Полёт мысли. Космические проекты, до которых не додумался даже Маск

В этой статье будет затронута такая тема, как космические корабли будущего: фото, описание и технические характеристики. Прежде чем перейти непосредственно к теме, предлагаем читателю короткий экскурс в историю, который поможет оценить современное состояние космической отрасли.

Космос в период холодной войны был одной из арен, на которых велось противостояние между США и СССР. Главным стимулом развития космической отрасли в те годы было именно геополитическое противостояние сверхдержав. Огромные ресурсы были брошены на программы освоения космоса. Например, на реализацию проекта под названием "Аполлон", основная цель которого - высадка на поверхность Луны человека, правительство Соединенных Штатов потратило примерно 25 млрд долларов. Эта сумма для 1970-х годов была просто гигантской. Бюджету Советского Союза лунная программа, которой осуществиться так и не было суждено, обошлась в 2,5 млрд рублей. 16 млн рублей стоила разработка космического корабля "Буран". При этом ему было суждено совершить только один космический полет.

Программа "Спейс шаттл"

Его американскому аналогу повезло намного больше. "Спейс шаттл" совершил 135 запусков. Однако "шаттл" этот оказался не вечен. Последний его запуск состоялся 8 июля 2011 года. Американцы за время осуществления программы выпустили 6 "шаттлов". Один из них являлся прототипом, не осуществлявшим никогда космических полетов. 2 других и вовсе потерпели катастрофу.

Программу "Спейс шаттл" с экономической точки зрения вряд ли можно считать успешной. Гораздо более экономичными оказались корабли одноразового использования. К тому же вызвала сомнения безопасность полетов на "шаттлах". В результате двух катастроф, произошедших в период их эксплуатации, жертвами стали 14 астронавтов. Однако причина таких неоднозначных итогов путешествий заключается не в техническом несовершенстве кораблей, а в сложности самой концепции предназначенных для многоразового использования космических аппаратов.

Значение космических аппаратов "Союз" сегодня

В итоге "Союз", космические корабли одноразового использования из России, которые были разработаны еще в 1960-е годы, стали единственными аппаратами, осуществляющими сегодня пилотируемые полеты на МКС. Следует отметить, что это не означает их превосходства над "Спейс шаттлом". Они обладают рядом существенных недостатков. Например, грузоподъемность их ограничена. Также использование такого рода аппаратов приводит к тому, что накапливается орбитальный мусор, который остается после их эксплуатации. Очень скоро космические полеты на "Союзе" станут историей. На сегодняшний день нет реальных альтернатив. Все еще находятся в стадии разработки космические корабли будущего, фото которых представлены в этой статье. Заложенный в концепции многоразового использования кораблей огромный потенциал зачастую даже в наше время остается технически нереализуемым.

Заявление Барака Обамы

Барак Обама в июле 2011 года заявил о том, что главной целью астронавтов из США на ближайшие десятилетия является полет на Марс. Космическая программа "Созвездие" стала одной из программ, которые NASA осуществляет в рамках полета на Марс и освоения Луны. Для этих целей, конечно, нужны новые космические корабли будущего. Как же обстоит дело с их разработкой?

Космический корабль "Орион"

Основные надежды возлагаются на создание "Ориона" - нового космического корабля, а также ракет-носителей "Арес-5" и "Арес-1" и лунного модуля "Альтаир". В 2010 году правительство Соединенных Штатов решило свернуть программу "Созвездие", но, несмотря на это, NASA все-таки получило возможность дальнейшей разработки "Ориона". В ближайшем будущем планируется осуществить первый испытательный беспилотный полет. Предполагается, что аппарат во время этого полета удалится от Земли на 6 тыс. км. Это примерно в 15 раз больше, чем расстояние, на котором находится от нашей планеты МКС. Корабль после тестового полета возьмет курс на Землю. Новый аппарат в атмосферу может входить, развивая скорость 32 тыс. км/ч. "Орион" по данному показателю превосходит на 1,5 тыс. км/ч легендарный "Аполло". На 2021 год намечено осуществление первого пилотируемого запуска.

В роли ракет-носителей этого корабля, согласно планам NASA, будут выступать "Атлас-5" и "Дельта-4". Было решено отказаться от разработки "Ареса". Для освоения дальнего космоса, кроме того, американцы проектируют SLS - новую ракету-носитель.

Концепция "Ориона"

"Орион" является кораблем частично многоразового использования. Он находится концептуально ближе к "Союзу", чем к "Шаттлу". Большинство космических кораблей будущего являются частично многоразовыми. Данная концепция предполагает то, что жидкую капсулу корабля после посадки на Землю можно будет использовать повторно. Это позволит совместить экономичность эксплуатации "Аполло" и "Союза" с функциональной практичностью многоразовых кораблей. Это решение является переходным этапом. По всей видимости, в далекой перспективе станут многоразовыми все космические корабли будущего. Такова тенденция развития космической отрасли. Поэтому можно сказать, что советский "Буран" - прототип космического корабля будущего, как и американский "Спейс шаттл". Они сильно опередили свое время.

CST-100

Слова "предусмотрительность" и "практичность", похоже, характеризуют американцев как нельзя лучше. Правительство этой страны приняло решение не взваливать на плечи "Ориона" все космические амбиции. Сегодня по заказу NASA сразу несколько частных фирм разрабатывают свои космические корабли будущего, которые призваны заменить аппараты, используемые сегодня. Компания Boeing, например, разрабатывает CST-100 - частично многоразовый и пилотируемый корабль. Он предназначен для коротких путешествий на орбиту Земли. Основной задачей его будет доставка грузов и экипажа на МКС.

Планируемые запуски CST-100

До семи человек может составлять экипаж корабля. Во время разработки CST-100 было уделено особое внимание комфорту астронавтов. Было существенно увеличено жилое пространство его по сравнению с кораблями прошлого поколения. Вероятно, запуск CST-100 будет производиться с использованием ракет-носителей "Фалькон", "Дельта" или "Атлас". "Атлас-5" при этом является самым подходящим вариантом. С помощью воздушных подушек и парашюта будет осуществляться посадка корабля. Согласно планам фирмы Boeing, CST-100 в 2015 году ждет целая серия испытательных запусков. Беспилотными будут первые 2 полета. Основная задача их - вывести на орбиту аппарат и протестировать системы безопасности. Пилотируемая стыковка с МКС планируется во время третьего полета. CST-100 в случае успешных испытаний очень скоро придет на замену "Прогрессу" и "Союзу" - российским кораблям, монопольно осуществляющим сегодня пилотируемые полеты на МКС.

Разработка "Дракона"

Другим частным кораблем, призванным выполнять доставку экипажа и грузов на МКС, будет разработанный фирмой SpaceX аппарат. Это "Дракон" - моноблочный корабль, частично многоразовый. Планируется построить 3 модификации данного аппарата: автономную, грузовую и пилотируемую. Как и у CST-100, экипаж может составлять до семи человек. Корабль в грузовой модификации может брать на борт 4 человека и 2,5 тонны груза.

"Дракон" хотят в будущем использовать также для полета на Марс. Для этого создается специальная версия этого корабля под названием "Рэд драгон". Беспилотный полет этого аппарата на Красную планету состоится, согласно планам космического руководства США, в 2018 году.

Конструктивная особенность "Дракона" и первые полеты

Многоразовость является одной из особенностей "Дракона". Топливные баки и часть энергетических систем после полета будет спускаться вместе с жилой капсулой на Землю. Затем их можно использовать вновь для космических полетов. Данная конструктивная особенность выгодно отличает "Дракон" от большинства других перспективных разработок. "Дракон" и CST-100 в ближайшем будущем будут дополнять друг друга и служить в качестве "подстраховки". Если один из этих типов корабля не сможет по какой-то причине выполнить задачи, поставленные перед ним, то часть его работы возьмет на себя другой.

Впервые "Дракон" был выведен на орбиту в 2010 году. Успешно завершился испытательный беспилотный полет. А в 2012 году, 25 мая, этот аппарат пристыковался к МКС. К тому моменту на корабле системы автоматической стыковки не было предусмотрено, и пришлось для ее осуществления воспользоваться манипулятором космической станции.

"Дрим Чейзер"

"Дрим Чейзер" - еще одно название космических кораблей будущего. Нельзя не упомянуть этот проект компании SpaceDev. Также в его разработке приняли участие 12 партнеров компании, 3 университета США и 7 центров NASA. Данный корабль существенно отличается от других космических разработок. Он напоминает внешне "Спейс шаттл" в миниатюре и может осуществлять посадку так же, как и обычный самолет. Основные его задачи схожи с задачами, стоящими перед CST-100 и "Драконом". Аппарат предназначен для доставки экипажа и грузов на околоземную орбиту, а выводиться туда он будет с помощью "Атласа-5".

А что у нас?

А чем же может ответить Россия? Каковы российские космические корабли будущего? РКК "Энергия" в 2000 году начала проектирование космического комплекса "Клипер", являющегося многоцелевым. Этот космический аппарат многоразовый, напоминающий чем-то внешне "шаттл", уменьшенный в размерах. Он предназначен для решения различных задач, таких как доставка груза, космический туризм, эвакуация экипажа станции, полеты на другие планеты. Определенные надежды возлагались на этот проект.

Предполагалось, что космические корабли будущего России будут вскоре сконструированы. Однако из-за отсутствия финансирования пришлось с этими надеждами распрощаться. Проект закрыли в 2006 году. Технологии, которые были разработаны за эти годы, планируется использовать для проектирования ППТС, известной также как проект "Русь".

Особенности ППТС

Лучшие космические корабли будущего, как полагают специалисты из России, - это ППТС. Именно этой космической системе суждено будет стать новым поколением космических аппаратов. Она будет способна заменить "Прогрессы" и "Союзы", стремительно устаревающие. Разработкой этого корабля, как в прошлом "Клипера", занимается сегодня РКК "Энергия". ПТК НК станет базовой модификацией этого комплекса. Основная задача его, опять же, будет заключаться в доставке экипажа и грузов на МКС. Однако в отдаленной перспективе находится разработка модификаций, которые будут способны летать на Луну, а также выполнять различные исследовательские миссии, продолжительные по времени.

Сам корабль должен стать частично многоразовым. Будет повторно использована жидкая капсула после совершения посадки, а вот двигательно-агрегатный отсек - не будет. Любопытной особенностью данного корабля является возможность его посадки без парашюта. Реактивная система будет применяться для торможения и приземления на земную поверхность.

Новый космодром

В отличие от "Союзов", которые взлетают с расположенного в Казахстане космодрома "Байконур", новые корабли планируется запускать со строящегося в Амурской области космодрома "Восточный". 6 человек составит экипаж. Аппарат может также брать груз весом до 500 кг. Корабль в беспилотной версии может доставлять грузы до 2-х тонн весом.

Проблемы, стоящие перед разработчиками ППТС

Одной из основных проблем, стоящих перед проектом ППТС, является отсутствие ракет-носителей с необходимыми характеристиками. Основные технические моменты космического аппарата сегодня проработаны, однако в весьма затруднительное положение ставит его разработчиков отсутствие ракеты-носителя. Предполагается, что она будет близка по характеристикам к "Ангаре", которая была разработана еще в 90-е годы.

Другой серьезной проблемой, как ни странно, является цель проектирования ППТС. Едва ли Россия сегодня может позволить себе осуществление амбициозных программ по освоению Марса и Луны, аналогичных тем, которые претворяют в жизнь Соединенные Штаты. Даже если космический комплекс будет успешно разработан, скорее всего, единственной его задачей останется доставка экипажа и грузов на МКС. До 2018 года отложено начало испытаний ППТС. Перспективные аппараты из США к этому времени, скорее всего, уже возьмут на себя функции, выполняемые сегодня российскими кораблями "Прогресс" и "Союз".

Туманные перспективы космических полетов

Фактом является то, что мир сегодня остается лишенным романтики космических полетов. Речь, конечно, идет не о космическом туризме и запуске спутников. Можно не беспокоиться за эти сферы космонавтики. Полеты на МКС очень важны для космической отрасли, однако срок пребывания на орбите самой МКС ограничен. В 2020 году планируется ликвидировать эту станцию. А пилотируемые космические корабли будущего являются составной частью конкретной программы. Нельзя разрабатывать новый аппарат в случае отсутствия представлений о стоящих перед ним задачах. Не только для доставки экипажей и грузов МКС проектируются новые космические корабли будущего в США, но также для полетов на Луну и Марс. Однако данные задачи от повседневных земных забот настолько далеки, что нам вряд ли стоит ожидать в ближайшие годы значительных прорывов в сфере космонавтики. Космические угрозы остаются фантастикой, поэтому нет смысла конструировать боевые космические корабли будущего. И, конечно, у держав Земли множество других забот, кроме борьбы друг с другом за место на орбите и других планетах. Строительство таких аппаратов, как военные космические корабли будущего, поэтому также нецелесообразно.

Однако «Интерстеллар» является просто научной фантастикой, а доктор Уайт, в свою очередь, работает во вполне реальной сфере разработки продвинутых технологий для космических передвижений в лаборатории NASA. Здесь уже нет места научной фантастике. Здесь реальная наука. И если отбросить все проблемы, связанные с урезанным бюджетом аэрокосмического агентства, то следующие слова Уайта выглядят вполне многообещающе:

«Возможно, опыт «Стартрека» в рамках нашего времени не является настолько уж и удаленной возможностью».

Другими словами, доктор Уайт хочет сказать, что он и его коллеги не заняты созданием какого-то гипотетического фильма, или простыми 3D-набросками и идеями, связанными с варп-двигателем. Они не просто считают, что создание варп-двигателя в реальной жизни представляется с теоретической точки зрения возможным. Они на самом деле разрабатывают первый варп-двигатель:

«Работая в лаборатории Eagleworks, в глубоких недрах Космического центра Джонсона, принадлежащего NASA, доктор Уайт и его команда ученых стараются найти лазейки, которые бы позволили воплотить мечту в реальность. Команда уже «создала симуляционный стенд для теста специального интерферометра, за счет которого ученые попытаются сгенерировать и определить микроскопические варп-пузыри. Устройство получило название интерферометр варп-поля Уайта-Джеди».

Сейчас это может показаться незначительным достижением, однако те открытия, которые стоят за этим изобретением, могут оказаться бесконечно полезными в дальнейших исследованиях.

«Несмотря на то, что это лишь небольшое продвижение в этом направлении, оно уже может являться доказательством существования самой возможности варп-двигателя, как в свое время являлся показ Чикагской поленницы (первого искусственного ядерного реактора). В декабре 1942 года была проведена первая в истории демонстрация управляемой самоподдерживающейся цепной ядерной реакции, в результате которой было выработано целых полватта электрической энергии. Вскоре после демонстрации, в ноябре 1943 года, был запущен реактор мощностью уже около четырех мегаватт. Приведение доказательства существования является критическим моментом для научной идеи и может стать отправной точкой в развитии технологий».

Если работа ученых в конечном итоге окажется успешной, то, по мнению доктора Уайта, будет создан двигатель, которой сможет доставить нас до Альфы Центавра «в течение двух недель по меркам земного времени». При этом течение времени на корабле будет таким же, как и на Земле.

«Приливные силы внутри варп-пузыря не будут вызывать проблем у человека, и все путешествие будет восприниматься им так, как если бы он находился в условиях нулевого ускорения. При включении варп-поля никого не притянет с огромной силой к корпусу корабля, нет, в этом бы случае путешествие оказалось бы очень коротким и трагичным».


Звездные корабли и исследования космоса всегда были одной из основных тем научной фантастики. На протяжении многих лет писатели и режиссеры пытались фантазировать, на что способны космические корабли, и мечтали какими они смогут стать в будущем. В этом обзоре самые интересные и знаковые звездолеты, которые встречались в научной фантастике.

1. Serenity


сериал «Светлячок»
Корабль «Serenity» («Безмятежность») под руководством капитана Малькольма Рейнольдса можно было увидеть в сериале Firefly («Светлячок»). «Serenity»- это корабль класса Firefly, впервые приобретенный Рейнольдсом вскоре после галактической гражданской войны. Определяющей чертой корабля является отсутствие на нем оружия. Когда экипаж попадает в беду, он должен использовать всю свою изобретательность, чтобы выбраться из нее.

2. Derelict


франшиза «Чужой»
Названный «Derelict» (Заброшенный) и фигурирующий под кодовым названием Origin, инопланетный космический корабль был найден на LV-426 в фильме «Чужой». Он был впервые обнаружен корпорацией Weyland-Yutani, после чего его исследовала команда Nostromo. Никто не знает, как он попал на планету или кто его пилотировал. Единственные останки, которые могли быть потенциальным пилотом, были окаменелым существом. В этом зловещем корабле размещались яйца ксеноморфов.

3. Discovery 1


фильм «Космическая одиссея»
Фильм 2001 года - классика фантастических фильмов, а космический корабль «Discovery 1» в нем является почти таким же знаковым. Построенный для пилотируемой миссии на Юпитер, «Discovery 1» не был оснащен оружием, но у него была одна из самых передовых систем искусственного интеллекта, известных человеку (HAL 9000).

4. Battlestar Galactica


фильм «Звездный крейсер «Галактика»
«Battlestar Galactica» из одноименного фильма («Звездный крейсер «Галактика») имеет дизайн настоящего убийцы и легендарную историю. Он считался реликвией и должен был быть выведен из эксплуатации, но стал единственным защитником человечества после нападения Сайлона на Двенадцать колоний.

5. Bird of Prey


франшиза «Звездный путь»
«Bird of Prey» («Хищная птица») был военный корабль Империи Клингонов в «Звездном пути» («Star Trek»). В то время как его огневая мощь варьировалась от корабля к кораблю, обычно «Птицы» использовали фотонные торпеды. Они считались наиболее опасными из-за того, что были оснащены маскирующим устройством.

6. Normandy SR-2


видеоигра «Mass Effect 2»
«Normandy SR-2» имеет особенно крутой внешний дизайн. Будучи преемником SR-1, он был построен, чтобы помочь командиру Шепарду остановить похищения людей расой Коллекционеров. Корабль оснащен высокотехнологичным вооружением и средствами защиты и постоянно усовершенствуется на протяжении всей игры.

7. USS Enterprise


франшиза «Звездный путь»
Как же можно не включить в данный перечень «USS Enterprise» («Энтерпрайз») из «Звездного пути» («Star Trek»). Конечно, многим фанатам данной саги будет интересно, какую версию корабля стоит выбрать. Естественно же, это будет неповторимый NCC-1701 под капитанством самого Джеймса Кирка.

8. Imperial Star Destroyer


франшиза «Звездные войны»
«Imperial Star Destroyer» был частью огромного флота Империи, который поддерживал контроль и порядок во всей галактике. Обладая огромными размерами и большим количеством оружия, годами он символизировал господствующую власть Империи.

9. Tie Fighter


франшиза «Звездные войны»
«Tie Fighter» - один из самых крутых и уникальных кораблей в галактике. Хотя у него нет щитов, гиперпривода или даже систем жизнеобеспечения, его быстрый двигатель и маневренность делают его тяжелой целью для противника.

10. X-Wing


франшиза «Звездные войны»
Используемый некоторыми из лучших пилотов-истребителей в галактике, «Tie Fighter» является звездолетом, который выбрало в качестве вооружения повстанцы в «Звездных войнах». Именно он сыграл ключевую роль в битве при Явине и битве при Эндоре. Крылья этого истребителя, вооруженного четырьмя лазерными пушками и протонными торпедами, раскладывались в форму буквы «X» при атаке.

11. Milano


франшиза «Хранители Галактики»
В фильме «Хранители Галактики» «Милано» был звездным кораблем класса «M-Ship», который использовал Звездный лорд, чтобы найти таинственный шар и продать его, дабы избавиться от Йонды и его банды. Позднее он сыграл ключевую роль в битве при Ксандаре. Звездный лорд назвал корабль в подруги детства, Алиссы Милано.

12. USCSS Nostromo


франшиза «Звездные войны»
Космический буксир «USCSS Nostromo» («Ностромо»), которым руководил капитан Артур Даллас исследовал Derelict, что привело к возможному рождению одиночного ксеноморфа.

13. Millenium Falcon


франшиза «Звездные войны»
The «Millenium Falcon» («Тысячелетний ястреб») - это, без сомнения, лучший космический корабль во всей научной фантастике. Его супер крутой дизайн, изношенный внешний вид, невероятная скорость, а также тот факт, что он пилотируется Ханом Соло, отличает его от остальных. Лэндо Калриссиан, который проиграл Хану Соло корабль сказал: «Это самый быстрый кусок мусора в галактике».

14. Trimaxion Drone


фильм «Полет навигатора»
«Trimaxion Drone» - космический аппарат в фильме «Полет навигатора». Он пилотируется компьютером с искусственным интеллектом и выглядит как хромированная ракушка. Способности корабля довольно выдающиеся, он способен летать быстрее скорости света и путешествовать во времени.

15. Slave I


франшиза «Звездные войны»
«Slave I» («Раб 1») - патрульно-атакующий корабль типа «Огневержец-31», который использовал знаменитый Боба Фетт в «Звездных войнах». В фильме «Империя наносит ответный удар» Slave I привез замороженного в карбоните Хана Соло Джаббе Хатту. Наиболее характерной особенностью «Slave I» является его вертикальное положение во время полета и горизонтальное во время посадки.

БОНУС


В продолжение темы рассказ про . Сложно поверить, что это реальность.

Краткий конспект встречи с Виктором Хартовым, генеральным конструктором Роскосмоса по автоматическим космическим комплексам и системам, в прошлом гендиректором НПО им. С.А.Лавочкина. Встреча прошла в Музее космонавтики в Москве, в рамках проекта “Космос без формул ”.


Полный конспект беседы.

Моя функция проведение единой научной технической политики. Я всю жизнь отдал автоматическому космосу. У меня есть некоторые мысли, я с вами поделюсь, а потом интересно ваше мнение.

Автоматический космос многогранен, и в нем я бы выделил 3 части.

1-я - прикладной, промышленный космос. Это связь, дистанционное зондирование Земли, метеорология, навигация. ГЛОНАСС, GPS это искусственное навигационное поле планеты. Тот, кто создает его, не получает никакой выгоды, выгоду получают те, кто его использует.

Съемка Земли очень коммерческая сфера. В этой области действуют все нормальные законы рынка. Спутники надо делать быстрее, дешевле и качественнее.

2-я часть - научный космос. Самое острие познания человечеством Вселенной. Понимать, как она образовалась 14 млрд лет тому назад, законы ее развития. Как шли процессы ев соседних планетах, как сделать так, чтобы Земля не стала похожа на них?

Барионная материя, которая вокруг нас - Земля, Солнце, ближайшие звезды, галактики - все это только 4-5% от общей массы Вселенной. Есть темная энергия, темная материя. Какие мы с вами цари природы, если все известные законы физики - всё только на 4%. Сейчас к этой проблеме «копают тоннель» с двух сторон. С одной стороны: Большой адронный коллайдер, с другой - астрофизика, за счет изучения звезд и галактик.

Мое мнение, что сейчас надсажать возможности и ресурсы человечства на тот же полет на Марс, травить нашу планету тучей пусков, сжигая озоновый слой - это не самое правильное действие. Мне кажется, что мы торопимся, пытаясь своими паровозными силами решить задачу, над которой работать надо не суетясь, с полным пониманием природы Вселенной. Найти следующий слой физики, новые законы, позволяющие преодолеть все это.

Сколько это будет длиться? Неизвестно, но надо нарабатывать данные. И здесь роль космоса велика. Тот же Hubble, работающий массу лет, приносит пользу, скоро будет смена James Webb . Чем научный космос отличается кардинально - это тем, что уже умеет человек, второй раз делать не надо. Нужно делать новое и следующее. Каждый раз новая целина - новые шишки, новые проблемы. Редко научные проекты делаются в тот срок, который планировали. Мир к подобному относится достаточно спокойно, кроме нас. У нас есть закон 44-ФЗ: если не сдал вовремя проект - то сразу штрафы, разоряющие фирму.

Но у нас уже летает "Радиоастрон ", которому в июле будет 6 лет. Уникальный спутник. У него 10-метровая антенна высокой точности. Главная его особенность в том, что он работает вместе с наземными радиотелескопами, причем в режиме интерферометра, и очень синхронно. Ученые просто плачут от счастья, особенно академик Николай Семенович Кардашев, который в 1965 году издал статью, где он обосновал возможность этого опыта. Над ним смеялись, а сейчас он счастливый человек, который задумал это и видит сейчас результаты.

Хотелось бы чтобы наша космонавтика почаще счастливила ученых и запускала побольше таких передовых проектов.

Следующий "Спектр-РГ" находится в цехе, работа идет. Он полетит на полтора миллионов километров от Земли в точку L2, мы там впервые будем работать, ждем с неким трепетом.

3-я часть - «новый космос». О новых задачах в космосе для автоматов на околоземной орбите.

Обслуживание на орбите. Это инспекция, модернизация, ремонты, заправка. Задача очень интересная с точки зрения инженерии, и для военных интересно, но экономически очень дорогая, пока возможность обслуживания превышает стоимость обслуживаемого аппарата, поэтому такое целесообразно для уникальных миссий.

Когда спутники летают столько, сколько хочешь, возникает две проблемы. Первая - аппараты морально стареют. Спутник живой еще, а на Земле уже сменились стандарты, протоколы новые, диаграммы и так далее. Вторая проблема - кончается топливо.

Разрабатываются полностью цифровые полезные нагрузки. Путем программирования им можно менять модуляцию, протоколы, назначение. Вместо спутника связи аппарат может стать спутником-ретранслятором. Эта тема очень интересная, я уж про военное применение не говорю. А также она снижает производственные затраты. Это первый тренд.

Второй тренд - это заправка, обслуживание. Сейчас уже ставятся опыты. Проекты предполагают обслуживание спутников, которые делались без учета этого фактора. Кроме заправки будет отрабатываться еще и доставка дополнительной полезной нагрузки, достаточно автономной.

Следующий тренд - многоспутниковость. Постоянно растут потоки. Добавляется М2М - этот интернет вещей, системы виртуального присутствия, и многое другое. Все хотят пользоваться потоками с мобильных устройств, с минимальными задержками. На низкой орбите у спутника снижаются требования по мощности, снижаются объемы аппаратуры.

SpaceX подала в федеративную комиссию по связи США заявку на создание системы на 4000 космических аппаратов для мировой высокоскоростной сети. В 2018 году OneWeb начинает развертывать систему, состоящую сначала из 648 спутников. Недавно расширили проект до 2000 спутников.

Примерная такая же картина наблюдается в области ДЗЗ - нужно в любой момент времени видеть любую точку планеты, в максимальном количестве спектров, с максимальными деталями. Нужно поместить на низкую орбиту чертову тучу мелких спутников. И создать супер-архив, куда будет сбрасываться информация. Это даже не архив, а актуализированная модель Земли. И любое количество клиентов может брать то, что им надо.

Но картинки - это первый этап. Всем нужны данные обработанные. Это та область, где есть простор для творчества - как из этих картинок, в разных спектрах, «намыть» прикладные данные.

Но что значит многоспутниковая система? Спутники должны быть дешевыми. Спутник должен быть легким. Заводу с идеальной логистикой ставят задачу производить по 3 штуки в день. Сейчас делают один спутник в год или в полтора. Нужно научиться решать целевую задачу, используя эффект многоспутниковости. Когда спутников много, они могут решать задачу как один спутник, например создать синтезированную апертуру, вот как «Радиоастрон».

Еще один тренд - перевод любой задачи в плоскость вычислительных задач. Например, радиолокация входит в острое противоречие с идеей маленького легкого спутника, там нужна мощность, чтобы сигнал послать-принять и прочее. Есть только один способ: Землю облучает масса аппаратов - ГЛОНАСС, GPS, спутники связи. Все светят на Землю и что-то от нее отражается. И тот, кто научится из этого мусора вымывать полезные данные, тот и будет царем горы в этом деле. Это очень сложная вычислительная задача. Но она того стоит.

А дальше, представьте: сейчас всеми спутниками управляют, как с японской игрушкой [Томагочи]. Все очень любят теле-командный метод управления. Но в случае с многоспутниковыми группировками требуется полная автономность, разумность сети.

Так как спутники малые, то сразу возникает вопрос: «а мусора же вокруг Земли и так много»? Сейчас есть международный мусорный комитет, где принята рекомендация, гласящая, что спутник должен за 25 лет точно сойти с орбиты. Для спутников на высоте 300-400 км это нормально, они об атмосферу тормозят. А аппараты OneWeb на высоте 1200 км будут летать, сотни лет.

Борьба с мусором - это новое применение, которое создало человечество само себе. Если мусор мелкий, то его нужно накапливать в какой-то большой сети или в пористом куске, который летает и впитывает мелкий мусор. А если крупный мусор, то его незаслуженно называют мусором. Человечество потратило деньги, кислород планеты, вывело в космос ценнейшие материалы. Половина счастья - его уже вывели, поэтому можно применить его там.

Есть такая утопия, с которой я ношусь, некая модель хищника. Аппарат, который достигает этот ценный материал, в некоем реакторе превращает его в субстанцию типа пыли, и часть этой пыли применяют в гигантском 3д-принтере, чтобы создать часть себе подобного в будущем. Это пока далекое будущее, но эта идея решает задачу, потому что любая погоня за мусором - главное проклятие - баллистика.

Мы не всегда чувствуем, что человечество очень ограничено, с точки зрения маневров возле Земли. Поменять наклон орбиты, высоту — это колоссальные затраты энергии. Нам сильно испортила жизнь яркая визуализация космоса. В фильмах, в игрушках, в «Звездных Войнах», где люди так непринужденно туда-сюда летают и все, воздух им не мешает. Медвежью услугу нашей отрасли оказала эта «правдоподобная» визуализация.

Мне очень интересно узнать мнение по поводу изложенного. Потому что сейчас в нашем институте мы проводим компанию. Я собирал молодежь и тоже самое говорил, и предложил каждому написать эссе на эту тему. Наш космос ведь обрюзг. Опыт получен, но наши законы, как вериги на ногах, иногда очень мешают. С одной стороны, они писаны кровью, всё понятно, а с другой: через 11 лет после запуска первого спутника человек ступил на Луну! С 2006 по 2017 гг. ничего не поменялось.

Сейчас есть объективные причины - все физические законы выработаны, все топливо, материалы, основные законы и все технологические заделы на базе них были применены в предыдущих веках, т.к. новой физики нет. Кроме этого, есть еще один фактор. Вот когда пускали Гагарина, риск был колоссален. Когда американцы летали к Луне, они сами оценивали, что было процентов 70%, риска, но тогда система была такая, что…

Давала право на ошибку

Да. Система признавала, что риск есть, и находились люди, которые ставили свое будущее на карту. «Я принимаю решение, что Луна твердая» и так далее. Над ними не было механизма, который мешал бы принимать такие решения. Сейчас NASA жалуется «Бюрократия все придавила». Возведено в фетиш стремление к 100% надежности, но это бесконечная апроксимация. И никто не может принять решение потому что: а) нет таких авантюристов, кроме Маска, б) созданы механизмы, которые не дают права на риск. Все скованны предыдущим опытом, который материализован в виде нормативных актов, законов. И в этой паутине космос двигается. Явный прорыв, который есть за последние годы - это тот же самый Илон Маск.

Мои домыслы на базе некоторых данных: это было решение NASA вырастить такую компанию, которая не боялась бы рисковать. Илон Маск иногда завирается, но дело делает и движется вперед.

Из того, что вы рассказали, что разрабатывается в России сейчас?

У нас есть Федеральная космическая программа и у нее две цели. Первая - удовлетворить потребности федеральных органов исполнительной власти. Вторая часть - научный космос. Это «Спектр-РГ». И мы должны через 40 лет вновь научиться возвращаться на Луну.

К Луне почему этот ренессанс? Да потому что на Луне в районе полюсов замечено какое-то количество воды. Проверка того, что там есть вода - важнейшая задача. Есть версия, что ее кометы натаскали за миллионы лет, тогда это особенно интересно, ведь кометы прилетают с других звездных систем.

Мы вместе с европейцами выполняем программу «ЭкзоМарс ». Был старт первой миссии, мы уже долетели, и «Скиапарелли» благополучно вдребезги разбился. Ждем, когда туда прилетит миссия №2. 2020 год пуск. Когда две цивилизации сталкиваются в тесной «кухне» одного аппарата проблем много, но уже стало легче. Научились работать в команде.

Вообще научный космос — это то поле, где человечеству нужно работать вместе. Он очень дорогой, прибыли не дает, и поэтому крайне важно научиться складывать силы финансовые, технические и интеллектуальные.

Получается все задачи ФКП решаются в современной парадигме производства космической техники.

Да. Совершенно верно. И до 2025 года - это интервал действия этой программы. Конкретных проектов нового класса нет. Есть договоренность с руководством Роскосмоса, если будет проект доведен до правдоподобного уровня, тогда поставим вопрос включения в федеральную программу. Но в чем разница: у нас у всех желание припасть к деньгам бюджета, а в США есть люди, которые свои деньги готовы вкладывать в такое дело. Я понимаю, что это глас вопиющего в пустыне: где наши олигархи, вкладывающие в такие системы? Но не дожидаясь их мы ведем стартовые работы.

Я считаю, что здесь как раз нужно два клича кликать. Сначала искать такие прорывные проекты, команды, которые готовы их реализовывать и тех, то готов в них вкладываться.

Я знаю, что есть такие команды. Мы с ними консультируемся. Мы вместе помогаем им, чтобы они вышли на реализацию.

Планируется ли радиотелескоп на Луне? И второй вопрос по поводу космического мусора и эффекта Кеслера. Эта задача актуальна, и планируются ли приниматься какие-то меры по этому поводу?

Начну с последнего вопроса. Я же говорил, что человечество очень серьезно к этому относится, ведь оно создало мусорный комитет. Спутники нужно уметь сводить с орбиты или отводить на безопасные. А так нужно делать надежные спутники, чтобы они «не помирали». А впереди такие футуристические проекты, про которые я говорил ранее: Большая губка, «хищник», и т.п.

«Мина» может сработать в случае какого-то конфликта, если военные действия пойдут в космосе. Поэтому надо за мир в космосе бороться.

Вторая часть вопроса про Луну и радиотелескоп.

Да. Луна - с одной стороны классно. Вроде бы в вакуум, но вокруг нее существует некая пылевая экзосфера. Пыль там крайне агрессивная. Какого рода задачи можно решать с Луны - это еще надо разобраться. Не обязательно ставить большущее зеркало. Есть проект - корабль опускается и от него бегут в разные стороны «тараканы», который тащат кабели, и в результате получается большая радиоантенна. Некоторое количество таких проектов лунных радиотелескопов гуляет, но прежде всего нужно ее изучить и понять.

Пару лет назад Росатом заявил, что готовит чуть ли не эскизный проект ядерно-двигательной установки для полетов, в том числе к Марсу. Эта тема как-нибудь развивается или заморожена?

Да, она идет. Это создание транспортно-энергетического модуля, ТЭМ. Там стоит реактор и система преобразовывает его тепловую энергию в электрическую, и задействованы очень мощные ионные двигатели. Есть с десяток ключевых технологий, вот по ним идет работа. Достигнут весьма существенный прогресс. Практически полностью ясна конструкция реактора, практически созданы очень мощные ионные двигатели по 30 кВт. Недавно видел их в камере, идет отработка. Но главное проклятие - это тепло, надо сбросить 600 кВт - та еще задача! Радиаторы под 1000 кв м. Сейчас работают над поиском других подходов. Это капельные холодильники, но они еще находятся в ранней фазе.

Ориентировочно есть какие-то даты?

Демонстратор собираются где-то в пределах до 2025 года запустить. Стоит такая задача. Но это зависит от нескольких ключевых технологий, по которым идет отставание.

Вопрос возможно полушуточный, но какие ваши мысли про известно электромагнитное ведро?

Про этот двигатель знаю. Я же вам сказал, что с тех пор как я узнал, что есть темная энергия и темная материя, я перестал полностью базироваться на учебнике физики за среднюю школу. Немцы ставили опыты, они точный народ, и видели, что эффект есть. А это полностью противоречит моему высшему образованию. В России как-то делали эксперимент на спутнике «Юбилейный» с двигателем без отброса массы. Были за, были против. После испытаний обе стороны получили твердейшие подтверждение своей правоты.

Когда запускали первый «Электро-Л», в прессе были жалобы, тех же метеорологов, что спутник не удовлетворяет их нуждам, т.е. спутник ругали еще до того, как он сломался.

Он должен был работать в 10 спектрах. В части спектров, в 3-х, по-моему, качество картинки было не то, которое идет с западных спутников. Наши пользователи привыкли к полностью товарным продуктам. Если бы других картинок не было, то метеорологи были бы счастливы. Второй спутник в существенной степени доработан, улучшена математика, так что сейчас они вроде как удовлетворены.

Продолжение «Фобос-Грунта» «Бумеранг» - будет ли это новый проект или это будет повторение?

Когда делали «Фобос-Грунт» я был директором НПО им. С.А. Лавочкина. Этот тот пример, когда количество нового превышает разумный предел. К сожалению, не хватило интеллекта для того, чтобы учесть всё. Миссия должна быть повторена, в частности потому что она приближает возврат грунта с Марса. Задел будет применен, идеологический, баллистические расчеты и прочее. А так, техника должна быть другая. На базе этих заделов, которые мы получим по Луне, по еще чему-то… Где уже будут части, которые позволят снизить технические риски полного новья.

Кстати, знаете, что японцы собираются реализовать свой «Фобос-Грунт»?

Они не знают еще, что Фобос очень страшное место, там все гибнут.

У них был опыт с Марсом. И там тоже много чего погибло.

Тот же Марс. До 2002 года Штаты и Европа имели, кажется, 4 неудачных попытки добраться до Марса. Но они проявили американский характер, и каждый год пуляли и выучились. Сейчас же они делают чрезвычайно красивые вещи. Я был в Jet Propulsion Laboratory на посадке марсохода Curiosity . Мы к тому времени уже угробили «Фобос». Вот где я плакал, практически: у них спутники летают вокруг Марса давно. Они так выстроили эту миссию, что пришло фото парашюта, который открылся в процессе посадки. Т.е. они со своего спутника смогли данные получить. Но это путь не простой. У них было несколько провальных миссий. Но они продолжали и сейчас достигли определенных успехов.

Миссия, которую они разбили, Mars Polar Lander. У них причина неудачи миссии была «недофинансирование». Т.е. госслужбы посмотрели и сказали, мы вам денег не додали, мы виноваты. Мне кажется, что это практически невозможно в наших реалиях.

Не то слово. У нас надо найти конкретного виновника. На Марсе нам надо догонять. Конечно еще есть Венера, которая до сих пор числилась российской или советской планетой. Сейчас с США идут серьезные переговоры о том, чтобы вместе сделать миссию к Венере. США хотят посадочные модули с высокотемпературной электроникой, которые будут нормально работать при больших градусах, без теплозащиты. Можно аэростаты или самолетик сделать. Интересный проект.

Выражаем благодарность

Солнечная система уже давно не представляет особого интереса для фантастов. Но, что удивительно, и у некоторых ученых наши «родные» планеты не вызывают особого вдохновения, хотя они еще практически не исследованы.

Едва прорубив окно в космос, человечество рвется в неведомые дали, причем уже не только в мечтах, как раньше.
Еще Сергей Королев обещал в скором времени полеты в космос «по профсоюзной путевке», но этой фразе уже полвека, а космическая одиссея по-прежнему удел избранных - слишком дорогое удовольствие. Однако же два года назад HACA запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технического фундамента для космических полетов.


Эта беспрецедентная программа должна привлечь ученых, инженеров и энтузиастов со всего мира. Если все увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться, как на трамваях.

Так какие же проблемы нужно решить, чтобы звездные полеты стали реальностью?

ВРЕМЯ И СКОРОСТЬ ОТНОСИТЕЛЬНЫ

Звездоплавание автоматических аппаратов кажется некоторым ученым почти решенной задачей, как это ни странно. И это при том, что совершенно нет никакого смысла запускать автоматы к звездам с нынешними черепашьими скоростями (примерно 17 км/с) и прочим примитивным (для таких неведомых дорог) оснащением.

Сейчас за пределы Солнечной системы ушли американские космические аппараты «Пионер-10» и «Вояджер-1», связи с ними уже нет. «Пионер-10» движется в сторону звезды Альдебаран. Если с ним ничего не случится, он достигнет окрестностей этой звезды... через 2 миллиона лет. Точно так же ползут по просторам Вселенной и другие аппараты.

Итак, независимо от того, обитаем корабль или нет, для полета к звездам ему нужна высокая скорость, близкая к скорости света. Впрочем, это поможет решить проблему полета только к самым близким звездам.

«Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, - писал К. Феоктистов, - время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. Но на Земле-то за это время пройдет намного больше».

Согласно теории относительности, ход времени в двух движущихся одна относительно другой системах различен. Так как на больших расстояниях корабль успеет развить скорость очень близкую к скорости света, разница во времени на Земле и на корабле будет особенно велика.

Предполагается, что первой целью межзвездных полетов станет альфа Центавра (система из трех звезд) - наиболее близкая к нам. Со скоростью света туда можно долететь за 4,5 года, на Земле за это время пройдет лет десять. Но чем больше расстояние, тем сильней разница во времени.

Помните знаменитую «Туманность Андромеды» Ивана Ефремова? Там полет измеряется годами, причем земными. Красивая сказка, ничего не скажешь. Однако эта вожделенная туманность (точнее, галактика Андромеды) находится от нас на расстоянии 2,5 миллиона световых лет.



По некоторым расчетам, путешествие займет у космонавтов более 60 лет (по звездолетным часам), но на Земле-то пройдет целая эра. Как встретят космических «неадертальцев» их далекие потомки? Да и будет ли жива Земля вообще? То есть возвращение в принципе бессмысленно. Впрочем, как и сам полет: надо помнить, что мы видим галактику туманность Андромеды такой, какой она была 2,5 млн лет назад - столько идет до нас ее свет. Какой смысл лететь к неизвестной цели, которой, может, уже давно и не существует, во всяком случае, в прежнем виде и на старом месте?

Значит, даже полеты со скоростью света обоснованны только до относительно близких звезд. Однако аппараты, летящие со скоростью света, живут пока лишь в теории, которая напоминает фантастику, правда, научную.

КОРАБЛЬ РАЗМЕРОМ С ПЛАНЕТУ

Естественно, в первую очередь ученым пришла мысль использовать в двигателе корабля наиболее эффективную термоядерную реакцию - как уже частично освоенную (в военных целях). Однако для путешествия в оба конца со скоростью, близкой к световой, даже при идеальной конструкции системы, требуется отношение начальной массы к конечной не менее чем 10 в тридцатой степени. То есть звездолет будет походить на огромный состав с топливом величиной с маленькую планету. Запустить такую махину в космос с Земли невозможно. Да и собрать на орбите - тоже, недаром ученые не обсуждают этот вариант.

Весьма популярна идея фотонного двигателя, использующего принцип аннигиляции материи.

Аннигиляция - это превращение частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных. Наиболее изучена аннигиляция электрона и позитрона, порождающая фотоны, энергия которых и будет двигать звездолет. Расчеты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70% от скорости света.

Однако дальше начинаются сплошные проблемы. К сожалению, применить антивещество в качестве ракетного топлива очень непросто. Во время аннигиляции происходят вспышки мощнейшего гамма-излучения, губительного для космонавтов. Кроме того, контакт позитронного топлива с кораблем чреват фатальным взрывом. Наконец, пока еще нет технологий для получения достаточного количества антивещества и его длительного хранения: например, атом антиводорода «живет» сейчас менее 20 минут, а производство миллиграмма позитронов обходится в 25 миллионов долларов.

Но, предположим, со временем эти проблемы удастся разрешить. Однако топлива все равно понадобится очень-очень много, и стартовая масса фотонного звездолета будет сравнима с массой Луны (по оценке Константина Феоктистова).

ПОРВАЛИ ПАРУС!

Наиболее популярным и реалистичным звездолетом на сегодняшний день считается солнечный парусник, идея которого принадлежит советскому ученому Фридриху Цандеру.

Солнечный (световой, фотонный) парус - это приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.
В 1985 году американским физиком Робертом Форвардом была предложена конструкция межзвездного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звезд за 21 год.

На XXXVI Международном астрономическом конгрессе был предложен проект лазерного звездолета, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия. По расчетам, путь звездолета этой конструкции до звезды эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

«Маловероятно, что по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем. Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей Солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей».

Эти слова принадлежат не фантасту, а конструктору космических кораблей и космонавту Константину Феоктистову. По мнению ученого, ничего особо нового в Солнечной системе уже не обнаружится. И это при том, что человек пока долетел только до Луны...


Однако за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида.

Все это пока теория, однако первые шаги уже делаются.

В 1993 году на российском корабле «Прогресс М-15» в рамках роекта «Знамя-2» был впервые развернут солнечный парус 20-метровой ширины. При стыковке «Прогресса» со станцией «Мир» ее экипаж установил на борту «Прогресса» агрегат развертывания отражателя. В итоге отражатель создал яркое пятно 5 км в ширину, которое прошло через Европу в Россию со скоростью 8 км/с. Пятно света имело светимость, примерно эквивалентную полной Луне.



Итак, преимущество солнечного парусника - отсутствие топлива на борту, недостатки - уязвимость конструкции паруса: по сути, это тонкая фольга, натянутая на каркас. Где гарантия, что по дороге парус не получит пробоин от космических частиц?

Парусный вариант может подойти для запуска автоматических зондов, станций и грузовых кораблей, но непригоден для пилотируемых полетов с возвратом. Существуют и другие проекты звездолетов, однако они, так или иначе, напоминают вышеперечисленные (с такими же масштабными проблемами).

СЮРПРИЗЫ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Думается, путешественников во Вселенной поджидает множество сюрпризов. К примеру, едва высунувшись за пределы Солнечной системы, американский аппарат «Пионер-10» начал испытывать силу неизвестного происхождения, вызывающую слабое торможение. Высказывалось много предположений, вплоть до о неизвестных пока эффектах инерции или даже времени. Однозначного объяснения этому феномену до сих пор нет, рассматриваются самые различные гипотезы: от простых технических (например, реактивная сила от утечки газа в аппарате) до введения новых физических законов.

Другой аппарат, «Вояд-жер-1», зафиксировал на границе Солнечной системы область с сильным магнитным полем. В нем давление заряженных частиц со стороны межзвездного пространства заставляет поле, создаваемое Солнцем, уплотняться. Также аппарат зарегистрировал:

  • рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвездного пространства;
  • резкий рост уровня галактических космических лучей - высокоэнергетических заряженных частиц межзвездного происхождения.
И это только капля в море! Впрочем, и того, что сегодня известно о межзвездном океане, достаточно, чтобы поставить под сомнение саму возможность бороздить просторы Вселенной.

Пространство между звездами не пустое. Везде есть остатки газа, пыли, частицы. При попытке движения со скоростью, близкой к скорости света, каждый столкнувшийся с кораблем атом будет подобен частице космических лучей большой энергии. Уровень жесткой радиации при такой бомбардировке недопустимо повысится даже при полетах к ближайшим звездам.

А механическое воздействие частиц при таких скоростях уподобится разрывным пулям. По некоторым расчетам, каждый сантиметр защитного экрана звездолета будет непрерывно обстреливаться с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета. Или должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн).



Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны, тем паче, что по дороге можно нарваться не только на пыль, но и на что-то покрупнее, или попасть в ловушку неизвестного гравитационного поля. И тогда гибель опять-таки неминуема. Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями. Но тогда фактор времени делает эти полеты бессмысленными.

Получается, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя. Бессмысленно ломиться через пространство и время с помощью механической конструкции.

КРОТОВАЯ НОРА

Фантасты, стараясь побороть неумолимое время, сочинили, как «прогрызать дырки» в пространстве (и времени) и «сворачивать» его. Придумали разнообразные гиперпространственные скачки от одной точки пространства до другой, минуя промежуточные области. Теперь к фантастам присоединились ученые.

Физики принялись искать экстремальные состояния материи и экзотические лазейки во Вселенной, где можно передвигаться со сверхсветовой скоростью вопреки теории относительности Эйнштейна.



Так появилась идея кротовой норы. Эта нора осуществляет смычку двух частей Вселенной подобно прорубленному тоннелю, соединяющему два города, разделенные высокой горой. К сожалению, кротовые норы возможны только в абсолютном вакууме. В нашей Вселенной эти норки крайне неустойчивы: они попросту могут сколлапсировать до того, как туда попадет космический корабль.

Однако для создания стабильных кротовых нор можно использовать эффект, открытый голландцем Хендриком Казимиром. Он заключается во взаимном притяжении проводящих незаряженных тел под действием квантовых колебаний в вакууме. Оказывается, вакуум не совсем пуст, в нем происходят колебания гравитационного поля, в котором спонтанно возникают и исчезают частицы и микроскопические кротовые норы.

Остается только обнаружить одну из нор и растянуть ее, поместив между двумя сверхпроводящими шарами. Одно устье кротовой норы останется на Земле, другое космический корабль с околосветовой скоростью переместит к звезде - конечному объекту. То есть звездолет будет как бы пробивать тоннель. По достижении звездолетом пункта назначения кротовая нора откроется для реальных молниеносных межзвездных путешествий, продолжительность которых будет исчисляться минутами.

ПУЗЫРЬ ИСКРИВЛЕНИЯ

Сродни теории кротовых нор пузырь искривления. В 1994 году мексиканский физик Мигель Алькубьерре выполнил расчеты согласно уравнениям Эйнштейна и нашел теоретическую возможность волновой деформации пространственного континуума. При этом пространство будет сжиматься перед космическим кораблем и одновременно расширяться позади него. Звездолет как бы помещается в пузырь искривления, способный передвигаться с неограниченной скоростью. Гениальность идеи состоит в том, что космический корабль покоится в пузыре искривления, и законы теории относительности не нарушаются. Движется при этом сам пузырь искривления, локально искажающий пространство-время.

Несмотря на невозможность перемещаться быстрее света, ничто не препятствует перемещению пространства или распространению деформации пространства-времени быстрее света, что, как полагают, и происходило сразу после Большого взрыва при образовании Вселенной.

Все эти идей пока не укладываются в рамки современной науки, однако в 2012 году представители НАСА заявили о подготовке экспериментальной проверки теории доктора Алькубьерре. Как знать, может, и теория относительности Эйнштейна когда-нибудь станет частью новой глобальной теории. Ведь процесс познания бесконечен. А значит, однажды мы сможем прорваться чрез тернии к звездам.

Ирина ГРОМОВА