Подсчеты по корреляции спирмена. Ранговые коэффициенты корреляции по Спирману и Кендалу

Ранговая корреляция Спирмена (корреляция рангов). Ранговая корреляция Спирмена - самый простой способ определения степени связи между факторами. Название метода свидетельствует о том, что связь определяют между рангами, то есть рядами полученных количественных значений, ранжированных в порядке убывания или возрастания. Надо иметь в виду, что, во-первых, ранговое корреляцию Не рекомендуется проводить, если связь пар меньше четырех и больше двадцати; во-вторых, ранговая корреляция позволяет определять связь и в другом случае, если значение имеют полуколичественный характер, то есть не имеют числового выражения, отражают четкий порядок следования этих величин; в-третьих, ранговое корреляцию целесообразно применять в тех случаях, когда достаточно получить приблизительные данные. Пример расчета коэффициента ранговой корреляции для определения вопрос: замеряют вопросник X и Y подобные личностные качества испытуемых. С помощью двух вопросников (X и Y), которые требуют альтернативных ответов "да" или "нет", получили первичные результаты - ответы 15 испытуемых (N = 10). Результаты подали в виде суммы утвердительных ответов отдельно для вопросника X и для вопросника В. Эти результаты сведены в табл. 5.19.

Таблица 5.19. Табулирование первичных результатов для расчета коэффициента ранговой корреляции по Спирмену (р) *

Анализ сводной корреляционной матрицы. Метод корреляционных плеяд.

Пример. В табл. 6.18 приведены интерпретации одиннадцати переменных, которые тестируют по методике Векслера. Данные получили на однородной выборке в возрасте от 18 до 25 лет (n = 800).

Перед расслаиванием корреляционную матрицу целесообразно ранжировать. Для этого в исходной матрицы вычисляют средние значения коэффициентов корреляции каждой переменной со всеми остальными.

Затем по табл. 5.20 определяют допустимые уровни расслоение корреляционной матрицы при заданных доверительной вероятности 0,95 и n - количества

Таблица 6.20. Восходящая корреляционная матрица

Переменные 1 2 3 4 бы 0 7 8 0 10 11 M (rij) Ранг
1 1 0,637 0,488 0,623 0,282 0,647 0,371 0,485 0,371 0,365 0,336 0,454 1
2 1 0,810 0,557 0,291 0,508 0,173 0,486 0,371 0,273 0,273 0,363 4
3 1 0,346 0,291 0,406 0,360 0,818 0,346 0,291 0,282 0,336 7
4 1 0,273 0,572 0,318 0,442 0,310 0,318 0,291 0,414 3
5 1 0,354 0,254 0,216 0,236 0,207 0,149 0,264 11
6 1 0,365 0,405 0,336 0,345 0,282 0,430 2
7 1 0,310 0,388 0,264 0,266 0,310 9
8 1 0,897 0,363 0,388 0,363 5
9 1 0,388 0,430 0,846 6
10 1 0,336 0,310 8
11 1 0,300 10

Обозначения: 1 - общая осведомленность; 2 - понятийнисть; 3 - внимательность; 4 - вдатнисть К обобщения; б - непосредственное запоминание (на цифрах) 6 - уровень освоения родном языке; 7 - скорость овладения сенсомоторном навыками (кодирование символами) 8 - наблюдательность; 9 - комбинаторные способности (к анализу и синтезу) 10 - способность к организации частей в осмысленное целое; 11 - способность к эвристического синтеза; M (rij) - среднее значение коэффициентов корреляции переменной с остальными переменных наблюдений (в нашем случае n = 800): r (0) - значение нулевой "Рассекая" плоскости - минимальная значимая абсолютная величина коэффициента корреляции (n - 120, r (0) = 0,236; n = 40, r (0) = 0,407) | Δr | - допустимый шаг расслоения (n = 40, | Δr | = 0,558) в - допустимое количество уровней расслоения (n = 40, s = 1 ; n = 120, s = 2); r (1), r (2), ..., r (9) - абсолютное значение секущей плоскости (n = 40, r (1) = 0,965).

Для n = 800 находим значение гтип и границ ги после чего Расслаивающая ранжированы корреляционную матрицу, выделяя корреляционные плеяды внутри слоев, или отделяем части корреляционной матрицы, вырисовывая объединения корреляционных плеяд для вышележащих слоев (рис. 5.5).

Содержательный анализ полученных плеяд выходит за пределы математической статистики. Надо отметить два формальные показатели, которые помогают при содержательной интерпретации плеяд. Одним существенным показателем служит степень вершины, то есть количество ребер, примыкающих к вершине. Переменная с наибольшим количеством ребер является "ядром" плеяды и ее можно рассматривать как индикатор остальных переменных этой плеяды. Другой существенный показатель - плотность связи. Переменная может иметь меньше связей в одной плеяде, но теснее, и больше связей в другой плеяде, однако менее тесных.

Предсказания и оценки. Уравнение у = b1x + b0 называется общим уравнением прямой. Оно свидетельствует о том, что пары точек (x, y), которые

Рис. 5.5. Корреляционные плеяды, полученные расслоением матрицы

лежат на некоторой прямой, связанные так, что для любого значения х величину в в находящегося с ним в паре, можно найти, умножив х на некоторое число b1 добавив вторых, число b0 к этому произведению.

Коэффициент регрессии позволяет определить степень изменения следственной фактора при изменении причинного фактора на одну единицу. Абсолютные величины характеризуют зависимость между переменными факторами по их абсолютными значениями. Коэффициент регрессии вычисляют по формуле:

Планирование и анализ экспериментов. Планирование и анализ экспериментов - это третья важная отрасль статистических методов, разработанных для нахождения и проверки причинных связей между переменными.

Для исследования многофакторных зависимостей в последнее время все чаще используют методы математического планирования эксперимента.

Возможность одновременного варьирования всеми факторами позволяет: а) уменьшить количество опытов;

б) свести ошибку эксперимента к минимуму;

в) упростить обработку полученных данных;

г) обеспечить наглядность и легкость по сравнению результатов.

Каждый фактор может приобретать некоторую соответствующее количество различных значений, которые называются уровнями и обозначают -1, 0 и 1. Фиксированный набор уровней факторов определяет условия одного из возможных опытов.

Совокупность всех возможных сочетаний вычисляют по формуле:

Полным факторным экспериментом называется эксперимент, в котором реализуются все возможные сочетания уровней факторов. Полные факторные эксперименты могут обладать свойством ортогональности. При ортогональном планировании факторы в эксперименте является некоррелированными, коэффициенты регрессии, которые высчитывают в итоге, определяют независимо друг от друга.

Важным преимуществом метода математического планирования эксперимента является его универсальность, пригодность во многих областях исследований.

Рассмотрим пример сравнения влияния некоторых факторов на формирование уровня психического напряжения в регулировщиков цветных телевизоров.

В основу эксперимента положен ортогональный План 2 три (три фактора изменяются на двух уровнях).

Эксперимент проводили с полным части 2 +3 с трехкратным повторением.

Ортогональное планирование базируется на построении уравнения регрессии. Для трех факторов оно выглядит так:

Обработка результатов в этом примере включает:

а) построение ортогонального плана 2 +3 таблице для расчета;

б) вычисления коэффициентов регрессии;

в) проверку их значимости;

г) интерпретацию полученных данных.

Для коэффициентов регрессии упомянутого уравнения надо было поставить N = 2 3 = 8 вариантов, чтобы иметь возможность оценить значимость коэффициентов, где количество повторений К равнялось 3.

Составлена матрица планирования эксперимента выглядела.

В случаях, если измерения исследуемых признаков проводятся в шкале порядка, или же форма взаимосвязи отличается от линейной, исследование взаимосвязи между двумя случайными величинами осуществляется с помощь ранговых коэффициентов корреляции. Рассмотрим коэффициент ранговой корреляции Спирмена. При его вычислении необходимо ранжировать (упорядочить) варианты выборки. Ранжированием называется группировка экспериментальных данных в определенном порядке, либо по возрастанию, либо по убыванию.

Проведение операции ранжирования осуществляется по следующему алгоритму:

1. Меньшему значению начисляется меньший ранг. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений. Наименьшему значению начисляется ранг равный 1. Например, если n=7, то наибольшее значение получит ранг под номером 7, за исключением случаев, которые предусмотрены вторым правилом.

2. Если несколько значений равны, то им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны. В качестве примера рассмотрим упорядоченную по возрастанию выборку, состоящую из 7 элементов: 22, 23, 25, 25, 25, 28, 30. Значения 22 и 23 встречаются по одному разу, поэтому их ранги соответственно равны R22=1, а R23=2. Значение 25 встречается 3 раза. Если бы эти значения не повторялись, то их ранги были бы равными 3, 4, 5. Поэтому их ранг R25 равен среднему арифметическому 3, 4 и 5: . Значения 28 и 30 не повторяются, поэтому их ранги соответственно равны R28=6, а R30=7. Окончательно имеем следующее соответствие:

3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле:

где n - общее количество ранжируемых значений.

Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. В этом случае необходимо найти и исправить ошибку.

Коэффициент ранговой корреляции Спирмена является методом, позволяющим определить силу и направленность взаимосвязи между двумя признаками или двумя иерархиями признаков. Применение коэффициента ранговой корреляции имеет ряд ограничений:

  • а) Предполагаемая корреляционная зависимость должна носить монотонный характер.
  • б) Объем каждой из выборок должен быть больше или равен 5. Для определения верхней границы выборки пользуются таблицами критических значений (Таблица 3 Приложения). Максимальное значение n в таблице - 40.
  • в) При проведении анализа вероятна возможность возникновения большого количества одинаковых рангов. В этом случае, необходимо вносить поправку. Наиболее благоприятным является случай когда, обе изучаемые выборки представляют собой две последовательности несовпадающих значений.

Для проведения корреляционного анализа исследователь должен располагать двумя выборками, которые могут быть ранжированы, например:

  • - два признака, измеренные в одной и той же группе испытуемых;
  • - две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков;
  • - две групповые иерархии признаков;
  • - индивидуальная и групповая иерархии признаков.

Расчет начинаем с ранжирования изучаемых показателей отдельно по каждому из признаков.

Проведем анализ случая с двумя признаками, измеренными в одной и той же группе испытуемых. Сначала ранжируют индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку. Если меньшим рангам одного показателя соответствуют меньшие ранги другого показателя, а большим рангам одного показателя соответствуют большие ранги другого показателя, то два признака связаны положительно. Если же большим рангам одного показателя соответствуют меньшие ранги другого показателя, то два признака связаны отрицательно. Для нахождения rs, определяем разности между рангами (d) по каждому испытуемому. Чем меньше разности между рангами, тем ближе коэффициент ранговой корреляции rs будет к «+1». Если взаимосвязь отсутствует, то между ними не будет никакого соответствия, следовательно rs окажется близким к нулю. Чем больше разности между рангами испытуемых по двум переменным, тем ближе к «-1» будет значение коэффициента rs. Таким образом, коэффициент ранговой корреляции Спирмена является мерой любой монотонной зависимости между двумя исследуемыми признаками.

Рассмотрим случай с двумя индивидуальными иерархиями признаков, выявленными у двух испытуемых по одному и тому же набору признаков. В данной ситуации ранжируют индивидуальные значения, полученные каждым из двух испытуемым по определенной совокупности признаков. Признаку с самым низким значением необходимо присвоить первый ранг; признаку с более высоким значением - второй ранг и т.д. Следует обратить особое внимание на то, чтобы все признаки были измерены в одних и тех же единицах. Например, невозможно ранжировать показатели, если они выражены в различных по «цене» баллах, поскольку невозможно определить, какой из факторов будет занимать первое место по выраженности, пока все значения не будут приведены к единой шкале. Если признаки, имеющие низкие ранги у одного из испытуемых так же имеют низкие ранги у другого, и наоборот, то индивидуальные иерархии связаны положительно.

В случае с двумя групповыми иерархиями признаков, ранжируют средне-групповые значения, полученные в двух группах испытуемых по одинаковому для исследуемых групп, набору признаков. Далее следует придерживаемся алгоритма, приведенного в предыдущих случаях.

Проведем анализ случая с индивидуальной и групповой иерархией признаков. Начинают с того, что ранжируют отдельно индивидуальные значения испытуемого и средне-групповые значения по тому же набору признаков, которые получены, при исключении того испытуемого, который не участвует в средне-групповой иерархии, так как с ней будет сопоставляться его индивидуальная иерархия. Ранговая корреляция позволяет оценить степень согласованности индивидуальной и групповой иерархии признаков.

Рассмотрим, как определяется значимость коэффициента корреляции в перечисленных выше случаях. В случае с двумя признаками она будет определяться объемом выборки. В случае с двумя индивидуальными иерархиями признаков значимость зависит от количества признаков, входящих в иерархию. В двух последних случаях значимость обуславливается числом изучаемых признаков, а не численностью групп. Таким образом, значимость rs во всех случаях определяется числом ранжированных значений n.

При проверке статистической значимости rs пользуются таблицами критических значений коэффициента ранговой корреляции, составленных для различных количеств ранжируемых значений и разных уровней значимости. Если абсолютная величина rs, достигает критического значения или превышает его, то корреляция достоверна.

При рассмотрении первого варианта (случай с двумя признаками, измеренными в одной и той же группе испытуемых) возможны следующие гипотезы.

Н0: Корреляция между переменными x и y не отличается от нуля.

Н1: Корреляция между переменными x и y достоверно отличается от нуля.

Если мы работаем с любым из трех оставшихся случаев, то необходимо выдвинуть другую пару гипотез:

Н0: Корреляция между иерархиями x и y не отличается от нуля.

Н1: Корреляция между иерархиями x и y достоверно отличается от нуля.

Последовательность действий при вычислении коэффициента ранговой корреляции Спирмена rs такова.

  • - Определить, какие два признака или две иерархии признаков будут участвовать в сопоставлении как переменные x и y.
  • - Ранжировать значения переменной x, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования. Поместить ранги в первую колонку таблицы по порядку номеров испытуемых или признаков.
  • - Ранжировать значения переменной y. Поместить ранги во вторую колонку таблицы по порядку номеров испытуемых или признаков.
  • - Вычислить разности d между рангами x и y по каждой строке таблицы. Результаты поместить в следующую колонку таблицы.
  • - Вычислить квадраты разностей (d2). Полученные значения поместить в четвертую колонку таблицы.
  • - Вычислить сумму квадратов разностей? d2.
  • - При возникновении одинаковых рангов вычислить поправки:

где tx - объем каждой группы одинаковых рангов в выборке x;

ty - объем каждой группы одинаковых рангов в выборке y.

Вычислить коэффициент ранговой корреляции в зависимости от наличия или отсутствия одинаковых рангов. При отсутствии одинаковых рангов коэффициент ранговой корреляции rs рассчитать по формуле:

При наличии одинаковых рангов коэффициент ранговой корреляции rs рассчитать по формуле:

где?d2 - сумма квадратов разностей между рангами;

Tx и Ty - поправки на одинаковые ранги;

n - количество испытуемых или признаков, участвовавших в ранжировании.

Определить по таблице 3 Приложения критические значения rs, для данного количества испытуемых n. Достоверное отличие от нуля коэффициента корреляции будет наблюдаться при условии, если rs не меньше критического значения.

Студента-психолога (социолога, менеджера, управленца и др.) нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых группах.

В математике для описания связей между переменными величинами используют понятие функции F, которая ставит в соответствие каждому определенному значению независимой переменной X определенное значение зависимой переменной Y. Полученная зависимость обозначается как Y=F(X).

При этом виды корреляционных связей между измеренными признаками могут быть различны: так, корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна - если с увеличением или уменьшением одной переменной X,вторая переменная Y в среднем либо также растет, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами.

Корреляция будет положительной, если с увеличением переменной X переменная Y в среднем также увеличивается, а если с увеличением X переменная Y имеет в среднем тенденцию к уменьшению, то говорят о наличии отрицательной корреляции. Возможна ситуация, когда между переменными невозможно установить какую-либо зависимость. В этом случае говорят об отсутствии корреляционной связи.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.

Ранговый коэффициент линейной корреляции Спирмена подсчитывается по формуле:

где n - количество ранжируемых признаков (показателей, испытуемых);
D - разность между рангами по двум переменным для каждого испытуемого;
D2 - сумма квадратов разностей рангов.

Критические значения коэффициента корреляции рангов Спирмена представлены ниже:

Величина коэффициента линейной корреляции Спирмена лежит в интервале +1 и -1. Коэффициент линейной корреляции Спирмена может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.

Если коэффициент корреляции по модулю оказывается близким к 1, то это соответствует высокому уровню связи между переменными. Так, в частности, при корреляции переменной величины с самой собой величина коэффициента корреляции будет равна +1. Подобная связь характеризует прямо пропорциональную зависимость. Если же значения переменной X будут распложены в порядке возрастания, а те же значения (обозначенные теперь уже как переменная Y) будут располагаться в порядке убывания, то в этом случае корреляция между переменными Х и Y будет равна точно -1. Такая величина коэффициента корреляции характеризует обратно пропорциональную зависимость.

Знак коэффициента корреляции очень важен для интерпретации полученной связи. Если знак коэффициента линейной корреляции - плюс, то связь между коррелирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина другого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно увеличивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе говоря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой переменной. Такая зависимость носит название обратно пропорциональной зависимости. При этом выбор переменной, которой приписывается характер (тенденция) возрастания - произволен. Это может быть как переменная X, так и переменная Y. Однако если считается, что увеличивается переменная X, то переменная Y будет соответственно уменьшаться, и наоборот.

Рассмотрим пример корреляции Спирмена.

Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.

Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в таблице:

Подставляем полученные данные в вышеприведенную формулу, и производим расчет. Получаем:

Для нахождения уровня значимости обращаемся к таблице «Критические значения коэффициента корреляции рангов Спирмена,» в которой приведены критические значения для коэффициентов ранговой корреляции.

Строим соответствующую «ось значимости»:

Полученный коэффициент корреляции совпал с критическим значением для уровня значимости в 1%. Следовательно, можно утверждать, что показатели школьной готовности и итоговые оценки первоклассников связаны положительной корреляционной зависимостью - иначе говоря, чем выше показатель школьной готовности, тем лучше учится первоклассник. В терминах статистических гипотез психолог должен отклонить нулевую (Н0) гипотезу о сходстве и принять альтернативную (Н1) о наличии различий, которая говорит о том, что связь между показателями школьной готовности и средней успеваемостью отлична от нуля.

Корреляция спирмена. Корреляционный анализ по методу спирмена. Ранги спирмена. Коэффициент корреляции Спирмена. Ранговая корреляция Спирмена

Калькулятор ниже вычисляет коэффициент ранговой корреляции Спирмена между двумя случайными величинами. Теоретическая часть, чтобы не отвлекаться от калькулятора, традиционно размещается под ним.

add import_export mode_edit delete

Изменения случайных величин

arrow_upward arrow_downward X arrow_upward arrow_downward Y
Размер страницы: 5 10 20 50 100 chevron_left chevron_right

Изменения случайных величин

Импортировать данные Ошибка импорта

Для разделения полей можно использовать один из этих символов: Tab, ";" или "," Пример: -50.5;-50.5

Импортировать Назад Отменить

Метод расчета коэффициента ранговой корреляции Спирмена на самом деле описывается очень просто. Это тот же самый Коэффициент корреляции Пирсона , только рассчитанный не для самих результатов измерений случайных величин, а для их ранговых значений .

То есть,

Осталось только разобраться, что такое ранговые значения и для чего все это нужно.

Если элементы вариационного ряда расположить в порядке возрастания или убывания, то рангом элемента будет являться его номер в этом упорядоченном ряду.

Например, пусть у нас есть вариационный ряд {17,26,5,14,21}. Отсортируем его элементы в порядке убывания {26,21,17,14,5}. 26 имеет ранг 1, 21 - ранг 2 и т.д. Вариационный ряд ранговых значений будет выглядеть следующим образом {3,1,5,4,2}.

То есть, при расчете коэффициента Спирмена исходные вариационные ряды преобразуются в вариационные ряды ранговых значений, после чего к ним применяется формула Пирсона.

Есть одна тонкость - ранг повторяющихся значений берется как среднее из рангов. То есть для ряда {17, 15, 14, 15} ряд ранговых значений будет выглядеть как {1, 2.5, 4, 2.5}, так как первый элемент равный 15 имеет ранг 2, а второй - ранг 3, и .

Если же повторяющихся значений нет, то есть все значения ранговых рядов - числа из диапазона от 1 до n, формулу Пирсона можно упростить до

Ну и кстати, эта формула чаще всего и приводится как формула расчета коэффицента Спирмена.

В чем же суть перехода от самих значений к их ранговым значениям?
А суть в том, что исследуя корреляцию ранговых значений можно установить насколько хорошо зависимость двух переменных описывается монотонной функцией.

Знак коэффициента указывает на направление связи между переменными. Если знак положительный, то значения Y имеют тенденцию увеличиваться при увеличении значений X; если знак отрицательный, то значения Y имеют тенденцию уменьшаться при увеличении значений X. Если коэффициент равен 0, то никакой тенденции нет. Если же коэффициент равен 1 или -1, то зависимость между X и Y имеет вид монотонной функции - то есть, при увеличении X, Y также увеличивается, либо наоборот, при увеличении X, Y уменьшается.

То есть, в отличие от коэффициента корреляции Пирсона, который может выявить только линейную зависимость одной переменной от другой, коэффициент корреляции Спирмена может выявить монотонную зависимость, там, где непосредственная линейная связь не выявляется.

Поясню на примере. Предположим, что мы исследуем функцию y=10/x.
У нас есть следующие результаты измерений X и Y
{{1,10}, {5,2}, {10,1}, {20,0.5}, {100,0.1}}
Для этих данных коэффициент корреляции Пирсона равен -0.4686, то есть связь слабая либо отсутствует. А вот коэффициент корреляции Спирмена строго равен -1, что как бы намекает исследователю, что Y имеет строгую отрицательную монотонную зависимость от X.