Пирамида все формулы и свойства. Пирамида и ее элементы


Определение. Боковая грань - это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

Определение. Боковые ребра - это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

Определение. Высота пирамиды - это перпендикуляр, опущенный из вершины на основание пирамиды.

Определение. Апофема - это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

Определение. Диагональное сечение - это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

Определение. Правильная пирамида - это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.


Объём и площадь поверхности пирамиды

Формула. Объём пирамиды через площадь основы и высоту:


Свойства пирамиды

Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.


Свойства правильной пирамиды

1. Вершина пирамиды равноудалена от всех углов основания.

2. Все боковые ребра равны.

3. Все боковые ребра наклонены под одинаковыми углами к основанию.

4. Апофемы всех боковых граней равны.

5. Площади всех боковых граней равны.

6. Все грани имеют одинаковые двугранные (плоские) углы.

7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n , где n - это количество углов в основании пирамиды.


Связь пирамиды со сферой

Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.


Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.


Связь пирамиды с цилиндром

Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.


Определение. Усеченная пирамида (пирамидальная призма) - это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

Определение. Треугольная пирамида (четырехгранник) - это пирамида в которой три грани и основание являются произвольными треугольниками.

В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол .

Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

Определение. Наклонная пирамида - это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

Определение. Прямоугольная пирамида - это пирамида в которой одна из боковых граней перпендикулярна к основанию.

Определение. Остроугольная пирамида - это пирамида в которой апофема больше половины длины стороны основания.

Определение. Тупоугольная пирамида - это пирамида в которой апофема меньше половины длины стороны основания.

Определение. Правильный тетраэдр - четырехгранник у которого все четыре грани - равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание - правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

Определение. Звездная пирамида называется многогранник у которого основой является звезда.

Определение. Бипирамида - многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.

Решая задачу C2 методом координат, многие ученики сталкиваются с одной и той же проблемой. Они не могут рассчитать координаты точек , входящих в формулу скалярного произведения. Наибольшие трудности вызывают пирамиды . И если точки основания считаются более-менее нормально, то вершины - настоящий ад.

Сегодня мы займемся правильной четырехугольной пирамидой. Есть еще треугольная пирамида (она же - тетраэдр ). Это более сложная конструкция, поэтому ей будет посвящен отдельный урок.

Для начала вспомним определение:

Правильная пирамида - это такая пирамида, у которой:

  1. В основании лежит правильный многоугольник: треугольник, квадрат и т.д.;
  2. Высота, проведенная к основанию, проходит через его центр.

В частности, основанием четырехугольной пирамиды является квадрат . Прямо как у Хеопса, только чуть поменьше.

Ниже приведены расчеты для пирамиды, у которой все ребра равны 1. Если в вашей задаче это не так, выкладки не меняются - просто числа будут другими.

Вершины четырехугольной пирамиды

Итак, пусть дана правильная четырехугольная пирамида SABCD , где S - вершина, основание ABCD - квадрат. Все ребра равны 1. Требуется ввести систему координат и найти координаты всех точек. Имеем:

Вводим систему координат с началом в точке A :

  1. Ось OX направлена параллельно ребру AB ;
  2. Ось OY - параллельно AD . Поскольку ABCD - квадрат, AB ⊥ AD ;
  3. Наконец, ось OZ направим вверх, перпендикулярно плоскости ABCD .

Теперь считаем координаты. Дополнительное построение: SH - высота, проведенная к основанию. Для удобства вынесем основание пирамиды на отдельный рисунок. Поскольку точки A , B , C и D лежат в плоскости OXY , их координата z = 0. Имеем:

  1. A = (0; 0; 0) - совпадает с началом координат;
  2. B = (1; 0; 0) - шаг на 1 по оси OX от начала координат;
  3. C = (1; 1; 0) - шаг на 1 по оси OX и на 1 по оси OY ;
  4. D = (0; 1; 0) - шаг только по оси OY .
  5. H = (0,5; 0,5; 0) - центр квадрата, середина отрезка AC .

Осталось найти координаты точки S . Заметим, что координаты x и y точек S и H совпадают, поскольку они лежат на прямой, параллельной оси OZ . Осталось найти координату z для точки S .

Рассмотрим треугольники ASH и ABH :

  1. AS = AB = 1 по условию;
  2. Угол AHS = AHB = 90°, поскольку SH - высота, а AH ⊥ HB как диагонали квадрата;
  3. Сторона AH - общая.

Следовательно, прямоугольные треугольники ASH и ABH равны по одному катету и гипотенузе. Значит, SH = BH = 0,5 · BD . Но BD - диагональ квадрата со стороной 1. Поэтому имеем:

Итого координаты точки S :

В заключение, выпишем координаты всех вершин правильной прямоугольной пирамиды:


Что делать, когда ребра разные

А что, если боковые ребра пирамиды не равны ребрам основания? В этом случае рассмотрим треугольник AHS :


Треугольник AHS - прямоугольный , причем гипотенуза AS - это одновременно и боковое ребро исходной пирамиды SABCD . Катет AH легко считается: AH = 0,5 · AC . Оставшийся катет SH найдем по теореме Пифагора . Это и будет координата z для точки S .

Задача. Дана правильная четырехугольная пирамида SABCD , в основании которой лежит квадрат со стороной 1. Боковое ребро BS = 3. Найдите координаты точки S .

Координаты x и y этой точки мы уже знаем: x = y = 0,5. Это следует из двух фактов:

  1. Проекция точки S на плоскость OXY - это точка H ;
  2. Одновременно точка H - центр квадрата ABCD , все стороны которого равны 1.

Осталось найти координату точки S . Рассмотрим треугольник AHS . Он прямоугольный, причем гипотенуза AS = BS = 3, катет AH - половина диагонали. Для дальнейших вычислений нам потребуется его длина:

Теорема Пифагора для треугольника AHS : AH 2 + SH 2 = AS 2 . Имеем:

Итак, координаты точки S :

С понятием пирамида учащиеся сталкиваются еще задолго до изучения геометрии. Виной всему знаменитые великие египетские чудеса света. Поэтому, начиная изучение этого замечательного многогранника, большинство учеников уже наглядно представляют ее себе. Все вышеупомянутые достопримечательности имеют правильную форму. Что такое правильная пирамида , и какие свойства она имеет и пойдет речь дальше.

Вконтакте

Определение

Определений пирамиды можно встретить достаточно много. Начиная еще с древних времен, она пользовалась большой популярностью.

К примеру, Эвклид определял ее как телесную фигуру, состоящую из плоскостей, которые, начиная от одной, сходятся в определенной точке.

Герон представил более точную формулировку. Он настаивал на том, что это фигура, которая имеет основание и плоскости в виде треугольников, сходящиеся в одной точке.

Опираясь на современное толкование, пирамиду представляют, как пространственный многогранник, состоящий из определённого k-угольника и k плоских фигур треугольной формы, имеющую одну общую точку.

Разберемся более подробно, из каких элементов она состоит:

  • k-угольник считают основой фигуры;
  • фигуры 3-угольной формы выступают гранями боковой части;
  • верхняя часть, из которой берут начало боковые элементы, называют вершиной;
  • все отрезки, соединяющие вершину, называют рёбрами;
  • если из вершины на плоскость фигуры опустить прямую под углом в 90 градусов, то её часть, заключенная во внутреннем пространстве — высота пирамиды;
  • в любом боковом элементе к стороне нашего многогранника можно провести перпендикуляр, называемый апофемой.

Число рёбер вычисляется по формуле 2*k, где k – количество сторон k-угольника. Сколько граней у такого многогранника, как пирамида, можно определить посредством выражения k+1.

Важно! Пирамидой правильной формы называют стереометрическую фигуру, плоскость основы которой является k-угольник с равными сторонами.

Основные свойства

Правильная пирамида обладает множеством свойств, которые присущи только ей. Перечислим их:

  1. Основа – фигура правильной формы.
  2. Ребра пирамиды, ограничивающие боковые элементы, имеют равные числовые значения.
  3. Боковые элементы – равнобедренные треугольники.
  4. Основание высоты фигуры попадает в центр многоугольника, при этом он одновременно является центральной точкой вписанной и описанной .
  5. Все боковые рёбра наклонены к плоскости основы под одинаковым углом.
  6. Все боковые поверхности имеют одинаковый угол наклона по отношению к основе.

Благодаря всем перечисленным свойствам, выполнение вычислений элементов намного упрощается. Исходя из приведенных свойств, обращаем внимание на два признака:

  1. В том случае, когда многоугольник вписывается в окружность, боковые грани будут иметь с основой равные углы.
  2. При описании окружности около многоугольника, все рёбра пирамиды, исходящие из вершины, будут иметь равную длину и равные углы с основой.

В основе лежит квадрат

Правильная четырёхугольная пирамида – многогранник, у которого в основе лежит квадрат.

У неё четыре боковых грани, которые по своему виду являются равнобедренными.

На плоскости квадрат изображают , но основываются на всех свойствах правильного четырёхугольника.

К примеру, если необходимо связать сторону квадрата с его диагональю, то используют следующую формулу: диагональ равна произведению стороны квадрата на корень квадратный из двух.

В основе лежит правильный треугольник

Правильная треугольная пирамида – многогранник, в основании которого лежит правильный 3-угольник.

Если основание является правильным треугольником, а боковые рёбра равны ребрам основания, то такая фигура называется тетраэдром.

Все грани тетраэдра являются равносторонними 3-угольниками. В данном случае необходимо знать некоторые моменты и не тратить на них время при вычислениях:

  • угол наклона ребер к любому основанию равен 60 градусов;
  • величина всех внутренних граней также составляет 60 градусов;
  • любая грань может выступить основанием;
  • , проведённые внутри фигуры, это равные элементы.

Сечения многогранника

В любом многограннике различают несколько видов сечения плоскостью. Зачастую в школьном курсе геометрии работают с двумя:

  • осевое;
  • параллельное основе.

Осевое сечение получают при пересечении плоскостью многогранника, которая проходит через вершину, боковые рёбра и ось. В данном случае осью является высота, проведённая из вершины. Секущая плоскость ограничивается линиями пересечения со всеми гранями, в результате получаем треугольник.

Внимание! В правильной пирамиде осевым сечением является равнобедренный треугольник.

Если секущая плоскость проходит параллельно основанию, то в результате получаем второй вариант. В этом случае имеем в разрезе фигуру, подобную основе.

К примеру, если в основании лежит квадрат, то сечение параллельно основе также будет квадратом, только меньших размеров.

При решении задач при таком условии используют признаки и свойства подобия фигур, основанные на теореме Фалеса . В первую очередь необходимо определить коэффициент подобия.

Если плоскость проведена параллельно основе, и она отсекает верхнюю часть многогранника, то в нижней части получают правильную усеченную пирамиду. Тогда говорят, что основы усеченного многогранника являются подобными многоугольниками. В этом случае боковые грани являются равнобокими трапециями. Осевым сечением также является равнобокая .

Для того чтобы определить высоту усеченного многогранника, необходимо провести высоту в осевом сечении, то есть в трапеции.

Площади поверхностей

Основные геометрические задачи, которые приходится решать в школьном курсе геометрии, это нахождение площадей поверхности и объема у пирамиды.

Значение площади поверхности различают двух видов:

  • площади боковых элементов;
  • площади всей поверхности.

Из самого названия понятно, о чём идёт речь. Боковая поверхность включает в себя только боковые элементы. Из этого следует, что для ее нахождения необходимо просто сложить площади боковых плоскостей, то есть площади равнобедренных 3-угольников. Попробуем вывести формулу площади боковых элементов:

  1. Площадь равнобедренного 3-угольника равна Sтр=1/2(aL), где а – сторона основания, L – апофема.
  2. Количество боковых плоскостей зависит от вида k-го угольника в основании. К примеру, правильная четырехугольная пирамида имеет четыре боковые плоскости. Следовательно, необходимо сложить площади четырёх фигур Sбок=1/2(aL)+1/2(aL)+1/2(aL)+1/2(aL)=1/2*4а*L. Выражение упрощено таким способом потому, что значение 4а=Росн, где Росн – периметр основы. А выражение 1/2*Росн является её полупериметром.
  3. Итак, делаем вывод, что площадь боковых элементов правильной пирамиды равна произведению полупериметра основания на апофему: Sбок=Росн*L.

Площадь полной поверхности пирамиды состоит из суммы площадей боковых плоскостей и основания: Sп.п.= Sбок+Sосн.

Что касается площади основания, то здесь формула используется соответственно виду многоугольника.

Объем правильной пирамиды равен произведению площади плоскости основания на высоту, разделенную на три: V=1/3*Sосн*Н, где Н – высота многогранника.

Что такое правильная пирамиды в геометрии

Свойства правильной четырехугольной пирамиды

Введение

Когда мы начали изучать стереометрические фигуры мы затронули тему «Пирамида». Нам понравилась это тема, потому что пирамида очень часто употребляется в архитектуре. И так как наша будущая профессия архитектора, вдохновившись этой фигурой, мы думаем, что она сможет подтолкнуть нас к отличным проектам.

Прочность архитектурных сооружений, важнейшее их качество. Связывая прочность, во-первых, с теми материалами, из которых они созданы, а, во-вторых, с особенностями конструктивных решений, оказывается, прочность сооружения напрямую связана с той геометрической формой, которая является для него базовой.

Другими словами, речь идет о той геометрической фигуре, которая может рассматриваться как модель соответствующей архитектурной формы. Оказывается, что геометрическая форма также определяет прочность архитектурного сооружения.

Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Как известно они имеют форму правильных четырехугольных пирамид.

Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания. С другой стороны, форма пирамиды обеспечивает уменьшение массы по мере увеличения высоты над землей. Именно эти два свойства делают пирамиду устойчивой, а значит и прочной в условиях земного тяготения.

Цель проекта : узнать что-то новое о пирамидах, углубить знания и найти практическое применение.

Для достижения поставленной цели потребовалось решить следующие задачи:

· Узнать исторические сведения о пирамиде

· Рассмотреть пирамиду, как геометрическую фигуру

· Найти применение в жизни и архитектуре

· Найти сходство и различие пирамид, расположенных в разных частях света


Теоретическая часть

Исторические сведения

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объем пирамиды, был Демокрит, а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.

Усыпальницы египетских фараонов. Крупнейшие из них - пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе в древности считались одним из Семи чудес света. Возведение пирамиды, в котором уже греки и римляне видели памятник невиданной гордыни царей и жестокости, обрекшей весь народ Египта на бессмысленное строительство, было важнейшим культовым деянием и должно было выражать, по всей видимости, мистическое тождество страны и ее правителя. Население страны работало на строительстве гробницы в свободную от сельскохозяйственных работ часть года. Ряд текстов свидетельствует о том внимании и заботе, которые сами цари (правда, более позднего времени) уделяли возведению своей гробницы и ее строителям. Известно также об особых культовых почестях, которые оказывались самой пирамиде.


Основные понятия

Пирамидой называется многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину.

Апофема - высота боковой грани правильной пирамиды, проведённая из её вершины;



Боковые грани - треугольники, сходящиеся в вершине;

Боковые ребра - общие стороны боковых граней;

Вершина пирамиды - точка, соединяющая боковые рёбра и не лежащая в плоскости основания;

Высота - отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);

Диагональное сечение пирамиды - сечение пирамиды, проходящее через вершину и диагональ основания;

Основание - многоугольник, которому не принадлежит вершина пирамиды.

Основные свойства правильной пирамиды

Боковые ребра, боковые грани и апофемы соответственно равны.

Двугранные углы при основании равны.

Двугранные углы при боковых ребрах равны.

Каждая точка высоты равноудалена от всех вершин основания.

Каждая точка высоты равноудалена от всех боковых граней.


Основные формулы пирамиды

Площадь боковой и полной поверхности пирамиды.

Площадью боковой поверхности пирамиды (полной и усечённой) называется сумма площадей всех ее боковых граней, площадью полной поверхности – сумма площадей всех ее граней.

Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

p - периметр основания;

h - апофема.

Площадь боковой и полной поверхностей усеченной пирамиды.

p 1 , p 2 - периметры оснований;

h - апофема.

Р - площадь полной поверхности правильной усеченной пирамиды;

S бок - площадь боковой поверхности правильной усеченной пирамиды;

S 1 + S 2 - площади основания

Объем пирамиды

Формула объёма используется для пирамид любого вида.

H - высота пирамиды.


Углы пирамиды

Углы, которые образованы боковой гранью и основанием пирамиды, называются двугранными углами при основании пирамиды.

Двугранный угол образуется двумя перпендикулярами.

Чтобы определить этот угол, часто нужно использовать теорему о трёх перпендикулярах .

Углы, которые образованы боковым ребром и его проекцией на плоскость основания, называются углами между боковым ребром и плоскостью основания .

Угол, который образован двумя боковыми гранями, называется двугранным углом при боковом ребре пирамиды.

Угол, который образован двумя боковыми рёбрами одной грани пирамиды, называется углом при вершине пирамиды .


Сечения пирамиды

Поверхность пирамиды – это поверхность многогранника. Каждая ее грань представляет собой плоскость, поэтому сечение пирамиды, заданной секущей плоскостью – это ломаная линия, состоящая из отдельных прямых.

Диагональное сечение

Сечение пирамиды плоскостью, проходящей через два боковых ребра, не лежащих на одной грани, называется диагональным сечением пирамиды.

Параллельные сечения

Теорема :

Если пирамида пересечена плоскостью, параллельной основанию, то боковые ребра и высоты пирамиды делятся этой плоскостью на пропорциональные части;

Сечением этой плоскости является многоугольник, подобный основанию;

Площади сечения и основания относятся друг к другу как квадраты их расстояний от вершины.

Виды пирамиды

Правильная пирамида – пирамида, основанием которой является правильный многоугольник, и вершина пирамиды проектируется в центр основания.

У правильной пирамиды:

1. боковые ребра равны

2. боковые грани равны

3. апофемы равны

4. двугранные углы при основании равны

5. двугранные углы при боковых ребрах равны

6. каждая точка высоты равноудалена от всех вершин основания

7. каждая точка высоты равноудалена от всех боковых граней

Усеченная пирамида – часть пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию.

Основание и соответствующие сечение усеченной пирамиды называются основаниями усеченной пирамиды .

Перпендикуляр, проведенный из какой-либо точки одного основания на плоскость другого, называется высотой усеченной пирамиды.


Задачи

№1. В правильной четырехугольной пирамиде точка О – центр основания, SO=8 cм, BD=30 см. Найдите боковое ребро SA.


Решение задач

№1. В правильной пирамиде все грани и ребра равны.

Рассмотрим OSB: OSB-прямоугольный прямоугольник, т. к.

SB 2 =SO 2 +OB 2

SB 2 =64+225=289

Пирамида в архитектуре

Пирамида - монументальное сооружение в форме обычной правильной геометрической пирамиды, в которой боковые стороны сходятся в одной точке. По функциональному назначению пирамиды в древности были местом захоронения или поклонения культу. Основа пирамиды может быть треугольной, четырехугольной или в форме многоугольника с произвольным числом вершин, но наиболее распространенной версией является четырехугольная основа.

Известно немалое количество пирамид, построенных разными культурами Древнего мира в основном в качестве храмов или монументов. К крупным пирамидам относятся египетские пирамиды.

По всей Земле можно увидеть архитектурные сооружения в виде пирамид. Здания-пирамиды напоминают о древних временах и очень красиво выглядят.

Египетские пирамиды величайшие архитектурные памятники Древнего Египта, среди которых одно из «Семи чудес света» пирамида Хеопса. От подножия до вершины она достигает 137, 3 м, а до того, как утратила верхушку, высота ее была 146, 7 м

Здание радиостанции в столице Словакии, напоминающее перевернутую пирамиду, было построено в 1983 г. Помимо офисов и служебных помещений, внутри объема находится достаточно вместительный концертный зал, который имеет один из самых больших органов в Словакии.

Лувр, который "молчит неизменно и величественно, как пирамида" на протяжении веков перенёс немало изменений прежде, чем превратиться в величайший музей мира. Он родился как крепость, воздвигнутая Филиппом Августом в 1190 г., вскоре превратившаяся в королевскую резиденцию. В 1793 г. дворец становится музеем. Коллекции обогащаются благодаря завещаниям или покупкам.