Линейкой проводим отрезок, соединяющий точки P и Q .
  • Находим точку пересечения AB и PQ . Это - искомая середина отрезка AB .

Правильные многоугольники

Античным геометрам были известны способы построения правильных для n=2^k\,\! , 3\cdot 2^k , 5\cdot 2^k и 3\cdot5\cdot2^k .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

  • - разбить произвольный угол на три равные части.
  • - построить отрезок, являющийся ребром куба в два раза большего объёма, чем куб с данным ребром.
  • - построить квадрат, равный по площади данному кругу.

Построения одним циркулем и одной линейкой

По теореме Мора-Маскерони (Mohr–Mascheroni theorem) с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.

Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения (см., например, в теории поверхностей ).

В частности, невозможно даже разбить отрезок на две равные части. Но при наличии на плоскости заранее проведённой окружности с отмеченным центром с помощью линейки можно провести те же построения, что и циркулем и линейкой (теорема Понселе-Штейнера (Poncelet-Steiner theorem), .

См.также

  • - программа, позволяющая делать построения с помощью циркуля и линейки.

Литература




















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Учебник: Геометрия, 7-9: учебник для общеобразовательных учреждений / (Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.) – 16 изд. – М.: Просвещение, 2011.

Цели урока:

  1. дать представление о новом классе задач на построение;
  2. рассмотреть наиболее простые задачи на построение;
  3. научить учащихся решать такие задачи.

Задачи:

Образовательный аспект:

      • дать представление о новом классе задач – построение геометрических с помощью циркуля и линейки без масштабных делений;
      • формировать практические умения работы;
      • расширить знания об истории геометрии.

Развивающий аспект:

  • развитие навыков самоконтроля;
  • формирование ИКТ – компетентности;
  • формирование логического мышления.

Воспитательный аспект:

  • воспитание ответственного отношения к учебному труду, воли и настойчивости для достижения конечных результатов при изучении темы;
  • воспитание интереса к истории математики, как науки.

Тип урока: комбинированный.

Формы организации учебной деятельности: индивидуальная, коллективная.

Этапы урока:

  • подготовка к активной учебной деятельности;
  • применение знаний;
  • подведение итогов и рефлексия;
  • информация о домашнем задании.

Оборудование:

  • Учебное пособие, тетрадь, карандаш, авторучка, линейка, циркуль, раздаточный материал (КИМ);
  • Компьютер, с минимальными техническими требованиями: Windows 95/98/ME/NT/2000/XP, 7.
  • Муьтимедийный проектор, экран.

Ресурсы урока:

  • тестовые задания (КИМ) приложение 1 ;
  • презентация;
  • оценка степени усвоения материала приложение 3 .

План урока:

Этап урока Цель урока Время
1. Организационный момент(слайды 1-2) Сообщение темы урока;Постановка цели урока;Сообщение этапов урока. 2 мин.
2. Повторение. Проверка домашнего задания.(слайд 3) Проверка теоретических знаний учащихся по теме окружность при выполнении теста. 5 мин.
3. Подготовка учащихся к восприятию нового материала.(слайды 4-8) Актуализация опорных знаний 10 мин.
4. Изучение нового материала(слайды 9-19) Отработка навыков решения простейших задач на построение циркулем и линейкой, рассмотренных в учебнике. 25 мин.
5. Итог урока. Подведение итогов урока. 2 мин.
6. Домашнее задание.(слайд 20) Инструктаж по домашнему заданию. 1 мин.

ХОД УРОКА

1. Организационный момент:

Тема сегодняшнего урока - «Примеры задач на построение» (слайд 1).

Цель урока – рассмотреть наиболее простые задачи на построение, которые решаются только с помощью циркуля и линейки без делений; научиться решать их (слайд 2).

2. Повторение. Проверка домашнего задания:

Мы с вами изучили тему « Окружность» и сегодня проверим с помощью теста ваши знания. Выполнить задание теста (каждому раздаются КИМы с тестовым заданием). Для каждого вопроса выберите правильный вариант ответа. Самостоятельно оцените свои знания, подсчитав количество верных ответов. Если верных ответов 6 - оценка «5», если верных ответов 5 – оценка «4», если верных ответов 4 – оценка «3», меньшее количество верных ответов – оценка « 2».

(Верные ответы на слайде 3 презентации).

3. Подготовка учащихся к восприятию нового материала:

Вводная беседа учителя:

Мы уже имели дело с геометрическими построениями: проводили прямые, откладывали отрезки, равные данным, чертили углы, треугольники и другие фигуры с помощью различных инструментов. При построении отрезка заданной длины использовалась линейка с миллиметровыми делениями, а при построении угла заданной градусной меры – транспортир.

В домашней работе у вас была такая задача:

Начертите треугольник АВС такой, что АВ = 3,6 см, АС = 2,7 см, А = 48°. Какие инст рументы вы использовали для решения этой задачи?

Итак, мы использовали линейку с миллиметровыми делениями и транспортир. Но есть такие задачи, в которых бывает оговорено, с помощью каких инструментов нужно построить предлагаемую геометрическую фигуру (слайд 4-5).

Задача 1. С помощью циркуля и линейки без делений на данном луче от его начала отложить отрезок, равный данному. Чертёж на экране.

(Учащиеся предлагают варианты решений).

А теперь проверим ваше решение (см. слайд 6)

Таким образом, многие построения в геометрии могут быть выполнены с помощью только циркуля и линейки без делений (слайд 7).

В дальнейшем, говоря о задачах на построение, мы будем иметь в виду именно такие построения.

Задачи на построение циркулем и линейкой являются традиционным материалом, изучаемым в курсе планиметрии. Обычно эти задачи решаются по схеме, состоящей из четырех частей (посмотреть с. 95–96 учебника). Сначала рисуют (чертят) искомую фигуру и устанавливают связи между данными задачи и искомыми элементами. Эта часть решения называется анализом . Она дает возможность составить план решения задачи.

Затем по намеченному плану выполняется построение циркулем и линейкой.

После этого нужно доказать , что построенная фигура удовлетворяет условиям задачи.

И наконец, необходимо исследовать , при любых ли данных задача имеет решение, и если имеет, то сколько решений.

В тех случаях, когда задача достаточно простая, отдельные части, например анализ или исследование, можно опустить (слайд 8).

В VII классе мы решим простейшие задачи на построение циркулем и линейкой, в других классах будем решать более сложные задачи.

4. Изучение нового материала:

И так, наша задача – выполнить задачи на построение только с помощью двух инструментов: циркуля и линейки без масштабных делений.

Что можно делать с их помощью? Ясно, что линейка позволяет провести произвольную прямую, а также построить прямую, проходящую через две данные точки. С помощью циркуля можно провести окружность произвольного радиуса, а также окружность с центром в данной точке и радиусом, равным данному отрезку (слайд 9).

Выполняя эти несложные операции, мы сможем решить много интересных задач на построение (слайд 10):

  1. На данном луче от его начала отложить отрезок, равный данному.
  2. Отложить от данного луча угол, равный данному.
  3. Построить биссектрису данного неразвернутого угла.
  4. Построить прямую, проходящую через данную точку и перпендикулярную к прямой, на которой лежит данная точка.
  5. Построить середину данного отрезка.

Мы уже решили задачу № 1.

Теперь с помощью компьютера рассмотрим решение задачи № 2. Выполняйте соответствующие построения в тетради (слайды 11-12).

А теперь рассмотрим задачи № 3 – 5 (слайд 13-18).

(выполняются соответствующие построения и описания задач в тетради)

После выполнения работы, учитель обращает внимание учащихся на то, что такие задачи рассматривались в древности (слайд 19).

А теперь обратимся к истории геометрии. Древнегреческие математики достигли чрезвычайно большого искусства в геометрических построениях с помощью циркуля и линейки. Они доказали, что угол можно разделить и на четыре равных угла. Для этого нужно разделить его пополам, а затем построить биссектрису каждой половинки. А можно ли с помощью циркуля и линейки разделить угол на три равные части? Эта задача, получившая название задачи о трисекции угла, в течение многих веков привлекала внимание математиков. Однако она не поддавались их усилиям. Лишь в прошлом веке было доказано, что для произвольного угла такое построение невозможно.

Есть и другие задачи на построение, про которые известно, что они неразрешимы с помощью циркуля и линейки. Я предлагаю вам самостоятельно найти материал, содержащий информацию для ознакомления с этими задачами.

5. Подведение итогов урока:

Мы изучили много нового, узнали какие задачи можно решить только с помощью циркуля и линейки. У вас у каждого лежит лист с вопросами. Оцените свою работу на сегодняшнем уроке, выбрав один из предложенных вариантов ответа.

  1. Оцените степень сложности урока. Вам было на уроке:
    • легко;
    • обычно;
    • трудно
  2. Оцените степень вашего усвоения материала:
    • усвоил полностью, могу применить;
    • усвоил полностью, но затрудняюсь в применении;
    • усвоил частично;
    • не усвоил.

Собрать листочки для оценки степени усвоения материала сегодняшнего урока, чтобы на следующем уроке правильно организовать работу. Сообщаются оценки за урок, включая оценки за тест по теме « Окружность».

6. Домашнее задание:

  • ответить на вопросы 17–21 на стр. 50;
  • решить задачи №№ 153, 154 (слайд 20).

Материал данного параграфа может использоваться на факультативных занятиях. Он может быть представлен ученикам, как в форме лекции, так и в форме докладов учеников.

Большое внимание привлекали к себе в течение многих столетий задачи, которые с давних времен известны как "знаменитые задачи древности". Под этим названием обычно фигурировали три знаменитые задачи:

1) квадратура круга,

2) трисекция угла,

3) удвоение куба.

Все эти задачи возникли в глубокой древности из практических потребностей людей. На первом этапе своего существования они выступали как вычислительные задачи: по некоторым "рецептам" вычислялись приближенные значения искомых величин (площадь круга, длина окружности и др.). На втором этапе истории этих задач происходят существенные изменения их характера: они становятся геометрическими (конструктивными) задачами.

В Древней Греции в этот период им придали классические формулировки:

1) построить квадрат, равновеликий данному кругу;

2) разделить данный угол на три равные части;

3) построить ребро нового куба, объем которого был бы в два раза больше данного куба.

Все эти геометрические построения предлагалось выполнять с помощью циркуля и линейки.

Простота формулировок этих задач и "непреодолимые трудности", встретившиеся на пути их решения, способствовали росту их популярности. Стремясь дать строгие решения указанных задач, древнегреческие ученые "попутно" получали многие важные результаты для математики, что способствовало превращению разрозненных математических знаний в самостоятельную дедуктивную науку (особенно заметный след в то время оставили пифагорейцы, Гиппократ Хиосский и Архимед).

Задача об удвоении куба.

Задача удвоения куба состоит в следующем: зная ребро данного куба, построить ребро такого куба, объем которого был бы вдвое больше объема данного куба.

Пусть а - длина ребра данного куба, х - длина ребра искомого куба. Пусть - объем данного куба, а - объем искомого куба, тогда согласно формуле вычисления объема куба имеем, что: =, а так как, согласно условию задачи, то приходим к уравнению.

Из алгебры известно, что рациональные корни приведенного уравнения с целыми коэффициентами могут быть только целыми и содержаться среди делителей свободного члена уравнения. Но делители числа 2 служат только числа +1, - 1, +2, - 2, и ни одно из них не удовлетворяет исходному уравнению. Следовательно, уравнение рациональных корней не имеет, а это значит, что задача удвоения куба не может быть решена с помощью циркуля и линейки.

Задача удвоения куба с помощью циркуля и линейки может быть решена лишь приближенно. Приведем один из самых простых способов приближенного решения этой задачи.

Пусть АВ=ВС=а, причем АВВС. Строим AD=АС, тогда CD с точностью до 1%. В самом деле, CD 1,2586…. В тоже время =1,2599….

Задача о квадратуре круга.

Обоснование неразрешимости задачи с помощью циркуля и линейки.

Задача о квадратуре круга состоит в следующем: построить квадрат равновеликий кругу.

Пусть - радиус данного круга, -длина стороны искомого квадрата. Тогда, отсюда.

Следовательно, задача о квадратуре круга будет решена, если мы построим отрезок длиной. Если радиус данного круга принять за единичный отрезок (=1), то дело сведется к построению по единичному отрезку отрезка длиной.

Как известно, зная единичный отрезок, мы можем циркулем и линейкой строить только такие отрезки, длины которых выражаются через рациональные числа с помощью конечного множества рациональных операций и извлечением квадратных корней и, значит являются числами алгебраическими. При этом будут использованы далеко не все алгебраические числа. Например, нельзя построить отрезок длиной и т.д.

В 1882 г. Линдеманн доказал, что - трансцендентное. Отсюда следует, что циркулем и линейкой нельзя построить отрезок длиной и, следовательно, этими средствами задача о квадратуре круга неразрешима.

Приближенное решение задачи с помощью циркуля и линейки.

Рассмотрим один из приемов приближенного построения отрезков длиной. Этот прием состоит в следующем. Четверть окружности АВ с центром в точке О и радиусом, равным единице, делим пополам точкой С. На продолжении диаметра CD откладываем отрезок DE, равный радиусу. Из точки Е проводим лучи ЕА и ЕВ до пересечения с касательной в точке С. отсекаемый отрезок АВ приближенно равен длине дуги АВ, а удвоенный - полуокружности.

Относительная погрешность этого приближения не превышает 0,227%.

Задача о трисекции угла.

Обоснование неразрешимости задачи с помощью циркуля и линейки.

Задача о трисекции угла состоит в следующем : разделить данный угол на три равные части.

Ограничимся решением задачи для углов, не превышающих 90. Если - тупой угол, то =180-, где <90, так что, и поэтому задача о трисекции тупого угла сводится к задаче о трисекции острого угла.

Заметим, что (при наличии единичного отрезка) задача о построении угла (90) равносильна задаче о построении отрезка х=соs . В самом деле, если угол построен, то построение отрезка х=соs сводится к построению прямоугольного треугольника по гипотенузе и острому углу.

Обратно. Если построен отрезок х, то построение такого угла, что х=соs , сводится к построению прямоугольного треугольника по гипотенузе и катету.

Пусть - данный угол, - искомый угол, так что =. Тогда cos=cos 3. Известно, что cos 3= 4cos-3cos . Поэтому, полагая cos =, а cos =, приходим к уравнению:

cos =4cos-3cos ,

Отрезок, а следовательно, и угол могут быть построены лишь в том случае, когда это уравнение имеет хотя бы один рациональный корень. Но это имеет место не при всяком, и поэтому задача о трисекции угла, вообще говоря не разрешима с помощью циркуля и линейки. Например. При =60 получим =1 и найденное уравнение принимает вид: . Легко проверить, что это уравнение не обладает никаким рациональным корнем, откуда следует невозможность деления угла в 60 на три равные части с помощью циркуля и линейки. Таким образом, задача о трисекции угла не разрешима циркулем и линейкой в общем виде.

Приближенное решение задачи с помощью циркуля и линейки.

Рассмотрим один из способов приближенного решения задачи с помощью циркуля и линейки, предложенный Альбертом Дюрером (1471-1528).

Пусть дан угол ASB. Из вершины S произвольным радиусом описываем окружность и соединяем точки пересечения сторон угла с окружностью хордой АВ. Делим эту хорду на три равные части в точках R и R (А R= R R= RВ). из точек А и В, как из центров, радиусами А R= RВ описываем дуги, пересекающие окружность в точках Т и Т. Проведем RSAB. Радиусами А S= BS проводим дуги, пересекающие АВ в точках U и U. Дуги АТ, SS и TB равны между собой, так как стягиваются равными хордами.

Чтобы найти точки трисекции угла X и X, Дюрер делит на три равные части отрезки RU и RU точками PV и PV. Затем радиусами AV и BV проводим дуги, которые пересекают окружность в точках X и X. Соединив эти точки с S, получим деление данного угла на три равные части с хорошим приближением к истинным величинам.

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №34 с углубленным изучением отдельных предметов

МАН, физико-математическая секция

«Геометрические построения с помощью циркуля и линейки»

Выполнила: ученица 7 «А» класса

Батищева Виктория

Руководитель: Колтовская В.В.

Воронеж, 2013

3. Построение угла равного данному.

Проведем произвольную окружность с центром в вершине А данного угла (рис.3). Пусть В и С - точки пересечения окружности со сторонами угла. Радиусом АВ проведем окружность с центром в точке О-начальной точке данной полупрямой. Точку пересечения этой окружности с данной полупрямой обозначим С 1 . Опишем окружность с центром С 1 и Рис.3

радиусом ВС. Точка В 1 пересечения построенных окружностей в указанной полуплоскости лежит на стороне искомого угла.

6. Построение перпендикулярных прямых.

Проводим окружность с произвольным радиусом r с центром в точке O рис.6. Окружность пересекает прямую в точках A и B. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей. Точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.

Искомая прямая проходит через точки С и О.


Рис.6

Известные задачи

1. Задача Брахмагупты

Построить вписанный четырехугольник по четырем его сторонам. Одно из решений использует окружность Аполлония. Решим задачу Аполлония, используя аналогию между трехокружником и треугольником. Как мы находим окружность, вписанную в треугольник: строим точку пересечения биссектрис, опускаем из нее перпендикуляры на стороны треугольника, основания перпендикуляров (точки пересечения перпендикуляра со стороной, на которую он опущен) и дают нам три точки, лежащие на искомой окружности. Проводим окружность через эти три точки – решение готово. Точно также мы поступим с задачей Аполлония.

2. Задача Аполлония

Построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. По легенде, задача сформулирована Аполлонием Пергским примерно в 220 г. до н. э. в книге «Касания», которая была потеряна, но была восстановлена в 1600 г. Франсуа Виетом, «галльским Аполлонием», как его называли современники.

Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.


Построение правильных многоугольников.

П

равильный
(или равносторонний ) треугольник - это правильный многоугольник с тремя сторонами, первый из правильных многоугольников. Все стороны правильного треугольника равны между собой, а все углы равны 60°. Чтобы построить равносторонний треугольник нужно разделить окружность на 3 равные части. Для этого необходимо провести дугу радиусом R этой окружности лишь из одного конца диаметра, получим первое и второе деление. Третье деление находится на противоположном конце диаметра. Соединив эти точки, получим равносторонний треугольник.

Правильный шестиугольник можно построить с помощью циркуля и линейки. Ниже приведён метод построения через деление окружности на 6 частей. Используем равенство сторон правильного шестиугольника радиусу описанной окружности. Из противоположных концов одного из диаметров окружности описываем дуги радиусом R. Точки пересечения этих дуг с заданной окружностью разделят её на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник.

Построение правильного пятиугольника.

П
равильный пятиугольник может быть построен с помощью циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.

Вот один из методов построения правильного пятиугольника в заданной окружности:

    Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O . (Это зелёная окружность на схеме справа).

    Выберите на окружности точку A , которая будет одной из вершин пятиугольника. Постройте прямую через O и A .

    Постройте прямую перпендикулярно прямой OA , проходящую через точку O . Обозначьте одно её пересечение с окружностью, как точку B .

    Постройте точку C посередине между O и B .

    C через точку A . Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D .

    Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F .

    Проведите окружность с центром в E через точку A G .

    Проведите окружность с центром в F через точку A . Обозначьте её другое пересечение с первоначальной окружностью как точку H .

    Постройте правильный пятиугольник AEGHF .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

    Трисекция угла - разбить произвольный угол на три равные части.

Иначе говоря, необходимо построить трисектрисы угла - лучи, делящие угол на три равные части. П. Л. Ванцель доказал в 1837 году, что задача разрешима только тогда, когда например, трисекция осуществима для углов α = 360°/n при условии, что целое число n не делится на 3. Тем не менее, в прессе время от времени публикуются (неверные) способы осуществления трисекции угла циркулем и линейкой.

    Удвоение куба - классическая античная задача на построение циркулем и линейкой ребра куба, объём которого вдвое больше объёма заданного куба.

В современных обозначениях, задача сводится к решению уравнения . Всё сводится к проблеме построения отрезка длиной . П. Ванцель доказал в 1837 году, что эта задача не может быть решена с помощью циркуля и линейки.

    Квадратура круга - задача, заключающаяся в нахождении построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу .

Как известно, с помощью циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с помощью конечного числа таких действий можно построить отрезок длины π. Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа π, которая была доказана в 1882 году Линдеманом.

Другая известная неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис .

Причём эта задача остаётся неразрешимой даже при наличии трисектора.

Только в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

А ЗНАЕТЕ ЛИ ВЫ, ЧТО...

(из истории геометрических построений)


Когда-то в построение правильных многоугольников вкладывали мистический смысл.

Так, пифагорейцы, последователи религиозно-философского учения, основанного Пифагором, и жившие в древней Греции (V I-I V вв. до н. э.), приняли в качестве знака своего союза звездчатый многоугольник, образованный диагоналями правильного пятиугольника.

Правила строгого геометрического построения некоторых правильных многоугольников изложены в книге «Начала» древнегреческого математика Евклида, жившего в III в. до н.э. Для выполнения этих построений Евклид предлагал пользоваться только линейкой и циркулем, который в то время был без шарнирного устройства соединения ножек (такое ограничение в инструментах было непреложным требованием античной математики).

Правильные многоугольники нашли широкое применение и в античной астрономии. Если Евклида построение этих фигур интересовало с точки зрения математики, то для древнегреческого астронома Клавдия Птолемея (около 90 - 160 г. н. э.) оно оказалось необходимым как вспомогательное средство при решении астрономических задач. Так, в 1-й книге «Альмагесты» вся десятая глава посвящена построению правильных пяти- и десятиугольников.

Однако помимо чисто научных трудов, построение правильных многоугольников было неотъемлемой частью книг для строителей, ремесленников, художников. Умение изображать эти фигуры издавна требовалось и в архитектуре, и в ювелирном деле, и в изобразительном искусстве.

В «Десяти книгах о зодчестве» римского архитектора Витрувия (жившего примерно в 63 -14 гг. до н. э.) говорится, что городские стены должны иметь в плане вид правильного многоугольника, а башни крепости «следует делать круглыми или многоугольными, ибо четырехугольник скорее разрушается осадными орудиями».

Планировка городов очень интересовала Витрувия, который считал, что нужно спланировать улицы так, чтобы вдоль них не дули основные ветры. Предполагалось, что таких ветров восемь и что они дуют в определенных направлениях.

В эпоху Возрождения построение правильных многоугольников, и в частности пятиугольника, представляло не простую математическую игру, а являлось необходимой предпосылкой для построения крепостей.

Правильный шестиугольник явился предметом специального исследования великого немецкого астронома и математика Иоганна Кеплера (1571-1630), о котором он рассказывает в своей книге «Новогодний подарок, или о шестиугольных снежинках». Рассуждал о причинах того, почему снежинки имеют шестиугольную форму, он отмечает, в частности, следующее: «...плоскость можно покрыть без зазоров лишь следующими фигурами: равносторонними треугольниками, квадратами и правильными шестиугольниками. Среди этих фигур правильный шестиугольник покрывает наибольшую площадь»

0дним из наиболее известных ученых, занимавшихся геометрическими построениями, был великий немецкий художник и математик Альбрехт Дюрер (1471 -1528), который посвятил им значительную часть своей книги «Руководства...». Он предложил правила построения правильных многоугольников с 3. 4, 5... 16-ю сторонами. Методы деления окружности, предложенные Дюрером, не универсальны, в каждом конкретном случае используется индивидуальный прием.

Дюрер применял методы построения правильных многоугольников в художественной практике, например, при создании разного рода орнаментов и узоров для паркета. Наброски таких узоров были сделаны им во время поездки в Нидерланды, где паркетные полы встречались во многих домах.

Дюрер составлял орнаменты из правильных многоугольников, которые соединены в кольца (кольца из шести равносторонних треугольников, четырех четырехугольников, трех или шести шестиугольников, четырнадцати семиугольников, четырех восьмиугольников).

Заключение

Итак, геометрические построения - это способ решения задачи, при котором ответ получают графическим путем. Построения выполняют чертежными инструментами при максимальной точности и аккуратности работы, так как от этого зависит правильность решения.

Благодаря этой работе я познакомилась с историей возникновения циркуля, подробнее познакомилась с правилами выполнения геометрических построений, получила новые знания и применила их на практике.
Решение задач на построение циркулем и линейкой – полезное времяпровождение, позволяющее по-новому посмотреть на известные свойства геометрических фигур и их элементов. В данной работе рассмотрены наиболее актуальные задачи, связанные с геометрическими построениями с помощью циркуля и линейки. Рассмотрены основные задачи и даны их решения. Приведенные задачи имеют значительный практический интерес, закрепляют полученные знания по геометрии и могут использоваться для практических работ.
Таким образом, цель работы достигнута, поставленные задачи выполнены.

2. Разделим её на некоторое число равных дуг, в нашем случае 8. Для этого проведем радиусы так, чтобы получилось 8 дуг, и угол между двумя ближайшими радиусами был равен
:
количество сторон (в нашем случае 8.
Получаем точки А1, А2
, A3, A4, A5, A6, A7, A8.

А2
А1
А8
А7
А6
А5
А4
А3
n-
угольника
3. Соединим центры окружности и одну из точек их пересечения

Мы получаем правильный треугольник

1
. Построим 2 окружности проходящие через центр друг друга.

2
. Соединим центры прямой, получив одну из сторон пятиугольника.

3. Соединим точки пересечения окружностей.

5 . Соединяем точки пересечения всех прямых с исходной окружностью.

Мы получаем правильный шестиугольник
Доказательство существования правильного
n-
угольника
Если
n
(число углов многоугольника) больше 2, то такой многоугольник существует.
Пробуем построить 8ми угольник и докажем это.
1. Возьмем окружность произвольного радиуса с центром в точке « О »

Построение треугольника при помощи циркуля и линейки
«
O
» .

2. Построим еще одну окружность того же радиуса проходящая через точку «О».


4. Соединим точки, лежащие на окружности.

Получаем правильный восьмиугольник.
Построение правильных многоугольников с помощью циркуля и линейки.

В 1796 году одним из величайших математиков всех времён Карл Фридрих Гаусс показал возможность построения правильных
n-
угольников, если равенство
n =
+ 1
, где
n –
количество углов, а
k
– любое натуральное число
.
Тем самым получилось, что в пределах 30 возможно деление окружности на 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, равных частей
.
В 1836 году
Ванцель
доказал, что правильные многоугольники, не удовлетворяющие данному равенству при помощи линейки и циркуля построить нельзя.

Построение правильного шестиугольника при помощи циркуля и линейки.

4. Проведем прямые через центр начальной окружности и точки пересечения дуги с этой окружностью

ЛИТЕРАТУРА
Атанасян
Л. С. и др. Геометрия: Учебник для 7-9 классов образовательных учреждений. – М: «Просвещение». 1998.
Б. И. Аргунов, М. Б.
Балк
. Геометрические построения на плоскости, Пособие для студентов педагогических институтов. Издание второе. М.,
Учпедгиз
, 1957 – 268 с.
И. Ф.
Шарыгин
, Л. Н.
Ерганжиева
. «Наглядная геометрия».
Еще
одним
великим математиком изучавшим правильные многоугольники был
Евклид
или
Эвклид
(др. греч.
Εὐκλείδης
, от «добрая слава»
ок
. 300 г. до н. э.)

автор первого из дошедших до нас теоретических трактатов по математике
.
Его главная работа «Начала» содержит изложение планиметрии, стереометрии и ряды вопросов теории чисел
;
в ней он подвёл итог дальнейшего развития математики. В
IV
книге он описал построение правильных многоугольников при
n
равном
3
, 4, 5, 6, 15

и определил первый критерий построения многоугольников.
Построение правильного восьмиугольника.
1. Построим восьмиугольник при помощи четырехугольника.
2. Соединим противоположные вершины четырёхугольника
3. Проведем биссектрисы углов образованных пересекающимися диагоналями

Треугольники
, сторонами которых являются ближайшие радиусы и
стороны получившегося восьмиугольника равны по двум сторонам и углу между ними, соответственно стороны восьмиугольника равны и он является правильным. Данное доказательство применимо не только к восьмиугольникам
,
но и к многоугольникам с количеством углов
больше 2-х
. Что и требовалось доказать
.
Доказательство существования правильного
n-
угольника

А2
А1
А8
А7
А6
А5
А4
А3

4 . Проводим прямые через точки пересечения окружностей
5. Соединяем точки пересечения прямых и окружности

Получаем правильный четырёхугольник.
Построение правильного пятиугольника методом Дюрера.
6. Соединим точки соприкосновения этих отрезков с окружностями с концами построенной стороны пятиугольника.
7. Достроим до пятиугольника

Основоположниками раздела математики о правильных многоугольниках являлись древнегреческие ученые. Одним из них был
Архимед.
Архимед
– известный древнегреческий математик, физик и инженер. Он сделал множество открытий в геометрии, ввёл основы механики, гидростатики, создал множество важных изобретении. Архимед был просто одержим математикой. Он забывал о пище, совершенно не заботился о себе. Его открытия послужили для современных изобретений.
Построение правильного шестиугольника при помощи циркуля и линейки.

1. Построим окружность с центром в точке
O
.
2. Проведем прямую линию через центр окружности.
3. Проведем дугу окружность того же радиуса с центром в точке пересечения прямой с окружностью до пересечения с окружностью.

Презентация на тему: «Построение правильных многоугольников с помощью циркуля и линейки»
Подготовил:
Гурома
Денис
ученик 10 класса МБОУ школы №3
Учитель:
Наимова
Татьяна Михайловна
2015 год
3. Поочередно соединяем их и получаем правильный восьмиугольник.
Доказательство существования правильного
n-
угольника

А2
А1
А8
А7
А6
А5
А4
А3
Построение правильного четырёхугольника.

1. Построим окружность с центром в точке
O
.
2. Проведем 2 взаимно перпендикулярные диаметра.
3. Из точек в которых диаметры касаются окружности проводим другие окружности данного радиуса до их пересечения (окружностей).

Построение правильного пятиугольника методом Дюрера.

4. Проведем еще одну окружность того же радиуса с центром в точке пересечения двух других окружностей.

5. Проведем 2 отрезка.