Понятие и свойства определителя 2 порядка. Определитель матрицы

Практическое занятие

Тема: Вычисление определителей.

Цели: закрепить понятия определителей и их свойств, сформировать и закрепить умения и навыки вычислять определители 2-го и 3-го порядков; развивать умения обобщать полученные знания, проводить анализ и сравнения, способствовать развитию логического мышления; воспитывать у обучающихся сознательное отношение к процессу обучения.

I. Общие теоретические положения

Определителем второго порядка называют число

Определителем третьего порядка называют число

Свойства определителей

Свойство 1.
Определитель не изменится, если все строки заменить соответствующими столбцами и наоборот.

Свойство 2.
При перестановке двух каких-либо строк или столбцов местами определитель изменяет знак.

Свойство 3.
Определитель равен нулю, если он имеет две равные строки (столбца).

Свойство 4.
Множитель, общий для всех элементов строки или столбца, можно выносить за знак определителя.

Свойство 5.
Если к элементам какой-либо строки или столбца прибавить соответствующие элементы другой строки или столбца, то определитель не изменится.

Следствие из свойств 4 и 5: Если к элементам какой-либо строки или столбца прибавить соответствующие элементы другой строки или столбца, умноженные на некоторое число, то определитель не изменится.

Контрольные вопросы:

1.Дать определение матрицы.
2. Что означает символ ?
3. Какая матрица называется транспонированной по отношению к матрице А?
4. Какую матрицу называют квадратной порядка n?
5. Дать определение определителя 2-го порядка.

6. Дать определение определителя 3-го порядка.

7. Чему равен определитель транспонированной матрицы?

8. Как изменится величина определителя, если в матрице поменять местами 2 строки (столбца)?

9. Можно ли вынести за знак определителя общий множитель строки или столбца?

10.Чему равен определитель, если все элементы некоторой строки (столбца) равны 0?

11.Чему равен определитель, если он имеет две одинаковых строки (столбца)?

12. Сформулируйте правило вычисления определителя 2-го порядка.

13. Сформулируйте правило вычисления определителя 3-го порядка.

II . Формирование умений и навыков.

Пример 1. Вы числить определитель: а) по правилу треугольника б) по правилу Саррюса;

в) методом разложения по элементам первой строки

Решение:

б) припишем два первых столбца и вычислим произведения из трех элементов по главной диагонали и параллельно к ней со знаком (+), а затем по побочной диагонали и параллельно к ней со знаком (-):


получаем:

Пример 2. Вычислить определитель двумя способами: с помощью разложения по первой строке и по правилу треугольника.

Решение:

Пример 3 . Вычислить определитель, используя свойства:

III .Закрепление изученного материала.

№1. Вычислить определители:

2. Решить уравнения:

№ 4. Вычислить определители, используя свойства:

1 .
. 2.
. 3.
. 4 .
.

Литература

1. Письменный, Д. Т. Конспект лекций по высшей математике: полный курс Д. Т. Письменный. – 9-е изд. – М.: Айрис-пресс, 2009. 608 с.: ил. – (Высшее образование).

2. Лунгу, К. Н. Сборник задач по высшей математике. 1 курс / К. Н. Лунгу, Д. Т. Письменный, С. Н. Федин, Ю. А. Шевченко. – 7-е изд. – М.: Айрис-пресс, 2008. 576 с.: – (Высшее образование).

Чтобы найти определитель матрицы нужно воспользоваться формулами, которые действительны для определителей 2 и 3 порядка.

Формула

Пусть задана матрица второго порядка $ A = \begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{pmatrix} $. Тогда её определитель вычисляется по формуле:

$$ \Delta = \begin{vmatrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{vmatrix} = a_{11}\cdot a_{22} - a_{12}\cdot a_{21} $$

Из произведения элементов, стоящих на главной диагонали $ a_{11}\cdot a_{22} $, вычитается произведение элементов, расположенных на побочной диагонали $ a_{12}\cdot a_{21} $. Это правило верно только (!) для определителя 2-го порядка.

Если дана матрица третьего порядка $ A = \begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix} $, то вычислить её определитель следует по формуле:

$$ \Delta = \begin{vmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix} = $$

$$ = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31}+a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31}-a_{23}a_{32}a_{11}-a_{12}a_{21}a_{33} $$

Примеры решений

Пример 1
Пусть задана матрица $ A = \begin{pmatrix} 1&2\\3&4 \end{pmatrix} $ Вычислить её определитель.
Решение

Как найти определитель матрицы? Обратим внимание на то что матрица квадратная второго порядка, то есть количество столбцов равно количеству строк и они содержат по 2 элемента. Поэтому применим первую формулу. Перемножим элементы, стоящие на главной диагонали и вычтем из них произведение элементов, стоящих на побочной диагонали:

$$ \Delta = \begin{vmatrix} 1&2\\3&4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = 4-6 = -2 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \Delta = -2 $$
Пример 2
Дана матрица $ A = \begin{pmatrix} 2&2&1\\1&-3&-1\\3&4&-2 \end{pmatrix} $. Требуется вычислить определитель.
Решение

Так как в задаче квадратная матрица 3-го порядка, то найти определитель следует по второй формуле. Для простоты решения задачи достаточно подставить вместо $ a_{ij} $ переменных, стоящих в формуле значения из матрицы нашей задачи:

$$ \Delta = \begin{vmatrix} 2&2&1\\1&-3&-1\\3&4&-2 \end{vmatrix} = $$

$$ = 2\cdot (-3) \cdot (-2) + 2\cdot (-1) \cdot 3 + 1\cdot 4\cdot 1 - $$ $$ - 1\cdot (-3)\cdot 3 - (-1)\cdot 4\cdot 2 - 2\cdot 1\cdot (-2) = $$

$$ = 12 - 6 + 4 + 9 + 8 + 4 = 31 $$

Стоит отметить когда мы находим произведения элементов на побочной диагонали и подобных её, то перед произведениями ставится знак минус.

Ответ
$$ \Delta = 31 $$

определителей

Определение. Матрицей размера mn называется прямоугольная таблица чисел, состоящая из m строк и n столбцов :

. (1)

Числа стоящие в матрице называются ее элементами и обозначаются буквой с двумя индексами, первый из которых равен номеру строки, а второй  номеру столбца в пересечении которых находится данный элемент. Элементы матрицы обычно обозначаются малыми буквами, а сами матрицы  соответствующими заглавными. Если матрица задаётся перечислением своих элементов, то таблица элементов заключается в круглые или квадратные скобки.

Например, матрица a размера 23 записывается в виде:

Эта матрица состоит из 6 элементов , гдеi =1,2 – есть номер строки, j =1,2,3 – номер столбца. Матрицы используются в технических науках и в экономике для записи табличной информации. В программировании матрицы называются двумерными массивами.

Матрица у которой число строк равно числу столбцов называется квадратной , а число строк (столбцов) этой квадратной матрицы называется ее порядком . Квадратная матрица n – го порядка состоит из n 2 элементов:

. (2)

Каждой квадратной матрице по определённому правилу сопоставляется число, которое называется определителем этой матрицы. Определитель, в отличие от матрицы обозначается вертикальными линиями:

.

Сформулируем правила вычисления определителей 1-го, 2-го, 3-го порядков.

    Определителем матрицы 2-го порядка называется число

.

Например:

.

2. Определителем матрицы 3-го порядка называется число

Это правило называется правилом треугольников (Саррюса) . Для его запоминания используется следующая схематическая запись, где элементы, расположенные на месте черных точек перемножаются:

Например:

Определение: Транспонированной матрицей для матрицы A называется матрица A T , столбцами которой являются соответствующие строки матрицы A. Диагональ, исходящая из левого верхнего угла матрицы, называется её главной диагональю . Для квадратной матрицы (2) транспонированная матрица записывается так:

Рассмотрим теперь свойства определителей, справедливые для определителей любого порядка. Для определённости будем их записывать для определителей 3-го порядка.

І. Определители квадратной матрицы A и её транспонированной A T совпадают, т.е. |A|=|A T |.

Дальнейшие свойства определителей мы будем формулировать для его строк. Из первого свойства следует, что все они справедливы и для столбцов.

ІІ. При перемене местами двух строк матрицы, её определитель меняет свой знак на противоположный .

Например:

.

В определителе поменяли местами вторую и третью строки.

ІІІ . Определитель матрицы с двумя одинаковыми строками равен 0 .

В самом деле, при перемене местами этих строк, согласно свойству 2, определитель должен удовлетворять уравнению . Отсюда,, следовательно.

І V . Если все элементы одной строки квадратной матрицы умножить на число , то её определитель умножится на это число .

Например: .

V . Если квадратная матрица содержит нулевую строку, то её определитель равен 0 .

Это свойство получается из предыдущего при = 0.

V І . Если одна из строк определителя записывается в виде суммы двух строк, то определитель записывается в виде суммы двух определителей у которых на месте этой строки стоят соответственно первые и вторые слагаемые. Остальные соответствующие строки всех трёх определителей равны .

Например:

V ІІ. Если к одной строке матрицы прибавить другую её строку, умноженную на число , то определитель матрицы при этом не изменится .

КОНСПЕКТ 2

2.1 ОПРЕДЕЛИТЕЛИ ВТОРОГО ПОРЯДКА

Определителем второго порядка (соответствующим данной матрице

) называется число

Пример1 : Вычислим определитель матрицы

Пример 2. Вычислить определители второго порядка:

2(-4) - 5(-3) = -8 + 15 = 7

=

2.2 ОПРЕДЕЛИТЕЛИ ТРЕТЬЕГО ПОРЯДКА

Пусть дана квадратная матрица третьего порядка:

А =

Определителем (или детерминантом) третьего порядка , соответствующим данной матрице, называют число

det A = =

Пример 3

Первый способ решения:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок». Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:

Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс». Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример 3

Второй способ решения:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Пример 4

Вычислить определитель третьего порядка:

Пример 5

Вычислить определитель третьего порядка

ПРАКТИКУМ 2

ЗАДАНИЕ N 1 , то…

Решение:

то

По условию, тогда

ЗАДАНИЕ N 2 Тема: Определители второго порядка Если определитель второго порядка

, то…

Решение:

В нашем случае имеем

По условию, тогда

ЗАДАНИЕ N 3

Тема: Определители второго порядка Если определитель второго порядка

, то…

Решение: Так как определитель второго порядка равен числу, которое получают по правилу:

то

По условию, тогда

ЗАДАНИЕ N 4 Тема: Определители второго порядка Если определитель второго порядка, то…

Решение: Напоминаем, что определитель второго порядка равен числу, которое получают по правилу:

В нашем случае имеем

По условию, тогда

ЗАДАНИЕ N 5 Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках.Тогда определительравен …

Решение:

ЗАДАНИЕ N 6

Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках.Тогда определительравен …

Решение: Определитель третьего порядка равен сумме шести слагаемых, из которых три берутся со знаком «+» и три – со знаком «−». Правило вычисления слагаемых со знаком «+» схематически указано на рис. 1. Одно из слагаемых равно произведению элементов определителя, лежащих на главной диагонали. Каждое из двух других находится как произведение элементов, лежащих на параллели к этой диагонали, с добавлением третьего множителя из противоположного угла определителя. Слагаемые со знаком «−» получаются таким же образом, но относительно второй диагонали (рис. 2). Тогда

САМОСТОЯТЕЛЬНАЯ РАБОТА 2

ЗАДАНИЕ N 1 Тема: Определители второго порядка Если определитель второго порядка, то…

Лекция 2. определители

    Определители второго порядка

    Определители третьего порядка

    Алгебраические дополнения и миноры

    Разложение определителя по строке или столбцу

    Свойства определителей

    Обратная матрица

    Свойства обратной матрицы

1. Определители второго порядка

Понятие определителя вводится только для квадратной матрицы .

Определитель – это число, которое считается по определенным правилам. Порядок определителя – это порядок квадратной матрицы. Если для задания матриц использовались круглые скобки, то в теории определителей используют прямые скобки.

Каждой квадратной матрице поставим в соответствие некоторое число, которое будем называть определителем матрицы, и укажем правило его вычисления. Обозначения:


.

Пример 1.
.

2. Определители третьего порядка


В каждом произведении нет чисел из одного столбца или одной строки.

Приведем схему для запоминания порядка получения слагаемых в определителе.

Произведение чисел на одной диагонали берется со знаком «+» (это главная диагональ матрицы), а на другой – с противоположным знаком.

Пример 2 .

3. Алгебраические дополнения и миноры

Для вычисления определителей порядка больше третьего применяют другие способы вычисления.

Пример 3. Минор
определителя есть.

.

Полезно запомнить, что
и
.

Пример 4. В примере 3алгебраическое дополнение

4. Разложение определителя по строке или столбцу

Вычисление определителя -го порядка можно свести к вычислению определителей порядка
, используя следующие формулы.

Это число равно сумме произведений элементов любой строки на их алгебраические дополнения .

Пример 5 . Вычислить определитель третьего порядка
разложением по первой строке.

Решение

Это число равно сумме произведений элементов любого -го столбца на их алгебраические дополнения.

Независимо от способа разложения всегда получается один и тот же ответ.

5. Свойства определителей

1. При транспонировании квадратной матрицы ее определитель не меняется:
.

Вывод. Свойства определителей, сформулированных для строк, справедливы и для столбцов.

2. При перестановке двух строк (столбцов) определитель меняет знак на противоположный. Например,
.

3. Определитель равен нулю , если:

а) он имеет нулевую строку (столбец)
;

б) он имеет пропорциональные (одинаковые) строки (столбец)
.

4. Общий множитель в строке (столбце) можно выносить за знак определителя. Например,
.

5. Определитель не изменяется , если к элементам какой-либо строки прибавить (вычесть) соответствующие элементы другой строки, умноженные на любое число.

Например,
.

6. Если в определителе каждый элемент строки есть сумма двух слагаемых, то этот определитель равен сумме двух определителей:

.

7. Определитель произведения двух квадратных матриц одного и того же порядка равен произведению определителей этих матриц:

.

8. Определитель квадратной матрицы треугольного вида равен произведению элементов, стоящих на главной диагонали:

.

6. Обратная матрица

Вместо операции деления матриц вводится понятие обратной матрицы.

Обозначается обратная матрица
, то есть .

Очевидна аналогия с числами: для числа 2 число ½ есть обратное, так как
. Именно поэтому матрица, обратная к А, обозначается
.

Теорема «Необходимое и достаточное условие существования обратной матрицы». Для того чтобы квадратная матрица имела обратную матрицу
, необходимо и достаточно, чтобы определитель матрицыбыл не равен нулю.

Правило нахождения обратной матрицы

0) Смотрим, является ли матрица квадратной. Если нет, то обратной матрицы не существует; если квадратная, то переходим к пункту 1.

1) Вычисляем определитель матрицы
: если он не равен нулю, то обратная матрица существует:
; если равен нулю, то обратной матрицы нет.

2) Для каждого элемента матрицы вычисляем его алгебраическое дополнение.

3) Составляем матрицу из алгебраических дополнений, которая затем транспонируем:
.

4) Каждый элемент матрицы
делим на определитель:
Получаем матрицу, обратную данной.

7. Нахождение обратной матрицы для матриц второго порядка

Пример 6. Дана матрица
. Найти обратную матрицу.

Решение .


Проверка. Убедимся, что найдена действительно обратная матрица. Найдем произведение матриц и
.

8. Свойства обратной матрицы

1.
,

где А и В – невырожденные квадратные матрицы одинакового порядка.

2.
.

3.
.

4.
.

Контрольные вопросы

    Что называется определителем второго порядка?

    Как вычислить определитель третьего порядка?

    Как вычислить определитель 3 порядка по правилу треугольников?

    Что называется алгебраическим дополнением элемента определителя? Приведите примеры для определителей 2 и 3 порядков.

    Напишите разложения определителя третьего порядка по элементам произвольной строки и произвольного столбца.