Получение этилбензола. Применение в быту и на производстве

Не было дома цветов, всё хотела купить, но денег жалко было, а вчера привезли на работу по 150руб цветы, я и купила, выбрала 2, а третий (посерединке) сыночек выбирал! Драцена (справа) Экология жилища Драцена обладает повышенной способностью увлажнять воздух. В помещении, где она присутствует, уменьшается содержание формальдегидов в воздухе. Она также способна поглощать и нейтрализовать бензол, толуол, этилбензол, ксилол, циклогексанон. Энергетика драцен Считается, что драцена — символ власти, престижа, преуспевания. Оно способно очищать энергетику дома, особенно там где живут...

ВСЁ О ЛЕЧЕНИИ СОДОЙ (из однокласников)

Совет 1:ВСЁ О ЛЕЧЕНИИ СОДОЙ Области применения 1. Профилактика и лечение рака. 2. Лечение алкоголизма. 3. Отвыкание от курения. 4. Лечение всех видов наркоманий и токсикоманий. 5. Выведение из организма свинца, кадмия, ртути, таллия, бария, висмута и других тяжёлых металлов. 6. Выведение радиоактивных изотопов из организма, профилактика радиоактивного заражения организма. 7. Выщелачивание, растворение всех вредных отложений в суставах, в позвоночнике; камней в печени и почках, т.е. лечение радикулитов, остеохондрозов, полиартритов, подагры, ревматизма, мочекаменной болезни, желчекаменной болезни; растворение камней в...

а)Галогенирование . Реакции электрофильного замещения проходят в присутствии катализаторов – хлоридов или бромидов алюминия или железа.

При галогенировании гомологов бензола обычно получается смесь изомеров, т.к. алкильные заместители – ориентанты I рода. В общем случае процесс показан на схеме:

б) Нитрование . Бензол и его гомологи достаточно легко образуют нитропроизводные, если используется не чистая азотная кислота, а так называемая нитрующая смесь - концентрированные HNO 3 и H 2 SO 4:

нитробензол

тринитротолуол

в)Алкилирование. Как уже упоминалось выше, алкилирование по Фриделю-Крафтсу является одним из основных лабораторных способов получения гомологов бензола:

В промышленности широко используется алкилирование алкенами. Роль катализатора в этом случае играет ион водорода Н + . Других продуктов, кроме гомологов бензола, не образуется. При алкилировании этеном (этиленом) получается этилбензол, а в случае пропена (пропилена) образуется изопропилбензол (кумол)

2 . Каталитическое гидрирование бензола и его гомологов происходит при повышенном давлении с использованием катализаторов (Ni, Pt). При этом бензол гидрируется до циклогексана, а, например, метилбензол (толуол) – до метилциклогексана.

C 6 H 5 CH 3 + 3H 2 C 6 H 11 CH 3

3. Радикальные реакции протекают при взаимодействии паров аренов в жестких условиях (УФ-излучение или температуры порядка 500 о С). Надо отметить, что бензол иего гомологи реагируют по разному.

В случае бензола реализуется радикальное присоединение

При радикальном хлорировании толуола будут последовательно замещаться атомы водорода по механизму радикального замещения .

4. Окисление . Окисление более характерно для гомологов бензола. Если гомолог имел только одну боковую цепь, то органическим продуктом окисления будет бензойная кислота. При этом длина и строение цепи значения не имеют. При окислении перманганатом калия в кислой среде гомологов, следующих за толуолом, кроме бензойной кислоты образуется угольная кислота.

Некоторые свойства стирола.

Как уже было сказано выше, стирол не относится к аренам, так как имеет двойную связь, и основным типом химических реакции для него будут реакции присоединения, окисления и полимеризации.

Так стирол легко реагирует с бромной водой, обесцвечивая ее, что является качественной реакцией на двойную связь:


По той же схеме происходит гидрирование стирола на никелевом катализаторе:

Окисление стирола осуществляется холодным водным раствором перманганата калия, продуктом окисления будет ароматический двухатомный спирт:

При окислении горячим раствором перманганата калия в присутствии серной кислоты будет образовываться бензойная кислота и углекислый газ.

Важной реакцией, имеющей большое практическое значение, является реакция полимеризации стирола:

Винильная группа представляет собой ориентант I рода, поэтому дальнейшее каталитическое замещение (например, галогеналканами) пойдет в орто- и пара- положения.

7.3.Примеры решения задач

Пример 21. Плотность по озону газовой смеси, состоящей из паров бензола и водорода, равна 0,2. После пропускания через контактный аппарат для синтеза циклогексана величина этой относительной плотности составила 0,25. Определить объемную долю паров циклогексана в конечной смеси и практический выход циклогексана.

Решение:

1)Найдем молярную массу исходной смеси:

М см = D(O 3)∙M (O 3) = 0.2∙ 48=9.6 г/моль.

2) Молярная масса конечной смеси равна 0,25 ∙ 48=12 г/моль.

3) Найдем молярное соотношение компонентов в исходной смеси

М см = φ∙М(бенз.) + М(водор.) ∙(1-φ), где φ-молярная (объемная) доля бензола

9,6 = 78φ + 2(1 –φ); 7,6 = 76φ; φ =0,1.

Значит, объемная доля водорода равна 0,9.

Следовательно, водород – в избытке, расчет ведем по бензолу.

4) Пусть количество исходной смеси равно 1 моль.

Тогда n(C 6 H 6) = 0.1 моль, n(H 2) = 0,9 моль,

а масса исходной смеси m см =1∙9,6= 9,6г.

Обозначим количество прореагировавшего бензола –z(моль) и

составим количественный баланс этой реакции.

С 6 Н 6 + 3Н 2 = С 6 Н 12

Было 0,1 0,9 0

Прореагировало z 3 z z

Запишем эти данные для удобства в виде таблицы:

5) Найдем общее количество веществ в конечной реакционной смеси:

n(кон) = 0,1 – z + 0,9 – 3z + z = 1 - 3 z .

Так как общая масса веществ в контактном аппарате не изменилась,

то n(кон)= m см / М (конечн) = 9,6/12 = 0,8моль.

6) Тогда 1 – 3z = 0,8; 3 z = 0,2; z= 0,067.

В таком случае объемная доля циклогексана равна 0,067/0,8 = 0, 084.

7) Теоретическое количество циклогексана составляет 0,1 моль; количество образовавшегося циклогексана 0,067 моль. Практический выход

η =0,067/0,1= 0,67 (67,0%).

Ответ: φ(циклогексана) = 0,084. η =0,067/0,1= 0,67 (67,0%).

Пример 22 . На нейтрализацию смеси ароматических кислот, полученных окислением смеси этилбензола и его изомеров, требуется объем раствора гидроксида натрия в пять раз меньший, чем минимальный объем такого же раствора, необходимого для поглощения всего углекислого газа, полученного при сжигании той же порции смеси изомеров. Определить массовую долю этилбензола в исходной смеси.

Решение:

1) Этилбензол - С 6 Н 5 С 2 Н 5. М = 106 г/моль; его изомерами являются диметилбензолы, имеющие одинаковую молекулярную формулу С 6 Н 4 (СН 3) 2 и ту же молярную массу, что и этилбензол.

Пусть количество этилбензола равно х(моль), а количество смеси диметилбензолов – y(моль).

2) Напишем уравнения реакций окисления этилбензола и его изомеров:

5C 6 H 5 C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 5C 6 H 5 COOH + 5CO 2 +

5C 6 H 4 (CH 3) 2 + 12KMnO 4 + 18H 2 SO 4 5C 6 H 4 (COOH) 2 +

12MnSO 4 + 6K 2 SO 4 + 28H 2 O

Очевидно, что количества бензойной кислоты и смеси фталевых кислот тоже равны x и yсоответственно.

3) Уравнения нейтрализации полученных органических кислот:

С 6 Н 5 СООН + NaOH = С 6 Н 5 СООNa + H 2 O

С 6 Н 4 (СООН) 2 + 2NaOH = С 6 Н 4 (СООNa) 2 + 2 H 2 O

Из этих уравнений следует, что общее количество щелочи, пошедшее на

нейтрализацию смеси кислот n(общ) = x + 2 y

4) Рассмотрим уравнения сжигания углеводородов, учитывая, что все они

имеют молекулярную формулу С 8 Н 10 .

С 6 Н 5 С 2 Н 5 + 10,5 О 2 8 СО 2 + 5H 2 O

С 6 Н 4 (СН 3) 2 + 10,5 О 2 8 СО 2 + 5H 2 O

5) Из этих уравнений следует, что общее количество углекислого газа после сжигания исходной смеси аренов равно n(СО 2) = 8x + 8y

6) Так как требуется затратить минимальное количество щелочи, то нейтрализация протекает с образованием кислой соли:

NaOH + СО 2 = NaHCO 3

Таким образом, количество щелочи на нейтрализацию СО 2 тоже равно

8x + 8y. В таком случае 8x + 8y = 5(x + 2y); y =1,5x. x =2/3y 7) Расчет массовой доли этилбензола

ω(этилбензола) = m(этилбензола)/m(общ) = 106x/(106x +106y) =

1/ (1 +1,5) = 0,4 .

Ответ: ω (этилбензола) = 0,4 =40% .

Пример 23. Смесь толуола и стирола сожгли в избытке воздуха. При пропускании продуктов сгорания через избыток известковой воды образовалось 220 г осадка. Найдите массовые доли компонентов в исходной смеси, если известно, что она может присоединить

2,24 л HBr (н. у.).

Решение:

1) С бромоводородом реагирует только стирол в соотношении 1:1.

C 8 H 8 + HBr = C 8 H 9 Br

2) Количество вещества бромоводорода

n(HBr) = n (C 8 H 8) = 2,24/22,4 = 0,1моль.

3) Запишем уравнение реакции сгорания стирола:

C 8 H 8 + 10 О 2 8 СО 2 + 4H 2 O

В соответствии с уравнением реакции при сгорании 0,1моль стирола образуется 0,8 моль углекислого газа.

4) Углекислый газ реагирует с избытком гидроксида кальция тоже в

мольном соотношении 1:1 с образованием осадка карбоната кальция:

Ca(OH) 2 + СО 2 = CaCO 3

5) Общее количество карбоната кальция равно

n(CaCO 3) = m(CaCO 3)/ M(CaCO 3) = 220/100 = 2,2моль.

Значит, при сгорании углеводородов образовалось тоже 2,2моль СО 2 , из

которых 0,8моль дает при сгорании стирол.

Тогда на долю толуола приходится 2,2 - 0,8 = 1,4 моль СО 2 .

6) Уравнение сгорания толуола:

C 7 H 8 + 9 О 2 7СО 2 + 4H 2 O

Количество толуола в 7 раз меньше, чем количество углекислого газа:

n(толуол) = 1,4/7 = 0,2 моль.

7) Масса стирола m(стир.) = n(стир)∙M(стир) = 0,1∙104 =10,4(г);

масса толуола m(тол) = n(тол)∙M(тол) =0,2∙92 = 18,4(г).

8) Общая масса смеси углеводородов 10,4 + 18,4= 28,8(г).

массовая доля стирола: ω =10,4/ 28,8 = 0,361;

массовая доля толуола ω=0,639.

Ответ: ω(стирол) = 0,361 = 36,1%; ω(толуол)=0,639=63,9%.

7.4. Задачи и упражнения для самостоятельного решения

189 . Изобразите графические формулы всех изомеров аренов с общей формулой С 9 Н 12 .Назовите эти соединения.

190 . Получите а) из метана мета-нитротолуол, б) из этана стирол, в) из н-гептана бензиловый спирт, используя любые неорганические вещества и катализаторы

191. Идентифицируйте следующие соединения: а) бензол, стирол, толуол; б) гексен, циклогексан, толуол; в) этилбензол, стирол, фенол.

192. Осуществите цепочку превращений:

кокс HCl Cакт CH 3 Cl Cl 2.

а) CaCO 3 A B C D E

1000 o 500 o FeCl 3 УФ

NaOH C 2 H 4 Br 2 KOH KMnO 4

б) бензоат натрия A B C D E

сплавл. Н + УФ спирт H 2 O

t KMnO 4 C 2 H 5 Cl Cl 2 KOH

в) н-гептан A B C D E

Cr 2 O 3 Н + AlCl 3 УФ H 2 O

193 . Углеводород С 9 Н 12 прореагировал с бромом при нагревании. В результате было получено соединение состава С 9 Н 5 Br 7 . Напишите структурные формулы всех углеводородов, которые могли бы дать такой результат. Ответ обоснуйте.

194. Изобразите структурную формулу ближайшего гомолога стирола, имеющего цис- и транс-изомеры. Укажите типы гибридизации атомов углерода в этом соединении.

195. В каких из перечисленных веществ все атомы углерода имеют sp 2 – гибридизацию: толуол, бутадиен 1,3, циклогексан, этилбензол, стирол, бензол?

196. Из этанола получите этилбензол, не используя другие органические реагенты. Можно использовать любые неорганические вещества и катализаторы.

197. Приведите последовательность реакций, с помощью которых можно из кумола получить изофталевую кислоту (1,3 бензолдикарбоновую кислоту).

198. а)Сколько изомеров имеет арен, молекула которого содержит 58 протонов. Изобразите и назовите эти изомеры.

б)Имеет ли изомеры арен, в молекуле которого содержится 50 электронов? Ответ обоснуйте

199. При циклотримеризации ацетилена при 500 о С образовалась газовая смесь с плотностью по воздуху 2,24. Рассчитайте практический выход бензола.

200. В результате циклотримеризации ацетилена при 500 о С и давлении 1013 кПа, после охлаждения было получено 177,27мл жидкости с плотностью 0,88г/мл. Определите объем затраченного ацетилена при условиях синтеза, если практический выход составил 60%.

201 . При каталитической дегидроциклизации 80 г н-гептана выделилось

67,2 л водорода (н.у.). Рассчитайте практический выход полученного продукта.

202. Углеводород обесцвечивает бромную воду, при действии подкисленного раствора KMnO 4 образует бензойную кислоту с выделением диоксида углерода, При обработке избытком аммиачного раствора оксида серебра наблюдается выделение белого осадка. При комнатной температуре исходный углеводород – жидкий, а массовая доля водорода в нем - 6,9%. Определите углеводород.

203. Смесь бензола и циклогексена с молярной долей бензола 80% обесцвечивает 200 г 16%-го раствора брома в тетрахлорметане. Какая масса воды образуется при сгорании в кислороде той же массы смеси?

204. При реакции нитрования бензола избытком нитрующей смеси было получено 24,6г нитробензола. Какой объём бензола(плотность 0,88г/мл) вступил в реакцию?

205 . При нитровании одного из аренов массой 31,8 г образовалось только одно нитропроизводное массой 45,3 г. Определите формулу арена и продукта нитрования.

206 . Смесь бензола и циклогексана массой 5 г прореагировала с бромом (в темноте и без нагревания) в присутствии бромида железа (III). Объем выделившегося бромоводорода составил 1,12л (н. у.). Определите состав смеси в массовых долях.

207. Рассчитайте массу бромбензола, которая получится при взаимодействии 62,4г бензола с 51,61мл брома с плотностью 3,1г/мл в присутствии бромида железа(III), если выход составляет 90% от теоретического.

208 . При каталитическом бромировании 50 мл толуола (плотность 0,867 г/мл) с выходом 75% была получена смесь двух монобромпроизводных и газ, который пропустили через 70 г 40%-го раствора бутена-1 в бензоле.найдите массовые доли веществ в полученном растворе.

209. В результате бромирования 46 г толуола на свету была получена смесь моно- и дибромпроизводных. Объем выделившегося газа составил 17,92 л (н.у.) Какой объем 10%-го раствора карбоната натрия

(плотность 1,1г/мл) прореагировал с выделившимся газом, если в полученном растворе молярные концентрации кислой соли и бромоводорода равны.

210. Газ, выделившийся при получении бромбензола из 44,34мл бензола(плотность 0,88г/мл) прореагировал с 8,96л(н.у.) изобутилена. Выход бромбензола составлял 80% от теоретического, а реакция с изобутиленом прошла со 100% выходом. Какие соединения образовались при этом? Рассчитайте их массы.

211. Какой объём 10% раствора гидроксида натрия с плотностью 1,1г/мл потребуется для нейтрализации газа, выделившегося при получении бромбензола из 31,2г бензола?

212 . При сжигании 5,2г некоторого углеводорода в избытке кислорода образуется 8,96л углекислого газа (н.у.). Определите истинную формулу вещества, если относительная плотность его паров по гелию равна 26.

213 . Смесь стирола и этилциклогексана, способную прореагировать с 4,48л хлороводорода (н.у.) сожгли. При этом образовалось 134,4 г смеси воды и углекислого газа. Найдите объем кислорода, необходимый для сжигания этой же порции смеси.

214 . Масса смеси толуола и стирола в 29, 23 раза больше, чем масса водорода, необходимого для полного каталитического гидрирования исходной смеси. Найдите количественное соотношение компонентов смеси.

215 . Смесь бензола, толуола и этилбензола массой 13,45 г окислили перманганатом калия в кислотной среде. При этом образовалось 12.2 г бензойной кислоты и 1,12 л (н.у.) углекислого газа. Найдите массовые доли углеводородов в исходной смеси.

216. При сжигании 23,7 г смеси бензола и этилбензола объем затраченного кислорода оказался в 1,2917 раз больше суммарного объема углекислого газа. Определите массовые доли веществ в исходной смеси, а также массу осадка, который образуется при пропускании продуктов горения через избыток раствора известковой воды.

217. При окислении 26,5 г 1,4-диметилбензола горячим нейтральным раствором перманганата калия выпало 66,55 г осадка. Определите, какая часть исходного вещества окислилась.

218. Этилбензол, массой 42,4 г, обработали сначала избытком подкисленного раствора перманганата калия, а затем еще большим избытком раствора КОН. Затем воду выпарили, а сухой остаток прокалили. После конденсации паров получили 26,59 мл бесцветной жидкости с плотностью 0,88 г/мл. Определите практический выход продукта.

219. Смесь стирола и диметилциклогексана, способную обесцветить 320 г 5-ной% бромной воды сожгли на воздухе. При этом образовалось 67,2 г смеси воды и диоксида углерода. Рассчитайте объем воздуха, затраченного на сжигание, если объемная доля кислорода 20%.

220. В одном из аренов массовая доля нейтронов составляет 54,717%. Определите арен, изобразите и назовите его изомеры.

221. Определите истинную формулу углеводорода, если масса одной его молекулы составляет 17,276 . 10 -23 г, а массовая доля водорода равна 7,69%.

222. Относительная плотность паров углеводорода по неону равна 6. Известно, что углеводород не реагирует с бромной водой, окисляется подкисленным раствором перманганата калия до терефталевой(1,4-бензолдикарбоновой) кислоты, а число атомов углерода составляет 75% от числа атомов водорода. Определите углеводород.

223. Какая масса толуола потребуется для получения 113,5г тринитротолуола, если выход продукта составляет 82% от теоретического?

224. Какой объём бензола (плотность 0,88г/мл) можно получить из 33,6л(н.у.) ацетилена?

225. Для получения изопропилбензола взяли 70,0мл 2-бромпропана с плотностью 1,314г/мл и 39г бензола. Объём полученного изопропилбензола оказался равным 55,5мл(плотность 0,862г/мл). Вычислите выход изопропилбензола.

Глава 8. СПИРТЫ

Спирты- это гидроксипроизводные углеводородов, в которых группа –ОН непосредственно не связана с атомами углерода ароматического кольца.

По числу гидроксильных групп различаются спирты одноатомные и многоатомные

(двухатомные, трёхатомные и с большим числом гидроксильных групп). По характеру углеводородного радикала различают спирты насыщенные, ненасыщенные, циклические, ароматические. Спирты, у которых гидроксильная группа находится у первичного атома углерода, называются первичными, у вторичного атома углерода – вторичными, у третичного атома углерода – третичными.

Например:

бутанол-1 бутанол-2 2- метил-пропанол-2

(первичный) (вторичный) (третичный)

аллиловый спирт этиленгликоль глицерин

(ненасыщенный спирт) (двухатомный спирт) (трёхатомный спирт)

циклопентанол бензиловый спирт

(циклический спирт) (ароматический спирт)

8.1. Получение спиртов

1. Гидратация алкенов в кислой среде :

R 1 −CH=CH−R 2 + H 2 O(H +) R 1 −CH 2 −CH(OH) −R 2

Например:

CH 2 =CH 2 + H 2 O(H +) CH 3 – CH 2 (OH)

2. Гидролиз алкилгалогенидов в кислой или щелочной среде:

CH 3 −CH 2 −CH 2 −Br +NaOH(H 2 O) CH 3 −CH 2 −CH 2 −OH +NaBr

3. Гидролиз сложных эфиров:

а) в кислой среде

CH 3 COOC 2 H 5 + H 2 O(H +) = CH 3 COOH + C 2 H 5 OH

б) щелочной гидролиз(омыление)

CH 3 COOC 2 H 5 + NaOH(H 2 O) CH 3 COONa + C 2 H 5 OH

Министерство общего образования РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

УНИВЕРСИТЕТ

НИЖНЕКАМСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ

ИНСТИТУТ

Кафедра химической технологии

Группа

Курсовой проект

Тема: Получение этилбензола методом алкилирования бензола этиленом

Студентка:

Руководитель (_________)

Студент ка (_________)

г. Нижнекамск

ВВЕДЕНИЕ

Темой данного курсового проекта является получение этилбензола методом алкилирования бензола этиленом.

Наиболее распространенным процессом нефтехимического синтеза является каталитическое алкилирование бензола олефинами, что определяется высоким спросом на алкилароматические углеводороды – сырьё в производстве синтетических каучуков, пластических масс, синтетических волокон и др.

Алкилированием называют процессы введения алкильных групп в мо- лекулы органических и некоторых неорганических веществ. Эти реакции имеют большое практическое значение для синтеза алкилароматических соединений, изо-алканов, аминов, меркаптанов и сульфидов и др.

Реакция алкилирования бензола алкилхлоридами в присутствии безводного хлорида алюминия впервые была осуществлена в 1877 г. Ш. Фриделем и Дж. Крафтсом. В 1878 г. ученик Фриделя Бальсон получил этилбензол алкилированием бензола этиленом в присутствии ALCL3.

Со времени открытия реакции алкилирования было разработано много различных методов замещения водородных атомов бензола и других ароматических углеводородов на алкильные радикалы. Для этого применяли различные агенты алкилирования и катализаторы 48,49.

Скорость алкилирования ароматических углеводородов в несколько сот раз выше, чем парафинов, поэтому алкильная группа практически всегда направляется не в боковую цепь, а в ядро.

Для алкилирования ароматических углеводородов олефинами применяются многочисленные катализаторы, имеющие характер сильных кислот, в частности серная кислота (85-95%-ная), фосфорная и пирофосфорная кислоты, безводный фтористый водород, синтетические и природные

алюмосиликаты, иониты, гетерополикислоты. Кислоты в жидком виде проявляют каталитическую активность в реакциях алкилирования при невысоких температурах (5-100°С); кислоты на твердых носителях, например фосфорная кислота на кизельгуре, действуют при 200-300°С; алюмосиликаты активны при 300-400 и 500°С и давлении 20-40 кгс/см² (1,96-3,92 МН/м²).

Актуальность данной темы является, что в дальнейшем из этилбензола получают стирол, методом дегидрирования этилбензола.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1 Теоретические основы принятого метода производства.

Алкилирование бензола этиленом. Промышленные процессы алкилирования бензола этиленом различаются в зависимости от применяемого катализатора. Ряд катализаторов опробован в опытно-промышленном масштабе.

В 1943 г.фирмой «Copers» осуществлено алкилирование бензола этиленом на алюмосиликатном катализаторе в жидкой фазе при 310°С и 63 кгс/см² (6,17 МН/м²) при мольном отношении этилен: бензол 1:4.

Широкое распространение приобрёл процесс алкилирования бензола этиленом на хлористом алюминии при атмосферном или несколько повышенном давлении и температуре 80-100°С.

Конкурирует с этим методом алкилирование на твердом фосфорнокислотном катализаторе, однако на этом катализаторе может быть получен только изопропилбензол. Алкилирование же бензола этиленом практически на нём не проводится.

Большую группу катализаторов алкилирования составляют апротонные кислоты (кислоты Льюиса) – галогениды некоторых металлов. Они обычно проявляют каталитическую активность в присутствии промоторов, с которыми образуют продукты, имеющие характер сильных протонных кислот. Из катализаторов этого типа могут применяться хлористый алюминий, бромистый алюминий, трёххлористое железо, хлористый цинк, трёххлористый и четырёххлористый титан. Промышленное применение имеет только хлористый алюминий.

О механизме реакций алкилирования бензола и его гомологов олефинами придерживаются следующих общих представлений.

Алкилирование в присутствии хлористого алюминия трактуется по механиз-


му кислотного катализа. В этом случае в системе должен присутство-

вать промотор, роль которого играет хлористый водород. Последний может

образоваться в присутствии воды:

CH3 CH=CH2 + H – CL ∙ ALCL3 ↔ CH3 – CH – CH3 ∙ CL ∙ ALCL3

Дальнейшее присоединение к ароматическому ядру проходит по меха низму, аналогичному рассмотренному выше:

HCL(CH3)2 ∙CL∙ALCL3 +CH3 –CH–CH3 ∙CL∙ALCL3 →HCH(CH3)2 + CH(CH3)2 + CL ∙ ALCL3 + HCL + ALCL3

В присутствии хлористого алюминия легко протекает деалкилирование, что указывает на обратимость реакции алкилирования. Реакции деалкилирования пользуются для превращения полиалкилбензолов в моноалкил-

Термодинамика реакции алкилирования. На основе физико-химических

констант углеводородов и их термодинамических функций – энтальпии ΔН и

энтропии ΔS можно найти константы равновесия и рассчитать равновесные

выходы алкилпроизводных при алкилировании бензола олефинами в зависи-

мости от температуры и давления.

Равновесный выход этилбензола возрастает с увеличением мольного

избытка бензола и с повышением давления при данной температуре.

С6 H6 + C2 H4 ↔ C6 H5 C2 H5

При алкилировании бензола этиленом при температуре ниже 250-300°С

достигается практически полное превращение бензола в этилбензол. При 450

-500°С для увеличения глубины превращения требуется повышение давления до 10-20 кгс/см² (0,98-1,96 МН/м²).

Реакция алкилирования бензола этиленом является последовательной обратимой реакцией первого порядка. С углублением процесса наряду с моноалкилбензолом образуются также полиалкилбензолы

C6 H6 + Cn H2n ↔ C6 H5 Cn H2n+1

C6 H5 Cn H2n+1 + Cn H2n ↔ C6 H4 (Cn H2n+1)2 которые являются нежелательными побочными продуктами. Поэтому состав реакционной смеси алкилатов чаще определяется кинетическими факторами, чем термодинамическим равновесием.

Так, деалкилирование термодинамически возможно с большой глубиной при 50-100°С. И действительно, в присутствии хлористого алюминия оно проходит хорошо, так как с этим катализатором процесс алкилирования является обратимым. Однако при тех же температурах в присутствии кислот деалкилирование вовсе не происходит. М.А. Далиным экспериментально изучен состав продуктов алкилирования бензола этиленом в присутствии хлористого алюминия.

Состав реакционной смеси определяется соотношением бензола и этилена и не зависит от того, каким образом получен алкилат: прямым алкилированием или деалкилированием полиалкилбензола. Однако этот вывод справедлив только при применении в качестве катализатора хлористого алюминия.

Процесс алкилирования проводится в алкилаторе – реакционной колонне, эмалированной или футерованной графитовой плиткой для защиты от коррозии. Три секции колонны имеют рубашки для охлаждения, однако основное количество тепла отводится испарением некоторой части бензола. Алкилирование ведется в присутствии жидкого катализаторного комплекса, состоящего из хлористого алюминия (10-12%), бензола (50-60%) и полиалкилбензолов (25-30%). Для образования хлористого водорода, который является промотором реакции, в каталитический комплекс добавляют 2% воды от

массы хлористого алюминия, а также дихлорэтан или хлористый этил, при расщеплении которых образуется хлористый водород.

Для выделения этилбензола из алкилата отгоняют при атмосферном давлении бензол (одновременно с бензолом удаляются следы воды). От кубовой жидкости при пониженном давлении (200 мм рт.ст., 0,026 МН/м²) отгоняется широкая фракция – смесь этилбензола и полиалкилбензолов. В следующей колонне при остаточном давлении 50 мм рт.ст. (0,0065 МН/м²) полиалкилбензолы отделяются от смол. Широкую фракцию разгоняют в вакуумной колонне при остаточном давлении 420-450 мм рт.ст. (0,054-0,058 МН/м²). Товарный этилбензол перегоняется в пределах 135,5-136,2°С.

Для получения этилбензола используется этан – этиленовая фракция пиролиза, содержащая 60-70% этилена.

Бензол для алкилирования должен содержать не более 0,003-0,006% воды, в то время как товарный бензол содержит 0,06-0,08% воды. Обезвоживание бензола проводится методом азеотропной дистилляции. Содержание серы в бензоле не должно превышать 0,1%. Повышенное содержание серы вызывает увеличение расхода хлористого алюминия и ухудшает качество готовой продукции.


1.2. Характеристика сырья и получаемого продукта.

Наименование сырья, материалов,

реагентов,

катализаторов.

полуфабрикатов,

изготовляемой

продукции.

Номер государст-

венного или

отраслевого

стандарта,

технических

стандарта

предприятия.

Показатели качества, обязательные для проверки.

Норма (по

ОСТу, стан-

дарту предпри-

Назна-чение,

область применения.

1.ЭТИЛБЕНЗОЛ

бесцветная прозрачная жидкость. Основные показатели свойств этилбензола:

Молекулярная масса=106,17

Плотность, г/см³ = 0,86705 Температура,°С Кипения= 176,1

Плавления=-25,4 Вспышки= 20

Самовоспламенения= 431.

Теплота, кДж/моль

Плавления=9,95

Испарения=33,85 Теплоёмкость, Дж/моль ∙ К=106,4

Теплота сгорания, ккал/моль=1089,4

Растворимость в воде, г/100мл=0,014

В промышленности используют в основном как сырье для синтеза стирола, как добавка к моторному топливу, в качестве разбавителя и растворителя. С6 H5 C2 H5

Большую часть этилбензола получают алкилированием бензола этиленом и значительно меньшее его количество выделяют сверхчеткой ректификацией из продуктов риформинга прямогонного бензина. Основные показатели свойств этилбензола: Этилбензол раздражает кожу, оказывает

судорожное действие. ПДК в атмосферном воздухе составляет 0,02 мг/м³, в водоёмах хозяйственно-

бытового пользования – 0,01 мг/л. КПВ 0,9-3,9% по объёму. Объём мирового

производства около 17 млн. т в год (1987). Объём производства в России 0,8

млн. т в год (1990).

H2 C=CH2. Бесцветный газ со слабым запахом. Этилен растворяется в воде 0,256 см³/см³ (при 0 °С), растворяется в спиртах и эфирах.

Этилен обладает свойствами фитогормонов – замедляет рост, ускоряет старение клеток, созревание и опадение плодов. Он взрывоопасен, КПВ 3-34% (по объёму), ПДК в атмосферном воздухе 3 мг/м³, в воздухе рабочей зоны 100 мг/м³. Мировое производство 50 млн. т в год (1988).

В больших количествах (20%) содержится в газах нефтепереработки; входит в состав коксового газа. Один из основных продуктов нефтехимической промышленности: применяется для синтеза винилхлорида, этиленоксида, этилового спирта, полиэтилена и др. Этилен получается при переработке нефти и природного газа. Выде-

ленная этиленовая фракция содержит 90-95% этилена с примесью пропилена, метана, этана. Применяется как сырьё в производстве полиэтилена, окиси этилена, этилового спирта, этаноламина, поливинилхлорида, в хирургии – для наркоза.


C6 H6. Бесцветная жидкость со своеобразным нерезким запа

хом. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами, бензином и другими органическими растворителями. Растворимость в воде 1,79 г/л (при 25 °С). Токсичен, опасен для окружающей среды, огнеопасен. Бензол – ароматический углеводород.

Основные показатели свойств бензола:

Молекулярная масса=78,12

Плотность, г/см³=0,879

Температура, °С:

Кипения=80,1

Плавления=5,4

Вспышки=-11

Самовоспламенения=562

Теплота, кДж/моль:

Плавления=9,95

Испарения=33,85

Теплоёмкость, Дж/моль ∙ К=81,6

Бензол смешивается во всех отношениях с неполярными растворителями: углеводородами, скипидаром, эфирами, растворяет жиры, каучук, смолы (гудрон). Даёт с водой азеотропную смесь с температурой кипения 69,25 °С, образует двойные и тройные азеотропные смеси со многими соединениями.

Встречается в составе некоторых

нефтей, моторных топлив, бензинов. Широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Бензол входит в состав сырой нефти, но в промышленных масштабах по большей части синтезируется из других её компонентов. Применяется также для получения этилбензола, фенола, нитробензола, хлорбензола, как растворитель.

В зависимости от технологии производства получают различные марки бензола. Бензол нефтяной получают в процессе каталитического риформинга бензиновых фракций, каталитического гидродеалкилирования толуола и ксилола, а также при пиролизе нефтяного сырья.


2.3. Описание технологической схемы.

В Приложении А представлена технологическая схема производства этилбензола. Процесс алкилирования бензола этиленом проводится в алкилаторе поз. Р-1 в среде этилхлорида при температуре 125-135C и давлении 0,26-0,4 МПа. В алкилатор подаются: осушенная бензольная шихта, каталитический комплекс, фракция полиалкилбензолов, этилен, рециркулирующий каталитический комплекс, возвратный бензол.

Реакция алкилирования идет с выделением теплоты, избыточное количество которой снимается рециркулирующим каталитическим комплексом и испаряющимся бен­золом. Бензол из верхней части алкилатора в смеси с абгазом на­правляется в конденсатор поз. Т-1, охла­ждаемый водой. Несконденсировавшиеся газы из конденсатора поз. Т-1 направляются в конденсатор поз. Т-2, охлаждаемый охлажденной водой t=0°C. Отдувки после конденсатора поз. Т-2 по­ступают на дальнейшее улавлива­ние паров бензола. Бензольный конденсат из конденсаторов поз. Т-1 и Т-2 самотеком сливается в низ алки­латора поз. Р-1. Из алкилатора поз. Р-1 реак­ционная масса через теплообмен­ник поз. Т-3, где охлаждается водой до 40-60 °С, направляется в отстой­ник поз. Е-1 для отделения от циркули­рующего каталитического комп­лекса. Отстоявшийся каталитиче­ский комплекс с низа отстойника поз. Е-1 забирается насосом поз. Н-1 и возвра­щается в алкилатор поз. Р-1. Для под­держания активности катализато­ра в линию рециркулирующего комплекса подается этилхлорид. В случае снижения активности катализатора предусмотрен вывод, отработанного каталитического комплекса на разложение. Реак­ционная масса из отстойника поз. Е-1 собирается в емкость поз. Е-2, откуда за счет давления в системе алкилирования поступает в смеситель поз. Е-3 на смешение с Кислой водой, циркулирующей в системе разложения:

отстойник поз. Е-4-насос, поз. Н-2-смеситель, поз. Е-3. Соотношение циркулирую­щей воды, подаваемой в смеситель, и реакционной массы состав­ляет l/2: 1. Вода в систему разложения подается из сборника поз. Е-5 насосом поз. Н-3. Реакционная масса отстаивается от воды в отстойнике поз. Е-4; нижний водный слой насосом поз. Н-2 направляется в смеситель; а верхний слой - реакционная масса - самотеком стекает в промыв­ную колонну поз. К-1 на вторичную промывку водой, подаваемой насосом поз. Н-4 из промывной колонны поз. К-2. Из промывной колонны поз. К-1 реакцион­ная масса самотеком поступает в сборник поз. Е-6, откуда насосом поз. Н-5 откачивается на нейтрализацию в смеситель поз. Е-7.

Нижний водный слой из промывной колонны поз. К-1 самотеком сли­вается в емкость поз. Е-5 и насосом поз. Н-3 подается в смеситель поз. Е-3. Нейтрали­зация реакционной массы в смесителе поз. Е-7 проводится 2-10%-ным раствором едкого натра. Соотношение реакционной массы и цирку­лирующего раствора едкого натра 1:1.Отделение реакционной массы от раствора щелочи происходит в отстойнике поз. Е-8, откуда ре­акционная масса самотеком поступает в колонну поз. К-2 на отмывку от щелочи водным конденсатом. Нижний слой - химически загряз­ненная вода - из колонны сливается в емкость поз. Е-9 и насосом поз. Н-4 откачивается на промывку реакционной массы в колонну поз. К-1. Реакционная масса из верхней части колонны самотеком поступает в от­стойник поз. Е-10, затем собирается в промежуточную емкость поз. Е-11 и отка­чивается насосом поз. Н-7 на склад.

Технологическая схема алкилирования бензола этиленом на хлористом алюминии, пригодная также и для алкилирования бензола пропиленом.

Процесс алкилирования проводится в алкилаторе – реакционной колонне эмалированной или футерованной графитовой плиткой для защиты от коррозии. Три секции колонны имеют рубашки для охлаждения, однако основное количество тепла отводится испарением некоторой части бензола. Алкилирование ведется в присутствии жидкого катализаторного комплекса, состоящего из хлористого алюминия (10 – 12 %), бензола (50 – 60 %) и

полиалкилбензолов (25 – 30 %). Для образования хлористого водорода, который является промотором реакции, в каталитический комплекс добавляют 2 % воды от массы хлористого алюминия, а также дихлорэтан или хлористый этил, при расщеплении которых образуется хлористый водород.


1.5. Описание устройств и принцип действия основного аппарата.

Алкилирование производится в реакторе колонного типа без механического перемешивания при давлении, близком к атмосферному (Приложение Б). Реактор состоит из четырёх царг, эмалированных или футерованных керамическими либо графитовыми плитками. Для лучшего контактирования внутри реактора имеется насадка. Высота реактора 12 м, диаметр 1,4 м. Каждая царга снабжена рубашкой для отвода тепла при нормальном режиме работы реактора (она же используется для разогрева при пуске реактора). Реактор доверху заполнен смесью бензола и катализатора. В нижнюю часть реактора непрерывно подают осушенный бензол, каталитический комплекс и газообразный этилен. Жидкие продукты реакции алкилирования непрерывно отбирают на высоте примерно 8 м от основания реактора, а сверху реактора отводится паро-газовая смесь, состоящая из непрореагировавших газов и паров бензола. Температура в нижней части реактора равна 100°С, в верхней – составляет 90 - 95°С. Катализаторный комплекс приготовляют в аппарате, откуда суспензия катализатора непрерывно подаётся в реактор алкилирования.

Алкилатор для получения этилбензола в жидкой фазе представляет со­бой стальную колонку, выложенную внутри кислотоупорной футеровкой поз. 4 или покрытую кислотоупорной эмалью для защиты стенок от корродирующего действия соляной кислоты. Аппарат имеет четыре царги поз.1, соеди­ненные фланцами поз. 2. Три царги снабжены рубашками поз. 3 для охла­ждения водой (для отвода тепла при реакции алкилирования). Реактор во время работы заполнен реакционной жидкостью, вы­сота столба которой составляет 10 м . Над уровнем жидкости иногда располагают два змеевика, в которых циркулирует вода, для дополнительного охлаждения.

Работа алкилатора непрерывна: в нижнюю часть его все время подаются бензол, этилен и каталитический комплекс; смесь реаги­рующих веществ и катализатора поднимается в верхнюю часть аппарата и отсюда перетекает в отстойник. Пары, выходящие из верхней части алкилатора (состоящие в основном из бензола), конденсируются и снова возвращаются в алкилатор в виде жид­кости.

За один проход этилен реагирует почти полностью, а бензол только на 50-55%; следовательно, выход этилбензола за один проход составляет около 50% от теоретического; остальной эти­лен теряется на образование ди- и полиэтилбензола.

Давление в алкилаторе во время работы составляет 0,5 ат (избыточное), температура 95-100°С.

Алкилирование бензола этиленом можно вести и в газовой фазе, над твердым катализатором, но этот метод еще мало при­меняется в промышленности.

Выход этилбензола составляет 90 – 95 % в расчёте на бензол и 93 % в расчёте на этилен. Расход на 1 т этилбензола составляет: этилена 0,297 т,

бензола 0,770 т, хлористого алюминия 12 – 15 кг.


2. ВЫВОДЫ ПО ПРОЕКТУ.

Наиболее дешёвый этилбензол получают выделением его из ксилольной фракции продуктов риформинга или пиролиза, где он содержится в количестве 10-15 %. Но основным способом получения этилбензола остаётся способ каталитического алкилирования бензола.

Несмотря на наличие многотоннажных производств алкилбензолов, существует ряд нерешённых проблем, снижающих эффективность и технико-экономические показатели процессов алкилирования. Можно отметить следующие недостатки:

Отсутствие стабильных, высокоактивных катализаторов алкилирования бензола олефинами; нашедшие же широкое применение катализаторы – хлорид алюминия, серная кислота и др.вызывают коррозию аппаратуры, не регенерируются;

Протекание вторичных реакций, снижающих селективность производства алкилбензолов, что требует дополнительных затрат на очистку получаемых продуктов;

Образование большого количества сточных вод и отходов производств при существующих технологических схемах алкилирования;

Недостаточные единичные мощности производства.

Таким образом, вследствие большой ценности этилбензола, в настоящее время спрос на него очень велик, при этом его себестоимость сравнительно невысока. Сырьевая база для получения этилбензола также широка: бензол и этилен в больших количествах получаются при крекинге и пиролизе нефтяных фракций.


3. СТАНДАРТИЗАЦИЯ

В курсовом проекте были применены следующие ГОСТы:

ГОСТ 2.105 – 95 Общие требования к текстовым документам.

ГОСТ 7.32 – 81 Общие требования и правила оформления курсовых и дипломных работ.

ГОСТ 2.109 – 73 Основные требования чертежа.

ГОСТ 2.104 – 68 Основные надписи на чертежах.

ГОСТ 2.108 – 68 Спецификации.

ГОСТ 2.701 – 84 Схемы, виды, типы, общие требования.

ГОСТ 2.702 – 75 Правила выполнения схем различных видов.

ГОСТ 2.721 – 74 Обозначения условные и графические в схемах.

ГОСТ 21.108 – 78 Условное и графическое изображение на чертежах.

ГОСТ 7.1 – 84 Правила оформления списка литературы.


4. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ.

1. Травень В.Ф. Органическая химия: в 2 т: учеб.для вузов / В.Ф. Травень. – М.: НКЦ Академкнига, 2005. – 727 с.: ил. – Библиогр.: с. 704 – 708.

2. Эпштейн Д.А. Общая химическая технология: учеб.для ПТУ / Д.А. Эпштейн. – М.: Химия, - 1979. – 312 с.: ил.

3. Литвин О.Б. Основы технологии синтеза каучуков. / О.Б. Литвин. – М.: Химия, 1972. – 528 с.: ил.

4. Ахметов Н.С. Общая и неорганическая химия: учеб.для вузов – 4-е изд., испр. / Н.С. Ахметов. – М.: Высшая школа, изд. центр Академия, 2001. – 743 с.: ил.

5. Юкельсон И.И. Технология основного органического синтеза. / И.И. Юкельсон. – М.: Химия, -1968. – 820 с.: ил.

6. Паушкин Я.М., Адельсон С.В., Вишнякова Т.П. Технология нефтехимического синтеза: часть 1: Углеводородное сырьё и продукты его окисления. / Я.М. Паушкин, С.В. Адельсон, Т.П. Вишнякова. – М.: Химия, -1973. – 448 с.: ил.

7. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза: учеб.для вузов – 4-е изд., перераб. и доп. / Н.Н. Лебедев. – М.: Химия, -1988. – 592 с.: ил.

8. Платэ Н.А., Сливинский Е.В. Основы химии и технологии мономеров: учеб.пособие. / Н.А.Платэ, Е.В.Сливинский. – М.: МАИК Наука / Интерпериодика, -2002. – 696 с.: ил.


Введение…………………………………………………………………………3

2.Технологическая часть……………………………………………………….

2.1. Теоретические основы принятого метода производства………….5

2.2. Характеристика сырья и получаемого продукта…………………..9

2.3. Описание технологической схемы…………………………………12

2.4. Материальный расчёт производства……………………………….15

2.5. Описание устройства и принцип действия основного аппарата….20

3. Выводы по проекту………………………………………………………….22

4. Стандартизация………………………………………………………..........24

5. Список используемой литературы…………………………………………25

6. Спецификация………………………………………………………………26

7. Приложение А………………………………………………………………27

8. Приложение Б………………………………………………………………28

Бензол является органическим химическим соединением. Относится к классу простейших ароматических углеводородов. Производят его из каменноугольной смолы, при ее переработке получается бесцветная жидкость, имеющая своеобразный сладковатый запах.

Химическая формула – (C6H6,PhH)

Бензол хорошо растворяется в спирте и хлороформе. Отлично растворяет жиры, смолы, воски, серу, битум, каучук, линолеум. При возгорании сильно коптит, пламя яркое.

Токсичен и канцерогенен. Оказывает наркотическое, гепатотоксическое и гемотоксическое воздействие.

Применение в быту и на производстве

Бензол используется в химической, резиновой, полиграфической и фармацевтической промышленности.

Применяется для производства синтетических каучуков, волокон, резины, пластмасс. Из него изготавливают краски, лаки, мастики, растворители. Входит в состав моторных бензинов, является важным сырьем для изготовления различных лекарств.

Из бензола синтезируют другие продукты: этилбензол, диэтилбензол, изопропилбензол, нитробензол и анилин.

Совсем недавно бензол добавляли к моторному топливу, но из-за ужесточения экологических требований, эта добавка была запрещена. Новые стандарты позволяют его содержание в моторном топливе до одного процента, ввиду высокой токсичности.

Токсикологи находят бензол в продуктах питания, таких как яйца, консервированное мясо, рыба, орехи, овощи, фрукты. В организм человека с продуктами может поступить в день до 250 мкг бензола.

Как происходит отравление

Отравление бензолом происходит через органы дыхания, реже при приеме внутрь и попадании на неповрежденную кожу. Токсичность бензола очень высокая, при длительном взаимодействии может развиться хроническая интоксикация.

Острые отравления наблюдаются редко, они могут быть связаны с аварийными и несчастными случаями на производстве, возникшими из-за нарушений правил техники безопасности. Так, при чистке цистерн из-под бензола у работников может развиться молниеносная смерть.

Попадая в организм, бензол может вызывать раздражение нервной системы, глубокие изменения костного мозга и крови. Кратковременное попадание паров бензола в организм не вызывает изменений со стороны нервной системы.

Если произошло острое отравление, бензол и его гомологи обнаруживаются в мозге, печени, надпочечниках и крови. При хроническом отравлении он поступает в костный мозг и жировые ткани. Выделяется легкими в неизмененном виде.

Симптомы острого отравления бензолом:

  • головная боль;
  • синдромом наркотического действия;
  • головокружение;
  • шум в ушах,
  • судороги;
  • падение кровяного давления;
  • малый пульс;
  • раздражительность;
  • быстрая утомляемость;
  • общая слабость;
  • плохой сон;
  • депрессия;
  • тошнота и рвота.

При легких или стертых формах интоксикации изменения со стороны картины крови слабо заметны.
Если отравление бензолом имеет среднюю тяжесть, помимо указанных выше симптомов, появляется кровотечение из носа и десен. У женщин укорачивается менструальный период, идут обильные кровянистые выделения. Обычно такие явления сопровождаются анемией. Печень слегка увеличивается, ощущается болезненность.

При тяжелой интоксикации нередки жалобы на плохой аппетит, отрыжку, боли в правом подреберье. Слизистые оболочки и кожные покровы становятся очень бледные, иногда происходят спонтанные кровоизлияния. Печень сильно увеличивается, становится болезненной. Понижается кислотность и переваривающая способность.

Со стороны сердечно-сосудистой системы может начаться ишемия миокарда, тахикардия, сосудистая гипотония.

Нервная система при тяжелой интоксикации реагирует различно. Иногда отмечаются проявления гиперактивности, в других случаях появляется заторможенность, снижаются рефлексы нижних конечностей

Без своевременного лечения постепенно развивается алейкемический миелоз, реже лимфатическая лейкемия.

При исследовании костномозгового пунктата обнаруживается наличие атрофических процессов в костном мозге. В некоторых случаях наблюдается его полное опустошение.

При хронических отравлениях, которые чаще всего развиваются в производственных условиях, появляются изменения в составе крови.

Если руки часто соприкасаются с бензолом, кожа становится сухой, на ней появляются трещины, пузырьки, зуд, отечность.

Первая помощь и лечение

Главный принцип терапии и профилактики отравлений бензолом – это немедленное прекращение контакта с ним при первых симптомах отравления. При хронической бензольной интоксикации может произойти полное выздоровление, если своевременно прекращен контакт с бензолом. Если это не сделать, произойдет тяжелая интоксикация и, несмотря на различные методы терапии, лечение окажется безрезультатным.

При вдыхании паров бензола врачи отмечают следующую клиническую картину:

происходит возбуждение, схожее с алкогольным, в последующем больной теряет сознание, впадает в коматозное состояние. Лицо бледнеет, начинаются судороги, характерные мышечные подергивания. Слизистые оболочки красные, зрачки расширены. Ритм дыхания нарушен, артериальное давление снижено, пульс учащен. Из носа и десен возможно кровотечение.

В этом случае используют гипосульфит натрия, препараты серы и глюкозы, которые помогают ускорить процесс нейтрализации бензола и его продуктов окисления.

При острых интоксикациях нужно обеспечить приток свежего воздуха. Пострадавшему делают искусственное дыхание. При рвоте вводят внутривенно глюкозу, если нарушено кровообращение делают инъекции кофеина.

Проводится кровопускание, внутривенные вливания глюкозы, сердечные средства. Если больной слишком возбужден применяют бромистые препараты.

В тяжелых случаях при явно выраженной анемии применяют препараты, стимулирующие эритропоэз, витамин B12, фолиевую кислоту, препараты железа совместно с аскорбиновой или соляной кислотой. Делают дробные переливания крови.

Весьма эффективен витамин Р в сочетании с аскорбиновой кислотой. Чтобы предупредить развитие некротических явлений внутривенно вводят пенициллин и глюкозу.

При токсическом гепатите, появившемся вследствие хронического отравления бензолом, вводят липокаин, метионин, холин.

Если бензол принят внутрь, клиническая картина следующая: во рту и за грудиной больной ощущает невыносимое жжение, сильную боль в животе, сопровождающуюся рвотой, возбуждение, сменяющееся угнетением. Может произойти потеря сознания, начаться судороги, мышечные подергивания. Дыхание становится сначала учащенным, но вскоре замедляется. Изо рта больного ощущается запах горького миндаля. Резко снижается температура. Печень увеличена, обнаруживается токсическая гепатопатия.

При очень высоких концентрациях бензола, попавшего внутрь, лицо синеет, слизистые оболочки приобретают вишнево-красный цвет. Человек почти мгновенно теряет сознание, смерть наступает в течение нескольких минут. Если смерть после тяжелого отравления не наступила, здоровье сильно подрывается, и часто после длительной болезни все равно наступает смерть.

При попадании яда внутрь желудок промывают через зонд, внутрь вводят вазелиновое масло, сульфата натрия и в вену – раствор натрия тиосульфата, кордиамин и раствор глюкозы и аскорбиновую кислоту. Подкожно вводят раствор кофеина.

Внутримышечно вводится раствор тиамина, пиридоксина гидрохлорид и цианокобаламин. Назначаются антибиотики, для предупреждения инфекции. Если имеются кровотечения, вводят в мышцу викасол.

Если отравление легкое, требуется покой и тепло.

Профилактика

На производстве, где используется бензол, обязаны проводиться периодические медосмотры всех рабочих, которые контактируют с бензолом. В осмотре участвуют терапевт, невропатолог и гинеколог – по показаниям.

Не допускается принимать на работу, при которой возможен контакт с бензолом:

  • людей, имеющих органические заболевания ЦНС;
  • при всех болезнях системы крови и вторичном малокровии;
  • больных эпилепсией;
  • с выраженными невротическими состояниями;
  • при всех видах геморрагического диатеза;
  • при заболеваниях почек и печени.

Запрещено допускать к работе с бензолом беременных и кормящих женщин, несовершеннолетних.

ПОЛУЧЕНИЕ ЭТИЛБЕНЗОЛА

Этилбензол для производства стирола получается алкилированием бензола этиленом по реакции:

Наряду с основной реакцией протекает ряд побочных реакций, при которых образуются более глубоко алкилированные производные бензола: диэтилбензол С6Н6(С2Н5)2, триэтилбензол С6Н6(С2Н5)3, тетраэтилбензол С6Н6(С2Н5)4. Катализатором реакции алкилирования служит комплексное соединение, получаемое на основе хлорида алюминия, этилхлорида, бензола и алкилбензолов:

Реакция алкилирования протекает по следующей схеме.

Присоединение этилена к каталитическому комплексу:

Реакция обмена между каталитическим комплексом и бензолом с образованием этилбензола:

Хлорид алюминия может образовывать тройные комплексы не только с одним, но и с двумя, тремя и т. д. этильными радикалами которые при обменной реакции с бензолом дают полиалкилбензолы. Поэтому в реакционной смеси кроме этилбензола находятся диэтилбензол и другие полиалкилбензолы.

Комплексы могут вступать в обменные реакции не только с бензолом, но и с продуктами реакции, например с диэтилбензолом, тогда происходит процесс переалкилирования по схеме:

Так как реакция переалкилирования протекает одновременно с алкилированием в алкилатор вместе с бензолом подается также фракция полиалкилбензолов, выделенная из реакционной массы при ректификации. В результате всех указанных реакций устанавливается вполне определенный равновесный состав продуктов реакции, зависящий только от соотношения алкильных радикалов и бензольных ядер в реакционной смеси.

Бензол подается в количестве, соответствующем молярному соотношению бензол:этилен = (2,8-3,3):1. Образующаяся в процессе алкилирования реакционная масса в среднем содержит: 45-- 55% непрореагировавшего бензола, 26--35% этилбензола, 4--10% полиалкилбензолов.

Технологический процесс получения этилбензола состоит из двух основных стадий: алкилирование бензола этиленом и ректификация реакционной массы.

Алкилирование бензола этиленом

Процесс алкилирования бензола этиленом проводится в алкила- торе 1 (рис. 37) в среде этилхлорида при температуре 125--135°С и давлении 0,26--0,4 МПа. В алкилатор подаются: осушенная бензольная шихта, каталитический комплекс, фракция полиалкилбензолов, этилен, рециркулирующий каталитический комплекс, возвратный бензол.


Рис. 37.

1-- алкилатор, 2,3 -- конденсаторы, 4 -- теплообменник, 5, 10, 17, 22 -- отстойники; 8, 9, 13, 15, 18, 21, 24 -- насосы, 7, 12, 14, 20, 23 -- емкости; 8, 16 -- смесители, 11, 19 -- промывные колонны.

І -- бензол, II -- этилен; III -- этилхлорид, IV -- катализаторный комплекс; V -- полиалкилбензолы; VI -- отработанный каталитический комплекс; VII -- отдувки иа абсорбцию бензола, VIII -- избыточная вода; IX -- кислые отдувки, X -- отработанный раствор щелочн; XI -- конденсат; XII -- химически загрязненная вода, XIII -- реакционная масса, XIV -- полиалкилбензолы; XV -- нейтральные отдувки.

Реакция алкилирования идет с выделением теплоты, избыточное количество которой снимается рециркулирующим каталитическим комплексом испаряющимся бензолом. Бензол из верхней части алкилатора в смеси с абгазом направляется в конденсатор 2, охлаждаемый водой. Несконденсировавшиеся газы из конденсатора 2 направляются в конденсатор 3, охлаждаемый охлажденной водой. Отдувки после конденсатора 3 поступают на дальнейшее улавливание паров бензола. Бензольный конденсат из конденсаторов 2 и 3 самотеком сливается вниз алкилатора 1. Из алкилатора 1 реакционная масса через теплообменник 4, где охлаждается водой до 40--60 °С, направляется в отстойник 5 для отделения от циркулирующего каталитического комплекса. Отстоявшийся каталитический комплекс с низа отстойника 5 забирается насосом 6 и возвращается в алкилатор 1. Для поддержания активности катализатора в линию рециркулирующего комплекса подается этилхлорид. В случае снижения активности катализатора предусмотрен вывод отработанного каталитического комплекса на разложение. Реакционная масса из отстойника 5 собирается в емкость 7, откуда за счет давления ё системе алкилирования поступает в смеситель 8 на смешение с кислой водой, циркулирующей в системе разложения: отстойник 10-- насос 9--смеситель 8. Соотношение циркулирующей воды, подаваемой в смеситель, и реакционной массы составляет (l-2):1. Вода в систему разложения подается из сборника 12 насосом 13. Реакционная масса отстаивается от воды в отстойнике 10; нижний водный слой насосом 9 направляется в смеситель, а верхний слой -- реакционная масса -- самотеком стекает в промывную колонну и на вторичную промывку водой, подаваемой насосом 21 из промывной колонны 19. Из промывной колонны 11 реакционная масса самотеком поступает в сборник 14, откуда насосом 15 откачивается на нейтрализацию в смеситель 16. этилбензол реакция катализатор получение очистка

Нижний водный слой из промывной колонны 11 самотеком сливается в емкость 12 и насосом 13 подается в смеситель 8. Нейтрализация реакционной массы в смесителе 16 проводится 2--10%-ным раствором едкого натра. Соотношение реакционной массы и циркулирующего раствора едкого натра 1:1. Отделение реакционной массы от раствора щелочи происходит в отстойнике 17, откуда реакционная масса самотеком поступает в колонну 19 на отмывку от щелочи водным конденсатом. Нижний слой -- химически загрязненная вода -- из колонны сливается в емкость 20 и насосом 21 откачивается на промывку реакционной массы в колонну 11. Реакционная масса из верхней части колонны самотеком поступает в отстойник 22, затем собирается в промежуточную емкость 23 и откачивается на склад.

Выделение и очистка этилбензола

Реакционная масса, полученная при алкилировании бензола этиленом, подогревается в теплообменнике 1 (рис. 38) за счет теплоты полиалкилбензолов, в теплообменнике 2 за счет теплоты парового конденсата, в теплообменнике 3 за счет теплообмена с этилбензолом-ректификатом и в теплообменнике 4 за счет теплоты парового конденсата и подается в колонну 5 для выделения непрореагировавшего бензола. Пары бензола из верха колонны конденсируются в воздушном конденсаторе 7 и конденсаторе 8, охлаждаемом охлажденной водой. Несконденсировавшиеся газы после конденсатора 8 направляются на улавливание бензола. Конденсат -- возвратный бензол -- собирается в емкость 9, откуда часть его подается в колонну в виде флегмы, остальное количество через холодильник 11 откачивается на склад.

Кубовая жидкость колонны 5 насосом 12 подается в колонну 13 для получения этилбензола-ректификата. Обогрев колонны осуществляется паром через выносной кипятильник 14. Пары этилбензола-ректификата из верхней части колонны 13 поступают в конденсатор-испаритель 15, где конденсируются за счет испарения парового конденсата. Несконденсировавшиеся пары этилбензола подаютсяв конденсатор 16. Полученные конденсаты собираются в емкость 17, откуда насосом 18 часть их возвращается в колонну в виде флегмы, а остальное через теплообменник 3 направляется на склад.

Кубовая жидкость колонны 13, содержащая полиалкилбензолы и смолы, насосом 19 подается в колонну 20 для отделения полиалкилбензолов от смолы. Пары полиалкилбензолов из верха колонны 20 поступают на конденсацию. Конденсат стекает в емкость 24, откуда часть его подается в колонну в виде флегмы, остальное количество через теплообменник 1 откачивается на склад. Полиалкилбензольная смола из куба колонны 20 насосом 25 подается на склад или на установку получения сополимеров.


Режим работы колонн установки выделения этилбензола