Полный дифференциал и его применение к приближенным вычислениям. Применение дифференциала к приближенным вычислениям

23. Понятие дифференциала функции. Свойства. Применение дифференциала в приближенн ых вычислениях .

Понятие дифференциала функции

Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.

Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать  у/х=ƒ"(х)+α, где α→0 при ∆х→0, или ∆у=ƒ"(х) ∆х+α ∆х.

Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ"(х) ∆х и а ∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так кака второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆х:

Поэтому первое слагаемое ƒ"(х) ∆х называют главной частью приращения функции ∆у.

Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):

dy=ƒ"(х) ∆х. (1)

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у"=х"=1, то, согласно формуле (1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.

Поэтому формулу (1) можно записать так:

dy=ƒ"(х)dх, (2)

иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.

Из формулы (2) следует равенство dy/dx=ƒ"(х). Теперь обозначение

производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.

Дифференциал обладает следующими основными свойствами.

1. d(с )=0.

2. d(u+w-v)= du+dw-dv.

3. d(uv)=du·v+u·dv.

d(с u)= с d(u).

4. .

5. y = f (z ), , ,

Форма дифференциала инвариантна (неизменна): он всегда равен произведению производной функции на дифференциал аргумента, независимо от того, простым или сложным является аргумент.

Применение дифференциала к приближенным вычислениям

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ"(х) ∆х+α ∆х, где α→0 при ∆х→0, или ∆у=dy+α ∆х. Отбрасывая бесконечно малую α ∆х более высокого порядка, чем ∆х, получаем приближенное равенство

у≈dy, (3)

причем это равенство тем точнее, чем меньше ∆х.

Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции.

Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (3) широко применяется в вычислительной практике.

24. Первообразная функция и неопределенн ый интеграл .

ПОНЯТИЕ ПЕРВООБРАЗНОЙ ФУНКЦИИ И НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Функция F (х ) называется первообразной функцией для данной функции f (х ) (или, короче, первообразной данной функции f (х )) на данном промежутке, если на этом промежутке . Пример . Функция является первообразной функции на всей числовой оси, так как при любом х . Отметим, что вместе с функцией первообразной для является любая функция вида , где С - произвольное постоянное число (это следует из того, что производная постоянной равна нулю). Это свойство имеет место и в общем случае.

Теорема 1 . Если и - две первообразные для функции f (х ) в некотором промежутке, то разность между ними в этом промежутке равна постоянному числу. Из этой теоремы следует, что если известна какая-нибудь первообразная F (х ) данной функции f (х ), то все множество первообразных для f (х ) исчерпывается функциями F (х ) + С . Выражение F (х ) + С , где F (х ) - первообразная функции f (х ) и С - произвольная постоянная, называется неопределенным интегралом от функции f (х ) и обозначается символом , причем f (х ) называется подынтегральной функцией ; - подынтегральным выражением , х - переменной интегрирования ; ∫ - знак неопределенного интеграла . Таким образом, по определению если . Возникает вопрос: для всякой ли функции f (х ) существует первообразная, а значит, и неопределенный интеграл? Теорема 2 . Если функция f (х ) непрерывна на [a ; b ], то на этом отрезке для функции f (х ) существует первообразная . Ниже мы будем говорить о первообразных лишь для непрерывных функций. Поэтому рассматриваемые нами далее в этом параграфе интегралы существуют.

25. Свойства неопределенного и нтеграла. Интеграл ы от основных элементарных функций .

Свойства неопределенного интеграла

В приведенных ниже формулах f и g - функции переменной x , F - первообразная функции f , а, k, C - постоянные величины.

Интегралы элементарных функций

Список интегралов от рациональных функций

(первообразная от нуля есть константа, в любых пределах интегрирования интеграл от нуля равен нулю)

Список интегралов от логарифмических функций

Список интегралов от экспоненциальных функций

Список интегралов от иррациональных функций

(«длинный логарифм»)

список интегралов от тригонометрических функций , список интегралов от обратных тригонометрических функций

26. Метод замен ы переменной , метод интегрирования по частям в неопределенном интеграле .

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличнымили к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.

Понятие дифференциала

Пусть функция y = f (x ) дифференцируема при некотором значении переменной x . Следовательно, в точке x существует конечная производная

Тогда по определению предела функции разность

является бесконечно малой величиной при . Выразив из равенства (1) приращение функции, получим

(2)

(величина не зависит от , т. е. остаётся постоянной при ).

Если , то в правой части равенства (2) первое слагаемое линейно относительно . Поэтому при

оно является бесконечно малой того же порядка малости, что и . Второе слагаемое - бесконечно малая более высокого порядка малости, чем первое, так как их отношение стремится к нулю при

Поэтому говорят, что первое слагаемое формулы (2) является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.

Эту главную часть приращения функции называют дифференциалом данной функции в точке x и обозначают

Следовательно,

(5)

Итак, дифференциал функции y = f (x ) равен произведению её производной на приращение независимой переменной.

Замечание. Нужно помнить, что если x – исходное значение аргумента,

Наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (5) это видно из записи, в формуле (4) – нет.

Дифференциал функции можно записать в другой форме:

Геометрический смысл дифференциала. Дифференциал функции y = f (x ) равен приращению ординаты касательной, проведённой к графику этой функции в точке (x ; y ), при изменении x на величину .

Свойства дифференциала. Инвариантность формы дифференциала

В этом и следующем параграфах каждую из функций будем считать дифференцируемой при всех рассматриваемых значениях её аргументов.

Дифференциал обладает свойствами, аналогичными свойствам производной:



(С – постоянная величина) (8)

(9)

(10)

(12)

Формулы (8) – (12) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .

Рассмотрим дифференциал сложной функции. Пусть - сложная функция :

Дифференциал

этой функции, используя формулу для производной сложной функции, можно записать в виде

Но есть дифференциал функции , поэтому

(13)

Здесь дифференциал записан в том же виде, как и в формуле (7), хотя аргумент является не независимой переменной, а функцией . Следовательно, выражение дифференциала функции в виде произведения производной этой функции на дифференциал её аргумента справедливо независимо от того, является ли аргумент независимой переменной или функцией другой переменной. Это свойство называютинвариантностью (неизменностью) формы дифференциала.

Подчеркнём, что в формуле (13) нельзя заменить на , так как

для любой функции , кроме линейной.

Пример 2. Записать дифференциал функции

двумя способами, выражая его: через дифференциал промежуточной переменной и через дифференциал переменной x . Проверить совпадение полученных выражений.

Решение. Положим

а дифференциал запишется в виде

Подставляя в это равенство

Получаем

Применение дифференциала в приближенных вычислениях

Установленное в первом параграфе приближенное равенство

позволяет использовать дифференциал для приближенных вычислений значений функции.

Запишем приближенное равенство более подробно. Так как

Пример 3. Пользуясь понятием дифференциала, вычислить приближенно ln 1,01.

Решение. Число ln 1,01 является одним из значений функции y = ln x . Формула (15) в данном случае примет вид

Следовательно,

что является очень хорошим приближением: табличное значение ln 1,01 = 0,0100.

Пример 4. Пользуясь понятием дифференциала, вычислить приближенно

Решение. Число
является одним из значений функции

Так как производная этой функции

то формула (15) примет вид

получаем

(табличное значение

).

Пользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.

Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением:

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:

Умножая на 4/3, находим

Принимая табличное значение корня

за точное число, оценим по формулам (16) и (17) абсолютную и относительную погрешности приближенного значения:

По аналогии с линеаризацией функции одной переменной можно при приближенном вычислении значений функции нескольких переменных, дифференцируемой в некоторой точке, заменять ее приращение дифференциалом. Таким образом, можно находить приближенное значение функции нескольких (например, двух) переменных по формуле:

Пример.

Вычислить приближенное значение .

Рассмотрим функцию и выберем х 0 = 1, у 0 = 2. Тогда Δх = 1,02 – 1 = 0,02; Δу = 1,97 – 2 = -0,03. Найдем ,

Следовательно, учитывая, что f ( 1, 2) = 3, получим:

Дифференцирование сложных функций.

Пусть аргументы функции z = f (x, y) являются, в свою очередь, функциями переменных u и v : x = x (u, v), y = y (u, v). Тогда функция f тоже есть функция от u и v. Выясним, как найти ее частные производные по аргументам u и v, не делая непосредственной подстановки

z = f (x(u, v), y(u, v)). При этом будем предполагать, что все рассматриваемые функции имеют частные производные по всем своим аргументам.

Зададим аргументу u приращение Δ u, не изменяя аргумент v. Тогда

Если же задать приращение только аргументу v, получим: . (2.8)

Разделим обе части равенства (2.7) на Δu , а равенства (2.8) – на Δv и перейдем к пределу соответственно при Δu→ 0 и Δv→ 0. Учтем при этом, что в силу непрерывности функций х и у . Следовательно,

Рассмотрим некоторые частные случаи.

Пусть x = x(t), y = y(t). Тогда функция f (x,y) является фактически функцией одной переменной t , и можно, используя формулы (2.9) и заменяя в них частные производные х и у по u и v на обычные производные по t (разумеется, при условии дифференцируемости функций x(t) и y(t) ) , получить выражение для :

(2.10)

Предположим теперь, что в качестве t выступает переменная х , то есть х и у связаны соотношением у = у (х). При этом, как и в предыдущем случае, функция f является функцией одной переменной х. Используя формулу (2.10) при t = x и учитывая, что , получим, что

. (2.11)

Обратим внимание на то, что в этой формуле присутствуют две производные функции f по аргументу х : слева стоит так называемая полная производная , в отличие от частной, стоящей справа.



Примеры.

1. Пусть z = xy, где x = u ² + v, y = uv ². Найдем и . Для этого предварительно вычислим частные производные трех заданных функций по каждому из своих аргументов:

Тогда из формулы (2.9) получим:

(В окончательный результат подставляем выражения для х и у как функций u и v ).

2. Найдем полную производную функции z = sin (x + y ²), где y = cos x.

Инвариантность формы дифференциала.

Воспользовавшись формулами (2.5) и (2.9), выразим полный дифференциал функции z = f (x, y) , где x = x(u,v), y = y(u,v), через дифференциалы переменных u и v :

(2.12)

Следовательно, форма записи дифференциала сохраняется для аргументов u и v такой же, как и для функций этих аргументов х и у , то есть является инвариантной (неизменной).

Неявные функции, условия их существования. Дифференцирование неявных функций. Частные производные и дифференциалы высших порядков, их свойства.

Определение 3.1. Функция у от х , определяемая уравнением

F (x, y) = 0 , (3.1)

называется неявной функцией .

Конечно, далеко не каждое уравнение вида (3.1) определяет у как однозначную (и, тем более, непрерывную) функцию от х . Например, уравнение эллипса

задает у как двузначную функцию от х : для

Условия существования однозначной и непрерывной неявной функции определяются следующей теоремой:

Теорема 3.1 (без доказательства). Пусть:

1) функция F (x,y) определена и непрерывна в некотором прямоугольнике с центром в точке (х 0 , у 0) ;

2) F (x 0 , y 0) = 0 ;

3) при постоянном х F (x,y) монотонно возрастает (или убывает) с возрастанием у .

а) в некоторой окрестности точки (х 0 , у 0) уравнение (3.1) определяет у как однозначную функцию от х : y = f(x) ;

б) при х = х 0 эта функция принимает значение у 0 : f (x 0) = y 0 ;

в) функция f (x) непрерывна.

Найдем при выполнении указанных условий производную функции y = f (x) по х .

Теорема 3.2. Пусть функция у от х задается неявно уравнением (3.1), где функция F (x,y) удовлетворяет условиям теоремы 3.1. Пусть, кроме того, - непрерывные функции в некоторой области D , содержащей точку (х,у), координаты которой удовлетворяют уравнению (3.1), причем в этой точке . Тогда функция у от х имеет производную

По аналогии с линеаризацией функции одной переменной можно при приближенном вычислении значений функции нескольких переменных, дифференцируемой в некоторой точке, заменять ее приращение дифференциалом. Таким образом, можно находить приближенное значение функции нескольких (например, двух) переменных по формуле:

Пример.

Вычислить приближенное значение
.

Рассмотрим функцию
и выберемх 0 = 1, у 0 = 2. Тогда Δх = 1,02 – 1 = 0,02; Δу = 1,97 – 2 = -0,03. Найдем
,

Следовательно, учитывая, что f ( 1, 2) = 3, получим:

Дифференцирование сложных функций.

Пусть аргументы функции z = f (x , y ) u и v : x = x (u , v ), y = y (u , v ). Тогда функция f тоже есть функция от u и v . Выясним, как найти ее частные производные по аргументам u и v , не делая непосредственной подстановки

z = f (x(u, v), y(u, v)). При этом будем предполагать, что все рассматриваемые функции имеют частные производные по всем своим аргументам.

Зададим аргументу u приращение Δ u , не изменяя аргумент v . Тогда

Если же задать приращение только аргументу v , получим: . (2.8)

Разделим обе части равенства (2.7) на Δu , а равенства (2.8) – на Δv и перейдем к пределу соответственно при Δu 0 и Δv 0. Учтем при этом, что в силу непрерывности функций х и у . Следовательно,

Рассмотрим некоторые частные случаи.

Пусть x = x (t ), y = y (t ). Тогда функция f (x , y ) является фактически функцией одной переменной t , и можно, используя формулы (2.9) и заменяя в них частные производные х и у по u и v на обычные производные по t (разумеется, при условии дифференцируемости функций x (t ) и y (t ) ) , получить выражение для :

(2.10)

Предположим теперь, что в качестве t выступает переменная х , то есть х и у связаны соотношением у = у (х). При этом, как и в предыдущем случае, функция f является функцией одной переменной х. Используя формулу (2.10) при t = x и учитывая, что
, получим, что

. (2.11)

Обратим внимание на то, что в этой формуле присутствуют две производные функции f по аргументу х : слева стоит так называемая полная производная , в отличие от частной, стоящей справа.

Примеры.

Тогда из формулы (2.9) получим:

(В окончательный результат подставляем выражения для х и у как функций u и v ).

    Найдем полную производную функции z = sin (x + y ²), где y = cos x .

Инвариантность формы дифференциала.

Воспользовавшись формулами (2.5) и (2.9), выразим полный дифференциал функции z = f (x , y ) , где x = x (u , v ), y = y (u , v ), через дифференциалы переменных u и v :

(2.12)

Следовательно, форма записи дифференциала сохраняется для аргументов u и v такой же, как и для функций этих аргументов х и у , то есть является инвариантной (неизменной).

Неявные функции, условия их существования. Дифференцирование неявных функций. Частные производные и дифференциалы высших порядков, их свойства.

Определение 3.1. Функция у от х , определяемая уравнением

F (x, y) = 0 , (3.1)

называется неявной функцией .

Конечно, далеко не каждое уравнение вида (3.1) определяет у как однозначную (и, тем более, непрерывную) функцию от х . Например, уравнение эллипса

задает у как двузначную функцию от х :
для

Условия существования однозначной и непрерывной неявной функции определяются следующей теоремой:

Теорема 3.1 (без доказательства). Пусть:

а) в некоторой окрестности точки (х 0 , у 0 ) уравнение (3.1) определяет у как однозначную функцию от х : y = f (x ) ;

б) при х = х 0 эта функция принимает значение у 0 : f (x 0 ) = y 0 ;

в) функция f (x ) непрерывна.

Найдем при выполнении указанных условий производную функции y = f (x ) по х .

Теорема 3.2. Пусть функция у от х задается неявно уравнением (3.1), где функция F (x , y ) удовлетворяет условиям теоремы 3.1. Пусть, кроме того,
- непрерывные функции в некоторой областиD , содержащей точку (х,у), координаты которой удовлетворяют уравнению (3.1), причем в этой точке
. Тогда функцияу от х имеет производную

(3.2)

Пример. Найдем , если
. Найдем
,
.

Тогда из формулы (3.2) получаем:
.

Производные и дифференциалы высших порядков.

Частные производные функции z = f (x , y ) являются, в свою очередь, функциями переменных х и у . Следовательно, можно найти их частные производные по этим переменным. Обозначим их так:

Таким образом, получены четыре частные производные 2-го порядка. Каждую из них можно вновь продифференцировать по х и по у и получить восемь частных производных 3-го порядка и т.д. Определим производные высших порядков так:

Определение 3.2. Частной производной n -го порядка функции нескольких переменных называется первая производная от производной (n – 1)-го порядка.

Частные производные обладают важным свойством: результат дифференцирования не зависит от порядка дифференцирования (например,
). Докажем это утверждение.

Теорема 3.3. Если функция z = f (x , y ) и ее частные производные
определены и непрерывны в точкеМ (х, у) и в некоторой ее окрестности, то в этой точке

(3.3)

Следствие . Указанное свойство справедливо для производных любого порядка и для функций от любого числа переменных.