По микробиологии. Предмет изучения микробиологии

И ещё 26 файл(а).
Показать все связанные файлы


  1. Микробиология как наука. Задачи и методы исследования в микробиологии.
Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы , неразличимые невооруженным глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

Предмет микробиологии – микроорганизмы, их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни. Для медицинской микробиологии – патогенные и условно-патогенные микроорганизмы.

Микроорганизмы - наиболее древняя форма организации жизни на Земле, они появились задолго до возникновения растений и животных - примерно 3-4 млрд. лет тому назад.

Задачи микробиологии:

Задачи медицинской микробиологии:

1. Изучение биологии патогенных (болезнетворных) и нормальных для человека микробов.

2. Изучение роли микробов в возникновении, развитии инфекционных (заразных) болезней и формировании иммунного ответа макроорганизма ("хозяина").

3. Разработка методов микробиологической диагностики, специфического лечения и профилактики инфекционных болезней человека.

Методы исследования в микробиологии:


  1. Микроскопический - изучение морфологии микробов в окрашенном и неокрашенном состоянии с помощью различных типов микроскопов.

  2. Микробиологический (бактериологические, микологические, вирусологические). Метод основан на выделение чистой культуры возбудителя и ее последующей идентификации.

  3. Химический

  4. Экспериментальный (биологический) - заражение микробами лабораторных животных.

  5. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

  1. Основные периоды в развитии микробиологии и иммунологии.
Выделяют следующие периоды:

  1. Начальный период
Вторая половина XIII века по середину XIX. Он связан с созданием Левенгуком простейшего микроскопа и открытием микроскопических существ, невидимых невооруженным взглядом.

  1. Пастеровский период
Луи Пастер является основоположником микробиологии как науки. Его исследования:

  • брожение

  • роль микробов в круговороте веществ в природе и самопроизвольном зарождении.
Они составили теоретическую базу современной микробиологии. Пастер установил, что в определенных условиях патогенные микробы теряют свою вирулентность. На основе этого открытия он создает вакцины.

Рядом с именем Пастера встало имя Роберта Коха, выдающегося мастера прикладных исследований, он открыл возбудителя сибирской язвы, холеры, туберкулеза и других микроорганизмов.


  1. Третий период
Первая половина XX века. Развитие микробиологии , иммунологии и вирусологии. Здесь важным является открытия Ивановского – возбудители мозаичной болезни табака. Были открыты фильтрующиеся инфекционные агенты - вирусы, L-формы бактерий, микоплазмы. Более интенсивно развивались прикладные аспекты иммунологии. П.Эрлиху разработать гуморальную теорию иммунитета. Мечников – теория фагоцитоза. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин.

  1. Современный период.
Создание электронного микроскопа сделало видимым мир вирусов и макромолекулярных соединений. Изучение генов, строение вирусов, бактерий на молекулярном уровне. Генная инженерия, расшифровка геномов. Изучена роль ДНК в передаче наследственных признаков. Революция в иммунологии. Она стала наукой, изучающей не только инфекции и защиту от них, но и изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании целостности организма.

3. Основоположники микробиологии.

Л.Пастер


  1. изучение микробиологических основ процессов брожения и гниения,

  2. развитие промышленной микробиологии,

  3. выяснение роли микроорганизмов в кругообороте веществ в природе,

  4. открытие анаэробных микроорганизмов ,

  5. разработка принципов асептики,

  6. разработка методов стерилизации,

  7. ослабление (аттенуации) вирулентности. Степень патогенности – вирулентность. Таким образом, если ослабить вирулентность, то можно получить вакцину.

  8. получение вакцин (вакцинных штаммов) – холера и бешенство.

  9. Пастеру принадлежит честь открытия стафилококков, стрептококков

Р.Кох - немецкий естествоиспытатель, ученик Пастера.


4. Роль отечественных ученых в развитии микробиологии.


  1. Ценковский Л.С . организовал производство сибиреязвенной вакцины, и 1883 успешно ее использовал для вакцинации скота.

  2. Минх. Доказал, что спирохета возвратного тифа является возбудителем заболевания.

  3. Мочутковский самозаразил себя сыпным тифом (ввел кровь больной), доказав, что возбудитель присутствует в крови больного.

  4. Леша Ф.А. Доказал, что дизентерию могут вызывать простейшие, принадлежащие амебам.

  5. Большое значение в микробиологии сыграл И.И. Мечников. Он был создателем фагоцитарной теории иммунитета. Затем он издает труд «Невосприимчивость к к инфекционным болезням».

  6. В 1886 в Одессе открыта первая бактериологическая станция, заведовал ей Мечников и его помощники Гамель Н.Ф. и Барлах Л.В.

  7. Далее станция открыта в Харькове. Заведовал Виноградский. Он работал в области общей микробиологии. Открыл серо- и железобактерии, нитрифицирующие бактерии – возбудители нитрификации в почве.

  8. Д.И. Ивановский (открыл вирус табачной мозаики, считается основателем вирусологии).

  9. Цинковский (участвовал в разработке методов прививки от сибирской язвы).

  10. Амилянский – написал первый учебник «Основы микробиологии», открыл возбудителя брожения клетчатки , изучил азотофиксирующие бактерии.

  11. Михин – положил начало ветеринарной микробиологии, открыл возбудителя лептоспироза.

  12. Шапошников – основоположник технической микробиологии.

  13. Войткевич – работал с ацидофильной палочкой, считается основоположником лечебного и диетического питания для животных.

С середины 20 века микробиология как дисциплина была включена в программу обучения студентов.

5. Основы систематики и номенклатуры микроорганизмов.

Согласно современной систематике, микроорганизмы к 3 царствам:

I. Прокариоты:
* Эубактерии
1. Грациликуты (тонкая клеточная стенка)
2. Фирмикуты (толстая клеточная стенка)
3. Тенерикуты (нет клеточной стенки)
Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты.
* Архебактерии
4. Мендосикуты
II. Эукариоты: Животные Растения Грибы Простейшие
III. Неклеточные формы жизни: Вирусы Прионы Плазмиды

Вид – Род – Семейство – Порядок – Класс – Отдел – Царство.

Обозначение микроорганизмов включает в себя название рода и вида. Род с большой буквы , вид с маленькой. Родовое название по фамилии автора или морфологии бактерий. Видовое название – по клиническим признакам, морфологии колоний, месту обитания.

В настоящее время для систематики микроорганизмов используется ряд таксономических систем.

1. Нумерическая таксономия . Признает равноценность всех признаков. Для ее применения необходимо иметь информацию о многих десятках признаков. Видовая принадлежность устанавливается по числу совпадающих признаков.

2. Серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками. Наиболее часто применяется в медицинской бактериологии. Недостаток – бактерии не всегда cодержат видоспецифический антиген.

3. Хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов.

4. Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации , трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.еографическому месту выявления.

Специализированные термины:

Вид – эволюционно сложившаяся совокупность особей, имеющая единый генотип, проявляющийся сходными фенотипическими признаками.

Вариант – особи одного вида, различающиеся по разным признакам (серовары, хемовары, культивары, морфовары, фаговары).

Популяция – совокупность особей одного вида, относительно длительно обитающих на определенной территории .

Культура – совокупность бактерий одного вида (чистая) или нескольких видов (смешанная), выращенная на питательной среде (жидкой или плотной).

Штамм – чистая культура одного вида бактерий, выделенная в определенное время из одного источника .

Колония – видимое скопление бактерий одного вида на поверхности или в глубине плотной питательной среды.

Клон – культура клеток, выращенная из одного микроорганизма методом клонирования.

И других кисломолочных продуктов, получения алкоголя , уксуса , при мочке льна .

Донаучный этап развития

Люди издревне знали о многих процессах, вызываемых микроорганизмами, однако не знали истинных причин вызывающих эти явления. Отсутствие сведений о природе таких явлений не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо ( -), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы.

Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха . Так, в 1892 году Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.

Описательный этап

Антони ван Левенгук.

Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем . В Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии . По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся мир микроорганизмов, был учёный иезуит Афанасий Кирхер ( -), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука .

Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике . Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт , не имея никакого понятия о фотосинтезе , заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в -1776 годах . Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов.

В течение следующих 100-150 лет развитие микробиологии проходило лишь с описанием новых видов. Видную роль в изучении многообразия микроорганизмов сыграл Отто Фридрих Мюллер [кто? ] , который к описал и назвал по линнеевской биномиальной номенклатуре 379 различных видов. В это время было сделано и несколько интересных открытий. Так, в была определена причина «кровоточения» просфор - бактерия, названная Serratia marcescens (другое название Monas prodigiosa ). Также следует отметить Христиана Готтфрида Эренберга [кто? ] , описавшего множество пигментированных бактерий, первые железобактерии , а также скелеты простейших и диатомовых водорослей в морских и лиманных отложениях, чем положил начало микропалеонтологии. Именно он впервые объяснил окраску воды Красного моря развитием в ней цианобактерий Trichodesmium erythraeum . Он, однако, причислял бактерий к простейшим и рассматривал их вслед за Левенгуком как полноценных животных с желудком, кишечником и конечностями…

В России одним из первых микробиологов был Л. С. Ценковский ( -), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы .

Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович ( -1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы - возможности оптики тогда ещё не позволяли это сделать. В итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 году Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер , Йёнс Якоб Берцелиус и Юстус Либих . Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» () - саркастическую пародию на микробиологические исследования тех лет.

Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.

Споры о самозарождении и брожении

Открытие вирусов

Изучение обмена веществ микроорганизмов

Техническая, или промышленная, микробиология

Техническая микробиология изучает микроорганизмы, используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.

Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников ( -), Д. И. Ивановский ( -), Н. Ф. Гамалея ( -), Л. С. Ценковский, С. Н. Виноградский , В. Л. Омелянский , Д. К. Заболотный ( -), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.

Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва , А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.

Частью технической микробиологии является пищевая микробиология, изучающая способы получения пищевых продуктов с использованием микроорганизмов. Например, дрожжи применяют в виноделии, пивоварении, хлебопечении, спиртовом производстве; молочнокислые бактерии - в производстве кисломолочных продуктов, сыров, при квашении овощей; уксусно-кислые бактерии - в производстве уксуса; мицелиальные грибы используют для получения лимонной и других пищевых органических кислот и т. д. К настоящему времени выделились специальные разделы пищевой микробиологии: микробиология дрожжевого и хлебопекарного производства, пивоваренного производства, консервного производства, молока и молочных продуктов, уксуса, мясных и рыбных продуктов, маргарина и т. д.

Методы и цели микробиологии

К методам исследования любых микроорганизмов относят:

  • микроскопия : световая, фазово-контрастная , темнопольная , флуоресцентная , электронная ;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях);
  • молекулярно-генетический метод (ПЦР , ДНК- и РНК-зонды и др.);
  • серологический метод - выявления антигенов микроорганизмов или антител к ним (ИФА).

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

Связь с другими науками

За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

Примечания

Литература

  • Вербина Н. М., Каптерёва Ю. В. Микробиология пищевых производств. - М.: изд. ВО «АГРОПРОМИЗДАТ», 1988. - ISBN 5-10-000191-7
  • Воробьёв А. В., Быков А. С., Пашков Е. П., Рыбакова А. М. Микробиология: Учебник. - 2-е изд. перераб. и доп. - М.: Медицина, 2003. - 336 с. - (Учеб. лит. для студ. фарм. вузов). - ISBN 5-225-04411-5
  • Галынкин В. А., Заикина Н.А., Кочеровец В.И. и др. Основы фармацевтической микробиологии: учебное пособие для системы послевузовского образования. - С.-П.: Проспект науки, 2008. - 288 с. - ISBN 978-5-903090-14-3
  • Гусев М. В. , Минеева Л. А. Микробиология. - 9-е изд., стер. - М.: Издательский центр «Академия», 2010. - 464 с. - (Серия: Классическая учебная книга). - ISBN 978-5-7695-7372-9
  • Гусев М. В., Минеева Л. А. Микробиология: Учебник для студ. биол. специальностей вузов. - 4-е изд., стер. - М.: Издательский центр «Академия», 2003. - 464 с. - ISBN 5-7695-1403-5
  • Заварзин Г. А. , Колотилова Н. Н. Введение в природоведческую микробиологию. - М.: Книжный дом «Университет», 2001. - 256 с. - ISBN 5-8013-0124-0
  • Кондратьева Е. Н. Автотрофные прокариоты: Учеб. пособие для студентов вузов, обучающихся по направлению «Биология», специальностям «Микробиология», «Биотехнология». - М.: Изд-во МГУ, 1996. - 302 с. - ISBN 5-211-03644-1
  • Лысак В. В. Микробиология: учеб. пособие. - Минск: БГУ, 2007. - 426 с. - ISBN 985-485-709-3
  • Шлегель Г. Г. История микробиологии: Перевод с немецкого. - М: изд-во УРСС, 2002. - 304 с. - ISBN 5-354-00010-6

См. также

  • Портал:Микробиология и иммунология

Ссылки

Классификация живого мира по Виттекеру.

Plentae(растения)Fundi(грибы) Animalia (животные)

Protista (одноклеточные)

Monera (бактерии)

Определение- Микробиология наука о животных организмах имеющих малые размеры и невидимых невооруженным глазом.

Микроорганизмы не представляют собой единой систематической группы. К ним относятся одноклеточные и многоклеточные организмы растительного и животного происхождения, а также особая группа прокарестических организмов-бактерий и бактериофаги, вирусы.

Размеры микроорганизмов.

Группа микроорганизмов

Размер микроорганизмов

Наука изучающая данную группу

Вирусология

Бактерии

Бактериология

Цианобактерии

Альгология

Микроскопические водоросли

Микроскопические животные

Протозоология

Микроскопические грибы

Микология(Фунгология)

История микробиологии.

Человек в своей практической деятельности встречался с микроорганизмами с древнейших времен: хлебопечение; виноделие; пивоварение; инфекционные заболевания.

Причины инфекционных заболеваний выяснялись начиная с древней Греции.

Гиппократ IVвек до н.э. (тиазмы в воздухе)

Фракастора Vвек до н.э. (учение о контагее)

Микроорганизмы впервые увидел Антонио Ван Левенгук 17век (1632-1723)

Vivaanimalika– маленькие зверушки.

В середине 19 века Геккель изучая более внимательно строение бактериальных клеток обнаружил, что оно отличаться от строения клеток растений и животных. Он назвал эту группу прокариоты (клетки не имеющие настоящего ядра), а остальные растения, животные и грибы которые в клетке имеют ядро отошли в группу эукариоты.

Начинается II период развития микробиологии пастеровский или физиологический.

Работы Пастера. (1822-1895)

Пастер поставил развитие микробиологии на новый путь. По воззрениям того времени брожение считалось чисто химическим процессом

    Пастер в своих работах показал, что каждый вид брожения вызывается свими специфическими возбудителями – микроорганизмами.

    Изучая масляно-кислое брожение Пастер установил, что для бактерий вызывающих это брожение воздух вреден и открыл новый тип жизни анаэробиоз.

    Пастер доказал невозможность самозарождения жизни.

    Пастер изучал инфекционные заболевания (сибирскую язву) и предложил метод предохранительных прививок как способ борьбы с инфекциями. Пастер сделал первый шаг и зарождению новой науки – иммунология. В 1888г. В Париже на средства собранные по подписке был построен институт микробиологии.

    Пастеризация.

Роберт Кох (1843-1910)

    Окончательно доказал, что заразные болезни вызываются болезнетворными бактериями. Указал приемы борьбы с распространением инфекционных заболеваний – ДЕЗИНФЕКЦИЯ.

    Ввел в практику микробиологических исследованный использование твердых патотельных сред для получения чистых культур.

    Открыл возбудителей сибирской язвы (1877г.), туберкулеза (1882г.), холеры(1883г.).

Русская микробиология.

Н. Н. Мечников (1845-1916)

Продолжил работы Пастера по предохранительным прививкам и обнаружил, что в ответ на введения в кровь ослабленного возбудителя болезни в крови появляется большое количество особых иммунных тел –фагоцитов, и т.о. обосновал теорию иммунитета.

В 1909г. Получил за эту теорию Нобелевскую премию.

С. Н. Виноградский (1856-1953)

Следовал серобактерии, железобактерии, нитрифицирующие бактерии. Изучал почвенные бактерии. Открыл явление азотофикации. Открыл процесс хемосинтеза.

Хемосинтез исп. химических связей внутри молекул, как источник энергии для настроения новых молекул.

В. Л. Омелонский (1867-1928)

Написал первый учебник по микробиологии.

Методы микробиологических исследований.

    Бактериоскопический –это изучение внешней формы микроорганизмов с помощью увеличительных приборов.

    Бактериологический – это метод выращивания бактерий искусственных питательных средах. С помощью этого метода изучаеться форма бактериальных колоний, период роста, и др. характеристики роста бактериальных культур.

    Общебиологические :

    Методы молекулярной биологии,

    Цитохимии

    Генетики

    Биофизики

Химический состав и строение бактериальной клетки.

    Поверхностные клеточные структуры и внеклеточные образования: 1- клеточная стенка; 2-капсула; 3-слизистые выделения; 4-чехол; 5-жгутики; 6-ворсинки.

    Цитоплазматические клеточные структуры: 7-ЦМП; 8-нуклеотид; 9-рибосомы; 10-цитоплазма; 11-хроматофоры; 12-хлоросомы; 13-пластинчатые тилакоиды; 16-мезасома; 17-аэросомы (газовые вакуоли) ; 18-ламелярные структуры;

    Запасные вещества: 19-полисахарные гранулы; 20-гранулы поли-β-оксимасляной кислоты; 21-гранулы полифосфата; 22-цианофициновые гранулы; 23-карбоксисомы (полиэдральные тела); 24-вкючения серы; 25-жировые капли; 26-углеводородные гранулы.

Ультраструктура бактериальной клетки.

Разные методы исследования позволили выявить различия внутренней и внешней структуры у бактерий.

Поверхностная структура это:

  • Ворсинки

    Клеточная стенка

Внутренние структуры:

    Цитоплазматическая мембрана (ЦПМ)

    Нуклеоид

    Рибосомы

    Мезосомы

    Включения

Функции органеллы.

Клеточная стенка – обязательная структура для прокариотов за исключением микоплазмы и L-формы. На долю клеточной стенки приходится от 5 до 50% сухого вещества клетки.

Клеточная стенка имеет поры и пронизана сетью каналов и разрывов.

Функции

    Поддержание постоянной внешней формы бактерий.

    Механическая защита клетки

    Дают возможности существовать в гипотонических растворах.

Слизистая капсула (слизистый чехол)

Капсула и слизистый чехол покрывают клетку снаружи. Капсулой называется слизистое образование покрывающее клеточную стенку, имеющеечетко очерченную поверхность.

Различают:

    Микрокапсулу (меньше 0,2 мкм)

    Микрокапсулу (больше 0,2 мкм)

Наличие капсулы зависит от вида микроорганизмов и условий культивирования.

Различают капсульные колонии:

    S-типа (гладкие, ровные, блестящие)

    R-типа (шероховатые)

Функции:

    Защищает клетку от механических повреждений

    Защищает от высыхания

    Создает дополнительный осмотический барьер

    Служит препятствием для проникновения вирусом

    Является источником запасных питательных веществ

    Может быть приспособлением к окружающей среде

Под слизистым чехлом понимают аморфное бесструктурное слизистое вещество окружающее клеточную стенку и легко отделяющееся от неё.

Иногда ослизнение происходит у нескольких клеток так, что образуется общий чехол (зоология)

Функции:

Те же, что у капсулы.

Ворсинки представляют собой тонкие полые образования белковой природы (длина от 0,3-10 мкм, толщина 10 нм). Ворсинки подобно жгутикам являеться поверхностными придатками бактериальной клетки, но не выполняют локомоторную реакцию.

Жгутики

Функция

Локомоторная

ЦПМ – обязательный структурный элемент клетки. На долю ЦПМ приходиться 8-15% сухого вещества клетки из них 50-70% - белки 15-30% - липиды. Толщина ЦПМ 70-100Å (10⁻¹⁰).

Функции:

    Перенос веществ – через мембраны,

    Активный (против градиента концентрации, осуществляется белками – ферментами с затратой энергии)

    Пассивный (по градиенту концентрации)

    Локализуется большинство ферментативных систем клетки

    Имеет специальные участки для прикрепления ДНК прекариотной клетки и именно рост мембраны обеспечивает разделение геномов при делении клетки.

Нуклеоид . Вопрос о наличии ядра у бактерий в течении десятилетий носил дискуссионный характер.

При помощи электронной микроскопии ультратонких срезов бактериальных клеток, усовершенствованных цитохимических методах, радиографических и генетических исследований доказано наличие у бактерий нуклеодида – эквивалента ядра в клетке эукариотов.

Нуклеоид :

    Не имеет мембраны,

    Не содержит хромасом

    Не делиться митозом.

Один нуклеоид представляет собой макромолекулу ДНК с молекулярным весом 2-3*10⁹, размером 25-30 Å.

В развернутом состоянии это замкнутая кольцевая структура длинной примерно 1мнм.

В молекуле ДНК нуклеоида закодирована вся генетическая информация клетки и т.о. она является своеобразной кольцевой хромасомой.

Количество нуклеоидов в клетке – 1, реже от 1 до 8.

Рибосомы – это нуклеоидные частицы размером в 200-300Å. Ответственны за синтез белка. Находятся в цитоплазме прокариотов в количестве 5-50 тысяч.

Хроматофоры – это складки цитоплазматической мембраны в виде капель, которые содержат окислительно-восстановительные ферменты. У фотосинтетиков – ферменты осуществляют синтез веществ за счет энергии солнца, у хемосинтетиков- за счет разрушенных химических связей молекулы.

Тилокоиды так же содержат набор окислительно-восстановительных ферментов. Они есть и у фотосинтеиков и у хемосинтетиков. Очевидно прообраз митохондрий.

    Пластинчатые

    Трубчатые

Функции

    Окисление веществ.

Аэросомы - структуры, которые содержат какой-либо газ.

Внутрицитоплазмотические включения

В процессе жизнедеятельности бактериологической клетки в её цитоплазме могут формироваться морфологические образования, выявляемые цитохимическими методами. Эти образования названные включениями по своей химической природе различны и не одинаковы у разных бактерий. В одних случаях включения являются продуктами обмена бактериальной клетки, а в других запасным питательным питательным веществом.

Химический состав клеток прокариотов.

В состав любой клетки прокариотов входят:

    2 типа нуклеиновых кислот (ДНК и РНК)

  • Углеводы

    Минеральные вещества

Вода

В количественном отношении самый значительный компонент клеток микроорганизмов, количество её составляет 75-85%. Количество воды зависит от вида микроорганизмов, условий роста, физиологического состояния клетки.

Вода в клетках бывает в 3-х состояниях:

    Свободном

    Связанном

    Связанном с боиполимерами

Роль воды. Универсальный растворитель- необходимый для растворения многих химических растворений и осуществления реакций промежуточного метаболизма (гидролиз).

Минеральные вещества

    Биогены (углерод(50%), водород,кислород,азот(14%),фосфор(1%),сера)

    Макроэлементы (0,01-3% от сухой массы клетки) K, Na, Mg, Ca, Cl, Fe.

    Микроэлементы (0,001-0,01% от сухой массы клетки) Mg, Zn,Mo,B,Cr,Co,Cu, и др.

    Ультрамикроэлементы (<0,001%) вся остальная таблица Менделеева.

Соотношение отдельных химических элементов может колебаться в значительных пределах, в зависимости от систематического положения микроорганизмов, условий роста и ряда других причин.

Количество минеральных веществ составляет 2-14% от сухой массы клетки, после биогенов.

Роль минеральных веществ :

    Являются активаторами и ингибиторами ферментативных систем.

Биополимеры.

Основные химические элементы входят в состав биополимеров присущих всем живым организмам:

    Нуклеиновых кислот

  • Углеводов (полисахаридов)

Характерным только для клеток – прокариот являются биополимер составляющий основу их клеточной стенки (по химическому составу это гликопептид или пептидогликан).

Нуклиновые кислоты .

В клетках в среднем содержится 10% РНК и 3-4% ДНК.

Белки.

Важнейшее значение в структуре и функции клеток принадлежит белкам, на долю которых приходиться 50-75% от сухой массы клетки.

Значит долю белков микроорганизмов составляют ферменты играющие существенную роль в проявлении жизнедеятельности прокариот. К биологически активным белкам принадлежат белки участвующие в транспорте питательных веществ а также многие токсины.

Часть белков составляют белки выполняющие структурную функцию – белки ЦПМ, клеточной стенки и др. органелл клетки.

Лепиды

В состав лепитов прокариот входят жирные кислоты, нейтральные жиры, фосфолепиды, гликолепиды, воска, лепиды содержащие изопреновые единицы (каротеноиды, бактопренол).

Микоплазмы в отличие от всех других прокариот содержат холестерин. Большая часть лепидов входит в состав мембраны клетки и клеточной стенки.

Углеводы

Из них состоят многие структурные компоненты клетки. Они используются в качестве доступных источников энергии и углерода. В клетках содержаться как моносахариды, так и полисахариды.

Морфология бактерий.

По внешнему виду бактерии делятся на 3 группы:

    Кокковидной формы

    Палочковидной формы

    Извитые (или спиралевидные)

Шаровидные бактерии – (кокки).

Могут быть самостоятельными клетками – монококки °₀° или связанными попарно – диплококки или связанными в цепочку – стрептококки или в пакете – сарцины

или в виде виноградной кисти – стафилококки

Бактерии шаровидной формы называемые кокками имеют правильную сферическую форму или форму неправильного шара.

Средний диаметр кокков – 0,5-1,5 мкм, у пневмококков например –

По признаку расположения клеток по отношению друг к другу кокки делят на:

    Монококки

    Диплококки

    Стрептококки

  • Стафилококки

Палочковидные бактерии (цилиндрические)

Различаются по форме величине в длину и в поперечнике, в форме концов клетки а так же взаимному расположению.

Размеры в поперечнике 0,5-1 мкм, длинна 2-3мкм.

Большинство палочковидных бактерий имеют форму прямого цилиндра. Некоторые бактерии могут иметь либо прямую либо слегка изогнутую форму.

Изогнутая форма встречается у вибрионов к которым относится возбудитель холеры.

У отдельных бактерий встречаются нитевидные и ветвящиеся формы.

Палочковидные микроорганизмы могут образовывать споры.

Спорообразующие формы называются бациллы.

Неспорообразующие называються бактериями.

Булавовидные.

Клострициальные.

В зависимости от взаимного расположения делят:

    Монобациллы

    Диплобациллы

    Стептобациллы

Спиралевидные бактерии

Бактерии имеющие изгибы, равные одному или нескольким оборотам спирали.

В зависимости от количества витков делят на группы:

    Вибрионы

    Спироллы 4-6 витков

    Спирохеты 6-15 витков

Чаще всего это болезнетворные микроорганизмы.

Существуют еще редко встречающиеся бактерии.

Шаровидная, палочковидная и спиралевидная форм бактерий самые распространенные, но встречатся и другие формы:

    Имеют вид кольца (замкнутого или разомкнутого в зависимости от стадии роста). Такие клетки предложено называть тороидами.

    У некоторых бактерий описано образование клеточных выростов, число которых может колебаться от 1 до 8и более.

    Существуют так же бактерии напоминающие по виду правильную шестиугольную звезду.

    Для некоторых групп прокариотов характерно ветвление.

    В 1980 году английский микробиолог Уолсби сообщил что микроорганизмы могут быть квадратными.

Форма бактерий наследственно закреплена (за исключением мипопиазм и L- форм), и по этому является одним из критериев при определении микроорганизмов.

Движение бактерий.

Способность активно передвигаться присуща многим бактериям. Существуют 2 типа подвижных бактерий:

    Скользящие

    Плавающее

    Скольжение. Микроорганизмы передвигаются по твердому и полу твердому субстрату (почва, ил, камни). В результате волнообразных сокращений вызывающих периферическое изменение формы тела. Образуется некоторое подобие бегущей волны: выпуклости клеточной стенки, которая перемещаясь в одном направлении способствует движению в противоположную сторону.

    Плавание. Палочковидные бактерии относятся к плавающим формам, а так же большинство спирилл и некоторые кокки.

Все эти бактерии передвигаются с помощью особых поверхностных нитевидных образований, называемых жгутиками. Различают несколько типов жгутикования в зависимости от того как они расположены на поверхности и сколько их:

    Монотрих

    Биполярный монотрих или амфитрих

    Лофотрих

    Амфитрих или биполярный лофотриф

    Перетрих

Толщина жгутиков 0,01-0,03 мкм. Длинна меняется у одной и той же клетки в зависимости от условий окружающей среды от 3-12 мкм.

Число жгутиков различно у разных видов бактерий, у некоторых перитрихов она достигает 100.

Жгутики не являются жизненно важными органами.

Жгутики как бы присутствуют на определенных стадиях развития клетки.

Скорость передвижения бактерий при помощи жгутиков различается у разных видов. Большинство бактерий проходит за секунду расстояние равное длине своего тела. Некоторые бактерии при благоприятных условиях могут проходить расстояния превышающие 50 длин тела.

В перемещениях бактерий есть определенный смысл, они стремятся в сторону наиболее благоприятных условий существования. Они называются таисисами.

Таксисы могут быть хема, фото, аэро,

Если в сторону благоприятных факторов то это положительно таксис , если от факторов, то отрицательно таксис.

Споры и спорообразование.

Многие бактерии способны образовывать структуры помогающие им переживать в течение длительного времени не благоприятные условия и переходить в активное состояние при попадание в подходящие для этого условия. Эти формы называются цистами эндоспорами.

Микроцисты:

При их образовании происходит утолщение стенки вегетативной клетки, в результате чего формируются оптически плотные, яркопреломляющие свет, окруженные слизью, укороченные палочки или сферические формы.

Они функционально аналогичны бактериальным эндоспорам:

    Более устойчивы к изменению температур

    Высушиванию

    Различным физическим воздействиям, чем вегетативная клетка.

Эндоспоры:

Образуются эндоспоры у следующих бактерий:

  • Desulfotomaculum

Формирование споры начинается с того что в зоне локализации нитей ДНК происходит уплотнение цитоплазмы, которая вместе с генетическим материалом обособляется от остального клеточного содержимого с помощью перегородки. Образуются плотные мембранные слои между которыми начинается формирование кортикального слоя (кортекс).

Спора- это покоящаяся стадия спорообразующих видов бактерий.

Бактерии образуют споры, когда создаются такие условия в окружающей среде которые индуцируют процесс спорообразования.

Считается что споры не обязательная стадия цикла развития споро образующих бактерий.

Можно создать условия в которых рост и размножение бактериальных клеток происходит без спорообразования в течении многих поколений.

Факторы и индуцирующие споро образование:

    Недостаток питательных веществ в среде

    Изменение pH

    Изменение температуры

    Накопление выше определенного уровня продуктов клеточного метаболизма.

Принципы систематики микроорганизмов.

Понятие вид, штамм, клон.

Основная таксономическая единица –вид который следует рассматривать как конкретную форму существования органического мира.

В микробиологии понятие вид можно определить как совокупность микроорганизмов имеющих единое происхождение и генотип, сходных по своим биологическим признакам и обладающих наследственно закрепленной способностью вызывать в стандартных условиях качественно-определенные процессы.

Сравнительно однородные виды бактерий определяют в роды → семейства → порядки → классы.

Важным критерием определения понятия вид является однородность особей.

Для микроорганизмов строгая однородность признаков не является характерными, поскольку их морфологические свойства могут изменяться в зависимости от условий окружающей с среды в течение короткого времени.

Название микроорганизма состоит из двух слов: первое слово означает род (оно пишется с большой буквы и является производной от какого либо термина характеризующего признак, или от фамилии автора открывшего или изучившего этот микроорганизм), второе слово обозначает конкретный вид (пишется с маленькой буквы и является производным существительного определяющего источник происхождения микроба, либо название вызываемого им заболевания, либо фамилия автора). Bacillusanthracis.

В микробиологии широко применяются термины штамм иклон.

Штамм более узкое понятие чем вид.

Штаммами называются различные микробные культуры одного вида, выделенные из различных источников или из одного источника, но в разное время.

Штаммы одного вида могут быть совершенно идентичными или различаться по отдельным признакам (например по устойчивости к какому – либо антибиотику, ферментации какого-либо сахара и т.д.).

Однако свойства различных штаммов не выходят за пределы вида.

Термином клон обозначают культуру микроорганизмов полученную из одной клетки.

Популяции микробов состоящие из особей одного вида называются чистой культурой.

Понятие о статических и проточных микробных культурах.

Хемостат

Турбиностат – определение мертвых микроорганизмов по мутности.

Таких емкостях выращивается проточная микробная культура.

Для выращивания проточной микробной культуры, выращенной в условиях постоянной подпитки и удаления продуктов метаболизма и мертвых микробных клеток.

Статичная микробная культура – это популяция бактерий находящихся в ограниченном жизненном пространстве, которое не обменивается ни веществом ни энергией с окружающей средой.

Закономерности роста и развития микроорганизмов.

Изменение и обновление организма в процессе его обмена с окружающей средой называется развитием. Развитие организма имеет 2 следствия:

    Размножение.

Под ростом подразумевается увеличение размеров организма или его живого веса.

Под размножением подразумевается увеличение количества организмов.

Скорости роста микробной популяции:

Абсолютная скорость.

Относительная скорость по биомассе.

Понятие генерации:

Фазы развития стационарной микробной культуры.

    Фаза – лаг-фоза.

Период от внесения бактерий до достижения ими максимальной относительной скорости роста. В этот период бактерии приспосабливаются к новой среде обитания и поэтому размножаются не значительно. К концу лаг-фазы клетки часто увеличивают свой оббьем и т.к. их количество в этот момент не велико, то относительная скорость роста биомассы становиться максимальной, по окончании этого периода, в то время как абсолютная скорость лишь незначительно увеличиваться. Длительность лаг-фазы зависит как от внешних условий так и от возраста бактерий и их видовой специфичности. Как правило чем полноценней среда, тем короче лаг-фаза. Изменение в химическом составе бактериальной клетки выражается в накоплении запасных питательных веществ и в резком повышении содержания РНК (в 8-12 раз), что свидетельствует об интенсивном синтезе ферментов, необходимых для дальнейшего роста и развития клетки.

    Фаза – ускорение роста.

Характеризуется постоянной относительной скоростью деления клеток. В этот период число клеток возрастает по экспоненте. Удельная скорость остается постоянной и максимальной, а абсолютная скорость быстро возрастает. Скорость деления клеток в фазе ускоренного роста является максимальной для них, причем для различных видов бактерий и условий окружающей среды эта скорость различна, так например, кишечная палочка в этой фазе делится каждые 20 минут, для некоторых почвенных бактерий время генерации 60-150 минут, а у нитрифицирующих бактерий 5-10 часов. В течении этой фазы величина клеток и их химический состав остаются постоянными.

    Фаза – линейного роста.

Эта фаза характеризуется резким снижением удельной скорости роста, т.е. увеличением времени генерации. Причиной этому служит начинающийся дефицит питательных веществ и избыточное содержание в среде продуктов обмена, которые в определенной концентрации негативно влияют на рост популяции. В этот период количество бактерий увеличивается линейно, а абсолютная скорость достигает максимума.

    Фаза – замедление роста.

В этот период дефицит питательных веществ и концентрации продуктов обмена продолжают увеличиваться, что сказывается на падении абсолютной и относительной скоростей роста. Увеличение количества клеток постепенно замедляется и к концу фазы и к концу фазы приближается к максимуму. В этот период характеристика отмирания части наименее приспособленных клеток.

II,IIIиIVфазы объединяются в одну фазуроста.

    Фаза- стационарная.

В течение этой фазы количество живых клеток в культуре сохраняется примерно постоянным, т.к. число вновь образующихся клеток равно числу отмирающих. Абсолютная и относительная скорости роста приближаются к нулевой отметке. Отмирание или выживание бактерий в этой фазе не является случайными событиями. Выживают как правило те клетки, которые способны качественно перестроить свой обмен веществ. Для всех бактерий в этой фазе характерно использование запасенных веществ, распад части клеточных веществ, биомассы статической культуры в этой фазе достигает максимума и поэтому называется выходом или урожаем культуры. количество урожая зависит от видовой принадлежности микроорганизмов, от природы и количества питательных веществ, а так же от условий культивирования. В микробных производствах проточные микробные культуры поддерживают в стационарной фазе развития.

    Фаза – отмирание.

Эта фаза наступает в тот момент когда концентрация какого либо из необходимых клеткам питательных веществ, падает до условного нуля, или когда какой-либо продукт обмена достигает такой концентрации в среде, при которой он токсичен для большинства клеток. Абсолютная и удельная скорости роста отрицательны, что говорит об отсутствии деления клеток.

Микробиология (от греч. микрос – малый, биос – жизнь, логос – учение, наука) – это наука о микробах (микроорганизмах).

Объект исследования : микробы или микроорганизмы (вирусы, бактерии, микроскопические водоросли и грибы, простейшие).

Предмет исследования : морфология, физиология, биохимия, генетика, систематика, развитие, экология микроорганизмов, их значение в жизни человека, животных и всей биосферы.

Микробиология подразделяется на дисциплины:

  1. Бактериологию – науку о бактериях;
  2. Вирусологию – о вирусах;
  3. Микологию – о грибах;
  4. Альгологию – о микроскопических водорослях;
  5. Протозоологию – о простейших;
  6. Иммунологию – о защитных реакциях организма.

Разделы микробиологии:

  1. Общая – изучает наиболее общие закономерности, свойственные каждой группе микроорганизмов. Она является базовой для всех разделов микробиологии.
  2. Частная – частная микробиология изучает частные вопросы (характеристика возбудителей бактериальных, вирусных, протозойных инфекиций, микозов, микотоксикозов).

Направления в микробиологии : с/х; медицинская; ветеринарная; техническая; санитарная; морская; геологическая; космическая.

1. СЕЛЬСКОХОЗЯЙСТВЕННАЯ МИКРОБИОЛОГИЯ. Изучает микробы, которые участвуют в круговороте веществ, используются для изготовления удобрений, повышении плодородия почв, вызывают заболевания растений (фитопатогенные) и меры борьбы с ними и др.

2. МЕДИЦИНСКАЯ МИКРОБИОЛОГИЯ. Предмет ее изучения – патогенные (болезнетворные) и условно-патогенные (вызывают болезни при определенных условиях) для человека микроорганизмы. Она изучает особенности возбудителя, методы лабораторной диагностики, лечения и профилактики болезней.

3. ВЕТЕРИНАРНАЯ МИКРОБИОЛОГИЯ. Предмет ее изучения – также патогенные (болезнетворные) и условно-патогенные (вызывают болезни при определенных условиях) микроорганизмы. Она изучает возбудителей заболеваний с/х, промысловых и диких животных, птиц, рыб, пчел. Она изучает особенности возбудителя, методы лабораторной диагностики, лечения и профилактики болезней. Она тесно связана с медицинской, т. к. многие возбудители инфекционных болезней (зооантропонозы) являются общими для человека и животных. Также она изучает микрофлору продуктов животного происхождения (мяса, молока и др).

4. ТЕХНИЧЕСКАЯ (ПРОМЫШЛЕННАЯ) МИКРОБИОЛОГИЯ. Ее задача – разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, витаминов, ферментов, антибиотиков, спиртов, органических кислот, а также вина, пива, молочнокислых продуктов и др. В ее задачу входит также разработка методов борьбы с коррозией металлов и способов защиты от повреждения микробами строительных материалов, различного сырья, продуктов питания.

5. САНИТАРНАЯ МИКРОБИОЛОГИЯ. Предмет ее изучения – санитарно–микробиологическое состояние объектов окружающей среды (воздух, вода, почва), пищевых и кормовых продуктов (мясо, молоко, яйца, зерно). Задача данного раздела – разработка санитарно-микробиологических нормативов и методов обнаружения патогенных и условно-патогенных микробов в различных объектах окружающей среды.

6. МОРСКАЯ (ВОДНАЯ) МИКРОБИОЛОГИЯ. Она изучает микробов – обитателей морей, океанов и других водоемов. Разрабатывает микробиологические способы очистки промышленных и сточных вод.

7. ГЕОЛОГИЧЕСКАЯ МИКРОБИОЛОГИЯ. Она исследует роль микроорганизмов в круговороте веществ, в образовании полезных ископаемых, разрабатывает микробиологические способы получения из руд металлов.

8. КОСМИЧЕСКАЯ МИКРОБИОЛОГИЯ. Она изучает микрофлору космического пространства и других планет, влияние космических условий на жизнедеятельность микроорганизмов.

Микробы (микроорганизмы) – это название собирательной группы живых организмов, не видимых невооруженным глазом (их характерный размер – менее 0,1 мм).

К микробам относят: неклеточные формы (вирусы), прокариоты или безъядерные (бактерии), эукариоты или ядерные (грибы и простейшие).

Свойства микроорганизмов :

  1. микроскопические размеры;
  2. относительная простота строения;
  3. высокие темпы размножения;
  4. массовость популяций;
  5. способность к трансформации любых органических и (или) неорганических веществ;
  6. высокая интенсивность обмена веществ;
  7. выраженная изменчивость и приспособляемость к внешней среде;
  8. повсеместное распространение в биосфере.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Микрофлора сырья

Использованная литература

Введение

Человечество давно научилось использовать микробиологические процессы в практической деятельности. Многие микробиологические процессы применяются в пищевой промышленности. Например, в основе технологического приготовления хлеба лежат биохимические процессы спиртового и молочнокислого брожения, возбудителями которых являются дрожжи и молочнокислые бактерии. Эти микроорганизмы обуславливают необходимую степень разрыхления и кислотность полуфабрикатов, вкус и аромат хлеба, способствуют улучшению качества изделий, повышению их пищевой ценности.

Так как в хлебопечении и производстве мучных кондитерских изделий сырье не стерилизуют, получение и использование чистых культур имеет важное значение, поскольку они обеспечивают нормальное брожение полуфабрикатов и выпуск готовых изделий стандартного качества. Кроме того, тесто готовят в нестерильных условиях, и в полуфабрикатах кроме полезных микроорганизмов развиваются также и вредные. Для контроля микробиологического состояния производства хлебобулочных и мучных кондитерских изделий на предприятиях созданы микробиологические лаборатории, которые занимаются поддерживанием и возобновлением заквасок и чистых культур и микробиологическим контролем питательных сред, полуфабрикатов и готовой продукции.

Технически чистыми называют культуры, с незначительной примесью других видов микроорганизмов. В хлебопекарной промышленности к чистым культурам относятся прессованные и сушеные дрожжи. Смешанными называют культуры, состоящие из клеток микроорганизмов двух и более видов (например, микроорганизмы заквасок и теста, содержащие дрожжи и молочнокислые бактерии).

1. Микрофлора сырья

В хлебопекарном производстве и при производстве мучных кондитерских изделий в качестве сырья применяют муку, дрожжи, сахар, сахаристые вещества, жиры, яйца и яйцепродукты, молоко и молочные продукты, фрукты и ягоды, вкусовые ароматические и другие вещества. Сырье как растительного, так и животного происхождения содержит большое количество питательных веществ и, таким образом, является благоприятной средой для развития микроорганизмов. Поэтому на пищевых предприятиях следует уделять большое внимание микробиологическому контролю поступающего на производство сырья, а также соблюдать санитарные требования при его хранении, переработке и транспортировке.

Мука. При размоле в муку попадают все микроорганизмы, находящиеся на поверхности зерна, в результате их жизнедеятельности мука при хранении может подвергаться микробиологической порче.

Микробиологическая порча муки происходит при увеличении содержания в ней влаги свыше 15% в результате неправильного хранения. Мука прокисает в результате активизации жизнедеятельности молочнокислых бактерий, которые сбраживают сахара муки с образованием кислот. При хранении муки на складах при повышенной относительной влажности воздуха происходит плесневение под действием микроскопических грибов.

Прогоркание муки является результатом окисления жиров муки кислородом воздуха и ферментативного гидролиза жиров. При хранении муки влажностью более 20% происходит самосогревание муки, которое сопровождается размножением спорообразующих бактерий, вызывающих тягучую болезнь хлеба. Такая мука в хлебопечении и в производстве мучных кондитерских изделий не используется.

Крахмал. Сырой картофельный крахмал является скоропортящимся продуктом, так как имеет высокую влажность (около 50%). При неблагоприятных условиях хранения в крахмале интенсивно размножаются бактерии, что приводит к микробиологической порче крахмала - его закисанию, изменению цвета. Сухой крахмал, имеющий влажность 20%, не подвергается микробиологической порче. Если крахмал хранить при высокой относительной влажности воздуха, то вследствие высокой гигроскопичности (способности поглощать влагу) он может увлажняться; образуя комки, развиваются микроорганизмы и появляется гнилостный запах.

Дрожжи. В хлебопечении используются прессованные, сушеные, жидкие дрожжи и дрожжевое молоко. В прессованных дрожжах могут содержаться посторонние микроорганизмы, присутствие которых нежелательно, так как они снижают качество дрожжей. К ним относятся дикие дрожжи из рода Candida (Кандида), которые снижают подъемную силу дрожжей, а также гнилостные и другие бактерии, ухудшающие стойкость при хранении.

Поваренная соль. Соль может быть обсеменена споровыми формами микроорганизмов. Она имеет низкую влажность, которая меньше той, при которой могут жить микроорганизмы. Поэтому соль не подвергается микробиологической порче.

Сахар и сахаристые вещества. Сахар является основным сырьем, входящим в рецептуру мучных кондитерских изделий, а также в сдобные и многие хлебобулочные сорта. Влажность сахара не более 0,15%, поэтому при правильном хранении он не подвергается микробиологической порче.

При нарушении санитарных требований и правил хранения в сахаре могут развиваться дрожжи, споры бактерий и грибов, так как при хранении сахара во влажной среде на поверхности его кристаллов конденсируется влага, в которой растворяется сахар. В образовавшейся пленке сахарного раствора развиваются микроорганизмы, а выделяемые ими кислоты разлагают сахарозу, что резко ухудшает вкус сахара.

Микробиологической порче подвергаются иногда патока и мёд. Они содержат большое количество сухих веществ, в том числе сахара. Микроорганизмы развиваются в том случае, если в патоку и мёд попадает вода. В результате происходит брожение и закисание. Для прекращения брожения патоку и мёд рекомендуется нагреть до 75-85°С.

Молоко и молочные продукты. Молоко и сливки являются благоприятной средой для жизнедеятельности многих микроорганизмов. При неправильном хранении наблюдаются различные виды микробиологической порчи этих продуктов. К микроорганизмам вызывающим порчу молока, относятся молочнокислые, гнилостные, маслянокислые, слизеобразующие, пигментобразующие бактерии, дрожжи, бактерии кишечной группы.

Молочнокислые бактерии сбраживают молочный сахар с образованием молочной кислоты. Избыток молочной кислоты вызывает скисание молока; вкус молока при этом приятный, кисловатый. Маслянокислые бактерии вызывают в молоке брожение, в результате которого молоко скисает и приобретает неприятный прогорклый вкус и запах. Гнилостные бактерии, развиваясь в молоке, вызывают прогоркание и ухудшают вкус, запах становится неприятный, гнилостный. Слизеобразующие бактерии вызывают тягучесть молока. Пигментобразующие бактерии вызывают окрашивание молока (покраснение, посинение). Бактерии кишечной группы вызывают свертывание молока с образованием СО2.

Молоко и молочные продукты могут стать источником пищевых отравлений, если в них попадает золотистый стафилококк. Молоко загрязняется стафилококком при доении коров, особенно когда коровы больны маститом. При размножении стафилококка в молоке не наблюдается признаков порчи. Для предотвращения порчи молока его хранят в холодильнике при температуре не выше 8°С в течение 20 ч или пастеризуют. Для длительного хранения из молока готовят молочные консервы - это сгущённое молоко без сахара или с сахаром и сухое молоко.

Сгущённое молоко без сахара при правильном ведении технологического процесса приготовления и соответствующих условиях может храниться в течение нескольких месяцев. При нарушении этих требований возникает микробиологическая порча сгущённого молока. В результате жизнедеятельности кислотообразующих бактерий происходит его свертывании, а при развитии гнилостных и маслянокислых - вздутие консервных банок, под действием образующих газов (бомбаж)

В сгущённом молоке с сахаром концентрация сухого вещества повышенная. Сахар играет роль консервируемого вещества и препятствует развитию микроорганизмов. В сгущённое молоко микроорганизмы попадают из исходного сырья - молока и сахара. При хранении сгущённое молоко с сахаром иногда подвергается микробиологической порче. Оно может заплесневеть, загустеть в результате развития микрококков. Микроскопические грибы вызывают комкование, дрожжи - бомбаж.

Творог и сметана подвергаются микробиологической порче в результате жизнедеятельности различных микроорганизмов. Так, дрожжи вызывают их брожение, молочнокислые бактерии - прокисание, гнилостные бактерии - ослизнение, горький вкус. Творог и сметану необходимо хранить в холодильнике при температуре 2-4°С.

Жиры и масла. Сливочное масло и маргарин обсеменены большим количеством различных микроорганизмов. Главным образом, это молочнокислые бактерии: встречаются гнилостные, спорообразующие и флуоресцирующие бактерии, дрожжеподобные грибы. При неправильном хранении они вызывают различные виды порчи масла. Например, при размножении молочнокислых бактерий наблюдается прокисание, гнилостные бактерии придают горький вкус, спорообразующие - рыбный вкус и запах, дрожжеподобные грибы вызывают прогоркание, затхлый вкус и запах, микроскопические грибы - плесневение. Масло, подвергнутое микробиологической порче, в производство не допускается. Хранят масло в холодильнике при температуре минус 8-10°С.

Топленое масло имеет влажность не более 1%, растительное - 0,3%, поэтому они не подвергаются микробиологической порче. Но при длительном хранении растительного масла образуется осадок, который является хорошей питательной средой для ряда микроорганизмов, продукты жизнедеятельности которых ухудшают качество растительного масла..

Яйца и яйцепродукты. В хлебопекарном производстве и в производстве мучных кондитерских изделий применяют яйца куриные (реже - гусиные и утиные), меланж, яичный порошок. Яйца являются хорошей питательной средой для развития микроорганизмов, так как они имеют повышенную влажность (73%) и содержат много белков, жиров и других веществ. Внутри яйца условно стерильны, и микроорганизмы могут проникать в них только при повреждении скорлупы и оболочки. Скорлупа яиц чаще всего обсеменяется во время сбора, хранения и транспортирования. Заражение может произойти и при формировании яйца в организме птицы, если она больна, в этом случае в яйцах можно обнаружить сальмонеллы, стафилококки.

Гнилостные бактерии, микроскопические грибы, бактерии кишечной группы и др. Если микроорганизмы находятся на поверхности скорлупы, то при соблюдении условий хранения микрофлора не развивается. При повышении температуры и влажности воздуха микроорганизмы становятся, более активны, проникают внутрь яиц, размножаются и вызывают гнилостное разложение. Образующиеся при этом продукты придают яйцу лежалый или тухлый запах. Утиные и гусиные яйца могут быть заражены сальмонеллами, так как этих микроорганизмов много в кишечнике водоплавающей птицы. Утиные и гусиные яйца являются причиной пищевых отравлений, поэтому они проходят тщательную санитарную обработку. Их применяют только для изделий, приготовление которых включает длительную обработку при высокой температуре. Запрещается употребление этих яиц для приготовления кремов и сбивных кондитерских изделий.

Меланж - замороженная смесь яичных белков, желтков. Перед использованием его размораживают и хранят не более 4 ч, иначе в нем быстро размножаются микроорганизмы, что приведет к порче меланжа.

Яичный порошок - это содержимое яйца, высушенное до влажности не более 9%. Хранение в герметичной таре исключает микробиологическую порчу, но при повышенной влажности яичный порошок плесневеет или загнивает.

Кофе, какао, орехи. Эти продукты являются хорошей питательной средой для развития микроорганизмов. При длительном хранении в условиях повышенной влажности воздуха наблюдается их плесневение. Для предохранения от микробиологической порчи эти продукты хранят в сухих, хорошо проветриваемых помещениях.

Фрукты и ягоды. Свежие фрукты и ягоды содержат много влаги, сахаров, витаминов и других веществ, что делает среду благоприятной для развития многих микроорганизмов - микроскопических грибов, дрожжей и бактерий.

Во избежание микробиологической порчи, фрукты и ягоды следует хранить в холодильнике не более 2 суток при температуре 0-2°С. Для длительного хранения фрукты и ягоды консервируют путем замораживания, сушки, а также путем приготовления из них полуфабрикатов (пюре, повидло, варенья, подварок, джема).

Фрукты и ягоды замораживают при температуре минус 10-20°С, при этом количество микроорганизмов заметно уменьшается. Скорость их отмирания зависит от их вида и степени обсемененности сырья. Особенно устойчивы к низкой температуре споры бактерий Clostridium botulinum (Клостридиум ботулинум), кишечная палочка и сальмонеллы. После оттаивания на плодах снова начинают развиваться микроорганизмы - микроскопические грибы и дрожжи. Сушка - это способ консервирования фруктов и ягод, при котором из продукта выделяется влага. В результате создаются условия, при которых жизнедеятельность различных микроорганизмов подавлена. Но во время высушивания погибают не все микроорганизмы. Долго сохраняется жизнеспособность споры бактерии, микроскопических грибов, дрожжи, а также патогенные микробы кишечной группы. Сушеные фрукты и ягоды хранят при температуре 10°С и относительной влажности воздуха 65%. Несоблюдение условий хранения, в частности повышение влажности воздуха и увлажнение сушеных фруктов и ягод, ведет к их микробиологической порче.

Плодово-ягодные полуфабрикаты изготовляют с добавлением сахара при уваривании, поэтому они устойчивы при хранении. Но в них могут содержаться микроорганизмы, вызывающие порчу. Вредные микроорганизмы попадают из сырья или при нарушении правил приготовления. В плодово-ягодных полуфабрикатах могут размножаться дрожжи, вызывающие спиртовое брожение; микроскопические грибы придающие продуктам неприятный вкус и запах; молочнокислые и уксуснокислые бактерии, под действием которых продукт закисает. Во фруктовые пюре и повидло в качестве консервантов-антисептиков добавляют сернистую или сорбиновую кислоту.

2. Микробиология хлебобулочных и мучных кондитерских изделий

микрофлора хлебопекарный мучной порча

Технология хлеба и мучных кондитерских изделий из дрожжевого теста (крекеры, кексы, ромовая баба, кондитерская слойка, восточные сладости и другие мучные изделия) основана на процессах спиртового и молочнокислого брожения, возбудителями которых являются и молочнокислые бактерии.

Особенности технологии хлебобулочных и мучных кондитерских изделий.

Основные стадии технологического процесса производства хлеба следующие: подготовка сырья, замес теста и расстойка теста, выпечка готовых изделий.

В производстве мучных кондитерских изделий используется только пшеничная мука. Хлеб вырабатывают из пшеничной, ржаной муки, а также из их смеси. Технологии приготовления теста из муки ржаной и пшеничной различны, поскольку в этих процессах участвуют различные микроорганизмы.

Приготовление опары. Для приготовления пшеничного теста применяют два способа - опарный и безопарный. Целью приготовления опары является получение наибольшего количества дрожжей с наивысшей активностью. Это достигается тогда, когда начинает падать скорость образования газов СО2, т.е. когда дрожжи привыкают к мучной среде и переключаются с дыхания на брожение, в процессе последнего объем опары увеличивается. В первые 1 - 1,5 ч брожения дрожжевые клетки не размножаются, а происходит увеличение их размеров. Они приспосабливаются к новым условиям среды, т.е. переживают период задержки роста. Затем процесс брожения активизируется, и дрожжи начинают энергично почковаться, т.е. происходит их быстрый рост; он продолжается 4 - 4,5 ч и характеризуется наибольшей скоростью газообразования. Если в это время замесить тесто на готовой опаре, продолжительность его брожения будет минимальной, так как все бродильные ферменты дрожжей приобретут высокую активность за время брожения опары.

Замес и брожение теста. На выброженной опаре замешивают тесто. Оно бродит 1 - 1,5 ч при температуре 30 - 31°С. В бродящих полуфабрикатах происходит спиртовое и молочнокислое брожение, обусловливающие их разрыхление и созревание изменение состава белков и крахмала.

В тесте микроорганизмы снова приспосабливаться к новому составу среды, это приводит к задержке роста клеток, затем они начинают быстро размножаться, т.е. переходят в фазу быстрого роста. Из всех микроорганизмов муки молочнокислые бактерии наиболее приспособлены к развитию в тесте. Размножаясь, они образуют молочную кислоту, которая отрицательно действует на другие микроорганизмы и таким образом создаются условия для развития преимущественно молочнокислых бактерий. Сначала погибают микроорганизмы, живущие в щелочной среде, например, гнилостные бактерии, затем микроорганизмы, развивающиеся в нейтральной среде, - бактерии кишечной группы. При дальнейшем возрастании кислотности погибают уже кислотолюбивые бактерии - уксуснокислые, маслянокислые и другие. В муке имеются микроорганизмы, которые могут развивать и при высокой кислотности среды, но для них необходим кислород, т.е. доступ воздуха. Исключение составляют дрожжи вида Saccharomyces cerevisiae (Сахаромицес церевизия), которые могут жить и в кислородной, и в бескислородной среде, а так как тесто - среда бескислородная, то в нем размножаются только эти дрожжи. Следовательно, в образовании пшеничного теста участвуют дрожжи Saccharomyces cerevisiae и молочнокислые бактерии.

Микробиологические процессы в тесте. В тесте наблюдается симбиоз дрожжей и молочнокислых бактерий. Молочнокислые бактерии сбраживают сахара с образованием молочной кислоты, которая, подкисляя среду, создает благоприятные условия для развития дрожжей. Дрожжи в процессе жизнедеятельности обогащают среду азотистыми веществами и витаминами, необходимыми бактериями. Молочная кислота подавляет жизнедеятельность других микроорганизмов (гнилостных, бактерий кишечной группы, уксуснокислых, маслянокислых и др.), продукты, жизнедеятельности которых токсичны для дрожжей.

В спиртовом брожении теста из пшеничной и ржаной муки участвуют дрожжи, относящиеся к сахаромицетам (Saccharomyces cerevisiae и S. minor). Спиртовое брожение в тесте протекает в анаэробных условиях или при ограниченном доступе кислорода воздуха. В присутствии кислорода дрожжи получают энергию в результате процессов дыхания, т.е. ведут себя как аэробы. Оптимальная температура развития хлебопекарных дрожжей около 30°С. Дрожжи хорошо переносят кислотность среды до 10 - 12 рН. Отрицательное влияние на жизнедеятельность дрожжей указывает избыточное добавление сахара и соли. Молочнокислые бактерии сбраживают молочный сахар лактоза - с образованием молочной кислоты и ряда побочных продуктов. По характеру вызываемого брожения молочнокислые бактерии разделяют на гомоферментативные и гетероферментативные. К гомоферментативным относятся мезофильные молочнокислые бактерии Lactobacillus plantarum (Лактобациллус плантарум) и термофильная палочка Дельбрюка (L. delbrueckii) образующие при брожении только молочную кислоту. К гетероферментативным относятся Lactobacillus brevis (Лактобациллус бревис) и Lactobacillus fermentum (Лактобациллус ферментум), образующие наряду с молочной, уксусную кислоту, спирт, диоксид углерода, водород и другие продукты.

Молочная кислота определяет кислотность теста и этим способствует развитию дрожжей, задерживая размножение вредных, в данном процессе бактерий и является характеристикой полноты процесса, так как по конечной кислотности теста судят о его готовности. Молочная, уксусная, муравьиная кислоты и другие вещества, образующиеся в результате молочнокислого брожения, улучшают вкус и аромат хлеба.

Молочнокислые бактерии нуждаются в углеводах, аминокислотах, витаминах и других факторах роста. Они активны в слабокислых средах, устойчивы к наличию спирта. На развитие молочнокислых бактерий благоприятно влияет, высокая концентрация сахара, соли, накопление молочной и уксусной кислот.

Основными микроорганизмами, синтезирующими молочную кислоту в тесте, являются мезофильные бактерии, имеющий температурный оптимум развития около 35°С. Термофильные молочнокислые бактерии типа бактерий Дельбрюка имеют температурный оптимум 48 - 54°С. С увеличением температуры опары или теста нарастание в них кислотности ускоряется.

Присутствие диких дрожжей и микроскопических грибов в тесте нежелательно, поскольку дикие дрожжи ухудшают подъемную силу прессованных дрожжей, а микроскопические грибы вызывают значительные биохимические изменения. Однако они аэробны и развиваются только при доступе воздуха, поэтому основным препятствием развитию диких дрожжей и микроскопических грибов является недостаток воздуха в тесте.

3. Микроорганизмы, сохраняющиеся в изделиях во время выпечки

В процессе выпечки жизнедеятельность бродильной микрофлоры теста изменяется. При прогревании тестовой заготовки дрожжи и молочнокислые бактерии постепенно отмирают. При выпечке в мякише происходит испарение влаги, поэтому температура в центре мякиша не превышает 96 - 98°С. Некоторые устойчивые споры микроскопических грибов, а также споры сенной палочки не погибают.

После выпечки корка хлеба или выпеченного полуфабриката практически стерильна, но в процессе хранения, транспортировки и реализации в торговой сети может произойти заражения изделий микроорганизмами, в том числе и патогенными. Источниками заражения может быть загрязненный инвентарь (лотки, вагонетки и др.), руки у рабочих, т.е. чаще всего причиной является неудовлетворительное соблюдение санитарных условий. В результате хлеб, хлебобулочные и мучные кондитерские изделия подвергаются микробиологической порче.

4. Виды микробной порчи хлебобулочных и мучных кондитерских изделий

Тягучая болезнь хлеба. Возбудителями тягучей болезни являются спорообразующие бактерии - сенная палочка (Bacillus subtilis). Это мелкие подвижные палочки со слегка закругленными концами, расположенные одиночно или цепочками. Длина сенной палочки 1,5 - 3,5 мкм, толщина - 0,6 - 0,7. Она образует споры, которые легко переносят кипячение и высушивание и погибают мгновенно только при температуре 130°С. При выпечки споры сенной палочки не погибают, а при длительном остывании изделий прорастают и вызывают порчу.

Тягучая болезнь хлеба и мучных кондитерских изделий (например, бисквита) развивается в четыре стадии. Первоначально образуются отдельные тонкие нити, и развивается легкий посторонний запах. Затем запах усиливается, количество нитей увеличивается. Это слабая степень поражения хлеба тягучей болезнью. Далее - при средней степени заболевания - мякиш становится липким, а при сильном - темным и липким, с неприятным запахом.

Для предупреждения тягучей болезни - необходимо обеспечить быстрое охлаждение готовых изделий, т.е. снизить температуру в хлебохранилище и усилить в ней вентиляцию.

Меры борьбы с тягучей болезнью сводятся к созданию условий, препятствующих развитию спор сенной палочки в готовых изделиях, и к уничтожению спор этих бактерий путем дезинфекции. Способы подавления жизнедеятельности сенной палочки в хлебе основаны на её биологических особенностях, в основном на чувствительности к изменению кислотности среды. Для повышения кислотности тесто готовят на заквасках, жидких дрожжах, части спелого теста или опары, а также вносят сгущенную молочную сыворотку, уксусную кислоту и уксуснокислый глицерин в таких количествах, чтобы кислотность хлеба была выше нормы на 1 град.

Хлеб, пораженный тягучей болезнью, запрещается перерабатывать в сухарную муку и использовать в технологическом процессе. Хлеб, пораженный тягучей болезнью, в пищу не употребляют при слабой зараженности он идет на сушку сухарей для животных. Если хлеб не может быть использован для кормовых и технических целей, то его сжигают. Уничтожение спор сенной палочки достигается путем дезинфекции оборудования и помещений.

Складские и производственные помещения подвергают механической очистке, а затем дезинфицируют 3%-ным раствором хлорной извести, стены и полы моют 1%-ным раствором. Металлические, деревянные и тканевые поверхности оборудования обрабатывают 1%-ным раствором уксусной кислоты.

Плесневение. Плесневение хлеба и мучных кондитерских изделий происходит при хранении их в условиях благоприятных для развития микроскопических грибов.

Имеющиеся в муке споры полностью погибают при выпечке хлеба и хлебобулочных изделий, но могут попасть из окружающей среды уже после выпечки, во время охлаждения, транспортировки и хранения. Плесневение вызывается грибами родов Aspergillus, Mucor, Penicillium и др.

Грибы образуют на поверхности выпеченных изделий пушистые налеты белого, серого, зеленого, голубоватого, желтого и черного цветов. Под микроскопом этот налет представляет собой длинные переплетенные нити - мицелий.

При созревании каждого спорангия образуется около сотни спор, из каждой споры вырастает новый мицелий, поэтому грибы размножаются на продуктах очень быстро. Благоприятными условиями для развития микроскопических грибов являются температура 25 - 35°С, относительная влажность воздуха 70 - 80 % и рН от 4,5 до 5,5.

Микроскопические грибы поражают поверхность готовых изделий. Появляется неприятный запах. Заплесневевший хлеб может содержать ядовитые вещества - микотоксины - как в наружных слоях хлеба, так и в мякише. Из микотоксинов в таком хлебе были найдены афлатоксины, которые не только токсичны, но и канцерогенны для людей, и патумен, который не менее токсичен, чем афлатоксины. Поэтому хлеб, пораженный микроскопическими грибами, непригоден в пищу.

Использованная литература

1. Обзор российского рынка хлеба и хлебобулочных изделий [электронный ресурс]/ Система международных маркетинговых центров -- Режим доступа: http://www.marketcenter.ru/

2. В. Федюкин. О государственной промышленной политике в хлебопекарной отрасли [текст]: пром.журнал: Хлебопечение России / Изд. Пищевая промышленность - №8, 2008 - М. 2008 - с.4-5.

3. Молодых В. Российский Союз пекарей на служении отечественному хлебопечению [текст]: пром.журнал: Хлебопечение России / Изд. Пищевая промышленность - №3,2008 - М. 2008 - с. 6-7.

4. Ауэрман Л.Я. Технология хлебопекарного производства [текст]: Учебник. - 9-е изд., перераб и доп. / Под общ. Ред. Л.И. Пучковой. - СПб:Профессия, 2002 - 416с.

5. Сборник рецептур на хлеб и хлебобулочные изделия / Сост. Ершов П.С. - СПб.

6. Пучкова Л.И., Поландова Р.Д., Матвеева И.В. Технология хлеба, кондитерских и макаронных изделий. Часть 1. Технология хлеба. - СПб.:ГИОРД,2005- 559с.

7. Сборник технологических инструкций для производства хлеба и хлебобулочных изделий [текст] / под общ. Ред. А.С,Калмыкова Министерство хлебпродуктов СССР: НПО "ХЛЕБПРОМ" - М:. Прейскурант, 1989 - 493с.

8. Зверева Л.Ф. Технология и технохимический контроль хлебопекарного производства [текст]/ Зверева Л.Ф, Немцова З.С., Волкова Н.П., - 3-е изд. - М.Лекгая и пищевая промышленность, 1983 - 416с.

9. ГОСТ 27844-88 "Изделия булочные. Технические условия"

10. Шебершнева Н.Н., Хабибуллина И.С. Лабораторный практикум по дисциплине "Товароведение и экспертиза зерномучных товаров" [текст] / Шебершнева Н.Н., Хабибуллина И.С - М.: Издательский комплекс МГУПП, 2008. - 160с.

11. ГОСТ 10354-82 Пленка полиэтиленовая. Технические условия

12. ГОСТ 25951-83 Пленка полиэтиленовая термоусадочная. Технические условия

13. ГОСТ 5667-65 Хлеб и хлебобулочные изделия. Правила приемки, методы отбора образцов, методы определения органолептических показателей и массы изделий

14. ГОСТ 5670-96 Хлебобулочные изделия. Методы определения кислотности

15. ГОСТ 5669 - 96 "Хлебобулочные изделия. Метод определения пористости".

16. ГОСТ 21094 - 75 "Хлеб и хлебобулочные изделия. Метод определения влажности".

Размещено на Allbest.ru

Подобные документы

    Исследование истории финско-карельской кухни. Изучение сырья для приготовления хлебобулочных и мучных кондитерских изделий. Анализ ассортимента мучных и кондитерских изделий. Технология приготовления пирогов с начинкой. Составление технологических карт.

    курсовая работа , добавлен 24.06.2015

    Изучение ассортимента сдобных хлебобулочных и мучных кондитерских изделий кафе. Разработка плана–меню, технологической документации, составление технологических схем. Раскрытие организации производственных и трудовых процессов на данном предприятии.

    курсовая работа , добавлен 15.06.2015

    Ассортимент и показатели качества мучных кондитерских изделий. Пищевая ценность кондитерских изделий. Сырье для производства кондитерских изделий. Технология приготовления мучных кондитерских изделий. Десерты.

    курсовая работа , добавлен 09.09.2007

    Характеристика пищевой ценности мучных кондитерских изделий, их значение в питании человека. Роль воды, углеводов, белков и жиров в пищевых продуктах. Составляющие пищевой ценности: энергетическая, биологическая, физиологическая, органолептическая.

    курсовая работа , добавлен 17.06.2011

    Состояние и перспективы развития производства, торговли и потребления мучных кондитерских товаров. Классификация и характеристика ассортимента мучных изделий кондитерской промышленности. Анализ потребительских свойств печенья, пряников и карамели.

    курсовая работа , добавлен 12.12.2011

    Значение кондитерских изделий в питании. Предварительная подготовка продуктов. Технология приготовления изделий: "Чэк-чэк", торта "Тюбетейка", "Бармак". Требования к качеству мучных кондитерских изделий. Санитарные требования, предъявляемые к цеху.

    контрольная работа , добавлен 28.01.2014

    Подготовка сырья к производству мучных и кондитерских изделий. Технологический процесс приготовления кексов на дрожжах и без разрыхлителя. Технологический процесс приготовления полуфабрикатов для кондитерских изделий. Производство карамельного сиропа.

    контрольная работа , добавлен 18.01.2012

    Изучение влияния кондитерских изделий на организм человека. Характеристика полезных и вредных свойств сладостей. Описания шоколадных, мучных и сахаристых кондитерских изделий. Разработка рекомендаций по безопасному употреблению кондитерских изделий.

    реферат , добавлен 12.03.2015

    Способы замеса теста. Дрожжевое тесто и изделия из него. Дефекты изделий, вызванные нарушением рецептуры и режимом его приготовления. Технология изготовления изделий из дрожжевого слоеного теста. Подготовка кондитерских листов к выпечке и режимы выпечки.

    контрольная работа , добавлен 28.03.2011

    История возникновения хлеба и хлебобулочных изделий. Потребительские свойства хлебобулочных изделий. Классификация хлебобулочных изделий. Требования к качеству хлебобулочных изделий. Упаковка, маркировка и хранение хлеба и хлебобулочных изделий.