Перестановка теория вероятности. Задачи по комбинаторике

Элементы комбинаторики: перестановки, сочетания, размещения.

“Число, положение и комбинация – три
взаимно пересекающиеся, но различные
сферы мысли, к которым можно
отнести все математические идеи”.
Джозеф Сильвестр (1844 г.)

Цели занятия.

Образовательные:

  • познакомить студентов с новым разделом математики: "Комбинаторика", с его историей, основными понятиями и задачами, использованием в практических целях и в жизни человека;
  • способствовать созданию учебного проекта как показатель качественного изучения темы занятия.

Развивающие:

  • развивать аналитические способности, логическое мышление,
  • индивидуальные способности каждого студента, создавая комфортную психологическую обстановку для каждого студента при обучении и создании проекта.

Воспитывающая:

  • формировать активность личности студента, умение работать в группе, отвечать за свои поступки.

Оборудование: компьютеры, проектор, экран, презентация, электронные и на бумажных носителях тесты, задачи “Судоку”, кубики Рубика, папки для ВСР (внеаудиторная самостоятельная работа), рабочие тетради, чистые ватманы, калькуляторы, цветная бумага, клей, ножницы, фломастеры.

Ход занятия

I. Организационный момент

Перекличка

Сообщение целей и задач занятия: В связи с тем, что по дисциплине “Математика” на 2 курсе специальности “Технология деревообработки” на тему “Основные понятия комбинаторика: перестановки, размещения, сочетания” отводится 2 часа, а рассмотреть нужно много материала, решать задачи, создать проект, вам было выдано задание на внеаудиторную самостоятельную работу следующее: в литературе по истории математики, в энциклопедиях, в учебниках и в интернете найти материал о разделе математики, имеющем звучное название “комбинаторика”. Слайды № 1–2. Презентация

В календарно-тематическом плане по дисциплине “Математика” на 2 курсе специальности “Технология деревообработки” на тему “Основные понятия комбинаторика: перестановки, размещения, сочетания” отводится 2 часа. Изучить теоретический материал, решить задачи разных видов за такой временной промежуток невозможно. Для достижения глубокого изучения материала было выдано задание на внеаудиторную самостоятельную работу: в литературе по истории математики, в энциклопедиях, в учебниках и в интернете найти материал о разделе математики, имеющем звучное название “комбинаторика”. Слайды № 1–2.

Вопросов для внеаудиторной самостоятельной работы выделено было три:

  1. Определения комбинаторики.
  2. Ученые – математики - первооткрыватели этого раздела.
  3. Применение комбинаторики в современной жизни.

Запись даты, темы урока.

II. Работа над темой занятия

Вступление:

Из глубокой древности до современного человечества дошли сведения о том, что уже тогда люди занимались выбором объектов и расположения их в том или ином порядке и увлекались составлением различных комбинаций. Так, например, в Древнем Китае увлекались составлением квадратов, в которых заданные числа располагали так, что их сумма по всем горизонталям, вертикалям и главным диагоналям была одной и той же (современная игра – задача “Судоку”). Такие задачи вы могли встречать в журналах и газетах. В частности, наша Мариинская газета “Вперед” довольно часто предлагает читателям такие задачи. В Древней Греции подобные задачи возникали в связи c такими играми, как шашки, шахматы, домино, карты и т.д.

Комбинаторика ставится самостоятельным разделом математики, по сути – самостоятельной наукой лишь во второй половине XVII века, - в период, когда возникла теория вероятностей.

Таким образом, - комбинаторика – это самостоятельный раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или условиям, можно составить из заданных объектов.

Комбинаторика – самостоятельная ветвь математической науки. Cлайд № 3

Термин “КОМБИНАТОРИКА” происходит от латинского слова “combina”, что в переводе на русский означает – “сочетать”, “соединять” - слайд № 4.

Как трактует это слово Большой Энциклопедический Словарь?

Комбинаторика – это раздел математики, в котором изучаются простейшие “соединения”: перестановки, размещения, сочетания. Этот раздел иначе называют “комбинаторный анализ”.

Сегодня мы будем рассматривать перестановки, размещения, сочетания, как соединения, как комбинаторные конфигурации.

Разделы комбинаторики: перечислительная, структурная, вероятностная, топологическая – слайд № 5.

Давайте вспомним известное вам из детства сказание о том, как богатырь или другой добрый молодец, доехав до развилки трех дорог, читает на камне: “Вперед поедешь – голову сложишь, направо поедешь – коня потеряешь, налево поедешь – меча лишишься”. А дальше уже говорится, как он выходит из того положения, в которое попал в результате выбора. Но выбирать разные пути или варианты приходится и современному человеку. Эти пути и варианты складываются в самые разнообразные комбинации. И целый раздел математики, именуемый КОМБИНАТОРИКОЙ, занят поисками ответов на вопросы: сколько всего есть комбинаций в том или ином случае, как из всех этих комбинаций выбрать наилучшую – слайд № 6.

Итак, комбинаторика – раздел математики, в котором изучается, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов.

Перестановки-соединения, которые можно составить из n предметов, меняя всеми возможными способами их порядок; число их

Количество всех перестановок из n элементов обозначают

Число n при этом называется порядком перестановки – слайд № 7–10.

Произведение всех натуральных чисел от n до единицы, обозначают символом n! (Читается “эн - факториал”). Используя знак факториала, можно, например, записать:

3! = 3 2 1 = 6,

4! = 4 3 2 1 = 24,

5! = 5 4 3 2 1 = 120.

Необходимо знать, что 0!=1

Термин “перестановки” употребил впервые Якоб Бернулли в книге “Искусство предположений”.

Примеры решения задач:

Задача №1. Сколькими способами 7 книг разных авторов можно расставить на полке в один ряд?

Перестановками называют комбинации, состоящие из одних и тех же п различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок обозначается Рп и оно равно п !, т.е. Рп = п !, где п ! = 1 * 2 * 3 * … п .

Решение: Р7 = 7!, где 7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 =5040, значит существует 5040 способов осуществить расстановку книг.

Ответ: 5040 способов.

Задача № 2 (о квартете)

В знаменитой басне Крылова “Квартет” “Проказница мартышка, Осел, Козел да косолапый Мишка” исследовали влияние взаимного расположения музыкантов на качество исполнения.

Зададим вопрос: Сколько существует способов, чтобы рассадить четырех музыкантов?

Решение: на слайде

Размещения – соединения, содержащие по m предметов из числа n данных, различающихся либо порядком предметов, либо самими предметами; число их.

Cлайды № 11–13.

В комбинаторике размещением называется расположение “предметов” на некоторых “местах” при условии, что каждое место занято в точности одним предметом и все предметы различны.

В отличие от сочетаний размещения учитывают порядок следования предметов. Так, например, наборы < 2,1,3 > и < 3,2,1 > являются различными, хотя состоят из одних и тех же элементов {1,2,3} (то есть, совпадают как сочетания).

Термин “Размещение” употребил впервые Якоб Бернулли в книге “Искусство предположений”.

Примеры решения задач:

Задача № 1. Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны? Это пример задачи на размещение без повторений.

Размещаются здесь десять цифр по 6. Значит, ответ на выше поставленную задачу будет:

Ответ :151200 способов

Задача № 2. В группе ТД – 21 обучается 24 студентов. Сколькими способами можно составить график дежурства по техникуму, если группа дежурных состоит из трех студентов?

Решение: число способов равно числу размещений из 24 элементов по 3, т.е. равно А 24 3 . По формуле находим

Ответ: 12144 способа

Сочетания-соединения, содержащие по m предметов из n, различающиеся друг от друга, по крайней мере, одним предметом; число их .

Таким образом, количество вариантов при сочетании будет меньше количества размещений. Cлайды № 14–16.

В комбинаторике сочетанием из n по m называется набор m элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.

Термин “сочетание” впервые встречается у Блеза Паскаля в 1665 году.

Примеры решения задач:

Задача №1. Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр?

Решение: Так как кнопки нажимаются одновременно, то выбор этих кнопок – сочетание. Отсюда возможно

Ответ: 120 вариантов.

Задача № 2. Сколько экзаменационных комиссий, состоящих из 3 членов, можно образовать из 10 преподавателей?

Решение: По формуле находим:

комиссий

Ответ: 120 комиссий.

Библиографическая справка – слайд № 17.

Общее у всех этих задач то, что их решением занимается отдельная область математики, называемая комбинаторикой. “Особая примета” комбинаторных задач – вопрос, который всегда можно сформулировать так, чтобы он начинался словами: “Сколькими способами…?”. Cлайд № 18.

3. Решение задач: тексты задач с решениями в приложении 1 – начало на слайде № 19.

4. Исторические сведения о комбинаторике на слайдах № 20–21 (частично даны сведения при изучении темы, остальные данные для проекта студенты возьмут из материалов для ВСР).

5. Связи комбинаторики на слайдах № 22–31 (частично даны сведения при изучении темы, остальные данные для проекта студенты возьмут из материалов для ВСР).

6. Выдвижение гипотезы. Гипотеза – это научное предположение, выдвигаемое для объяснения каких-нибудь явлений, вообще – предположение, требующее подтверждения.

Выдвигается гипотеза: Комбинаторика интересна и имеет широкий спектр практической направленности - слайд № 32.

7. Метод проектов: три группы студентов и группа преподавателей выполняют проект




Перестановки. Формула для числа перестановок

Перестановки из n элементов

Пусть множество Х состоит из n элементов.

Определение. Размещение без повторений из n элементов множества X по n называется перестановкой из n элементов.

Заметим, что в любую перестановку входят все элементы множества Х , причём ровно по одному разу. То есть перестановки одна от другой отличаются только порядком следования элементов и могут получиться одна из другой перестановкой элементов (отсюда и название).

Число всех перестановок из n элементов обозначается символом .

Так как перестановки – это частный случай размещений без повторений при , то формулу для нахождения числа получим из формулы (2), подставляя в неё :

Таким образом,

(3)

Пример. Сколькими способами можно разместить на полке 5 книг?

Решение. Способов размещения книг на полке существует столько, сколько существует различных перестановок из пяти элементов: способов.

Замечание. Формулы (1)-(3) запоминать не обязательно: задачи на их применение всегда можно решить с помощью правила произведения. Если у учащихся существуют проблемы с составлением комбинаторных моделей задач, то лучше сделать более узким множество используемых формул и правил (чтобы было меньше возможности ошибиться). Правда, задачи, в которых используются перестановки и формула (3), обычно решаются без особых проблем.

Задачи

1. Ф. Сколькими способами могут встать в очередь в билетную кассу: 1) 3 человека; 2) 5 человек?

Решение.

Различные варианты расположения п человек в очереди отличаются один от другого только порядком расположения людей, т. е. являются различными перестановками из п элементов.

Три человека могут встать в очередь Р3 = 3! = 6 различными способами.

Ответ: 1) 6 способов; 2) 120 способов.

2. Т. Сколькими способами 4 человека могут разместиться на четырехместной скамейке?

Решение.

Количество человек равно количеству мест на скамейке, поэтому количество способов размещения равно числу перестановок из 4 элементов: Р4 = 4! = 24.

Можно рассуждать по правилу произведения: для первого человека можно выбрать любое из 4 мест, для второго - любое из 3 оставшихся, для третьего - любое из 2 оставшихся, последний займет 1 оставшееся место; всего есть = 24 разных способов Размещения 4 человек на четырехместной скамейке.

Ответ: 24 способами.

3. М. У Вовы на обед - первое, второе, третье блюда и пирожное. Он обязательно начнет с пирожного, а все остальное съест в произвольном порядке. Найдите число возможных вариантов обеда.

М- задачи из уч. пособия А.Г.Мордковича

Т- под ред. С.А.Теляковского

Ф- М.В.Ткачевой

Решение.

После пирожного Вова может выбрать любое из трех блюд, затем - из двух, и закончить оставшимся. Общее число возможных вариантов обеда: =6.

Ответ: 6.

4. Ф. Сколько различных правильных (с точки зрения русского языка) фраз можно составить, изменяя порядок слов в предложении: 1) «Я пошел гулять»; 2) «Во дворе гуляет кошка»?

Решение.

Во втором предложении предлог «во» должен всегда стоять перед существительным «дворе», к которому он относится. Поэтому, считая пару «во дворе» за одно слово, можно найти количество различных перестановок трех условных слов: Р3 = 3! = 6. Таким образом, и в этом случае можно составить 6 правильных предложений.

Ответ: 1) 6; 2) 6.

5. Сколькими способами можно с помощью букв К, L, М, Н обозначить вершины четырехугольника?

Решение.

Будем считать, что вершины четырехугольника пронумерованы, за каждой закреплен постоянный номер. Тогда задача сводится к подсчету числа разных способов расположения 4 букв на 4 местах (вершинах), т. е. к подсчету числа различных перестановок: Р4 = 4! =24 способа.

Ответ: 24 способа.

6. Ф. Четыре друга купили билеты в кино: на 1-е и 2-е места в первом ряду и на 1-е и 2-е места во втором ряду. Сколькими способами друзья могут занять эти 4 места в кинотеатре?

Решение.

Четыре друга могут занять 4 разных места Р4 = 4! = 24 различными способами.

Ответ: 24 способа.

7. Т. Курьер должен разнести пакеты в 7 различных учреждений. Сколько маршрутов может он выбрать?

Решение.

Под маршрутом следует понимать порядок посещения курьером учреждений. Пронумеруем учреждения номерами от 1 до 7, тогда маршрут будет представляться последовательностью из 7 Цифр, порядок которых может меняться. Количество маршрутов равно числу перестановок из 7 элементов: Р7= 7! = 5 040.

Ответ: 5 040 маршрутов.

8. Т. Сколько существует выражений, тождественно равных произведению abcde, которые получаются из него перестановкой множителей?

Решение.

Дано произведение пяти различных сомножителей abcde, порядок которых может меняться (при перестановке множителей произведение не меняется).

Всего существует Р5 = 5! = 120 различных способов расположения пяти множителей; один из них (abcde) считаем исходным, остальные 119 выражений тождественно равны данному.

Ответ: 119 выражений.

9. Т. Ольга помнит, что телефон подруги оканчивается цифрами 5, 7, 8, но забыла, в каком порядке эти цифры следуют. Укажите наибольшее число вариантов, которые ей придется перебрать, чтобы дозвониться подруге.

Решение.

Три последних цифры телефонного номера могут быть расположены в одном из Р3 =3! =6 возможных порядков, из которых только один верный. Ольга может сразу набрать верный вариант, может набрать его третьим, и т. д. Наибольшее число вариантов ей придется набрать, если правильный вариант окажется последним, т. е. шестым.

Ответ: 6 вариантов.

10. Т. Сколько шестизначных чисел (без повторения цифр) можно составить из цифр: а) 1,2, 5, 6, 7, 8; б) 0, 2, 5, 6, 7, 8? Решение.

а) Дано 6 цифр: 1, 2, 5, 6, 7, 8, из них можно составлять разные шестизначные числа, только переставляя эти цифры местами. Количество различных шестизначных чисел при этом равно Р6 = 6! = 720.

б) Дано 6 цифр: 0, 2, 5, 6, 7, 8, из них нужно составлять различные шестизначные числа. Отличие от предыдущей задачи состоит в том, что ноль не может стоять на первом месте.

Можно напрямую применить правило произведения: на первое место можно выбрать любую из 5 цифр (кроме нуля); на второе место - любую из 5 оставшихся цифр (4 «ненулевые» и теперь считаем ноль); на третье место - любую из 4 оставшихся после первых двух выборов цифр, и т. д. Общее количество вариантов равно: = 600.

Можно применить метод исключения лишних вариантов. 6 цифр можно переставить Р6 = 6! = 720 различными способами. Среди этих способов будут такие, в которых на первом месте стоит ноль, что недопустимо. Подсчитаем количество этих недопустимых вариантов. Если на первом месте стоит ноль (он фиксирован), то на последующих пяти местах могут стоять в произвольном порядке «ненулевые» цифры 2, 5, 6, 7, 8. Количество различных способов, которыми можно разместить 5 цифр на 5 местах, равно Р5 = 5! = 120, т. е. количество перестановок чисел, начинающихся с нуля, равно 120. Искомое количество различных шестизначных чисел в этом случае равно: Р6 - Р5 = 720 - 120 = 600.

Ответ: а) 720; б) 600 чисел.

11. Т. Сколько среди четырехзначных чисел (без повторения цифр), составленных из цифр 3, 5, 7, 9, таких, которые: а) начинаются с цифры 3;

б) кратны 15?

Решение.

а) Из цифр 3, 5, 7, 9 составляем четырехзначные числа, начинающиеся с цифры 3.

Фиксируем цифру 3 на первом месте; тогда на трех оставшихся местах в произвольном порядке могут располагаться цифры 5, 7 9 Общее количество вариантов их расположения равно Р 3 = 3!=6. Столько и будет разных четырехзначных чисел, составленных из данных цифр и начинающихся с цифры 3.

б) Заметим, что сумма данных цифр 3 + 5 + 7 + 9 = 24 делится на 3, следовательно, любое четырехзначное число, составленное из этих цифр, делится на 3. Для того, чтобы некоторые из этих чисел делились на 15, необходимо, чтобы они заканчивались цифрой 5.

Фиксируем цифру 5 на последнем месте; остальные 3 цифры можно разместить на трех местах перед 5 Рз = 3! = 6 различными способами. Столько и будет разных четырехзначных чисел, составленных из данных цифр, которые делятся на 15.

Ответ: а) 6 чисел; б) 6 чисел.

12. Т. Найдите сумму цифр всех четырехзначных чисел, которые можно составить из цифр 1, 3, 5, 7 (без их повторения).

Решение.

Каждое четырехзначное число, составленное из цифр 1, 3, 5, 7 (без повторения), имеет сумму цифр, равную 1+3 + 5 + 7=16.

Из этих цифр можно составить Р4 = 4! = 24 различных числа, отличающихся только порядком цифр. Сумма цифр всех этих чисел будет равна

16 = 384.

Ответ: 384.

13. Т. Семь мальчиков, в число которых входят Олег и Игорь, становятся в ряд. Найдите число возможных комбинаций, если:

а) Олег должен находиться в конце ряда;

б) Олег должен находиться в начале ряда, а Игорь - в конце ряда;

в) Олег и Игорь должны стоять рядом.
Решение.

а) Всего 7 мальчиков на 7 местах, но один элемент фиксирован, не переставляется (Олег находится в конце ряда). Число возможных комбинаций при этом равно числу перестановок 6 мальчиков, стоящих перед Олегом: Р6=6!=720.

пару как единый элемент, переставляемый с другими пятью элементами. Число возможных комбинаций тогда будет Р6 = 6! = 720.

Пусть теперь Олег и Игорь стоят рядом в порядке ИО. Тогда получим еще Р6 = 6! = 720 других комбинаций.

Общее число комбинаций, в которых Олег и Игорь стоят рядом (в любом порядке) равно 720 + 720 = 1 440.

Ответ: а) 720; б) 120; в) 1 440 комбинаций.

14. М. Одиннадцать футболистов строятся перед началом матча. Первым становится капитан, вторым - вратарь, а остальные - случайным образом. Сколько существует способов построения?

Решение.

После капитана и вратаря третий игрок может выбрать любое из 9 оставшихся мест, следующий - из 8, и т. д. Общее число способов построения по правилу произведения равно:

1 =362 880, или Р 9 = 9! = 362 880.

Ответ: 362 880.

15. М. Сколькими способами можно обозначить вершины куба буквами А, В, С, D, E, F, G, K?

Решение.

Для первой вершины можно выбрать любую из 8 букв, для второй - любую из 7 оставшихся, и т. д. Общее число способов по правилу произведения равно =40 320, или Р8 = 8!

Ответ: 40 320.

16. Т. В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия. Сколькими способами можно составить расписание уроков на этот день так, чтобы два урока математики стояли рядом?

Решение.

Всего 6 уроков, из них два урока математики должны стоять рядом.

«Склеиваем» два элемента (алгебра и геометрия) сначала в порядке АГ, затем в порядке ГА. При каждом варианте «склеивания» получаем Р5 = 5! = 120 вариантов расписания. Общее число способов составить расписание равно120 (AГ) +120 (ГА) = 240.

Ответ: 240 способов.

17. Т. Сколько существует перестановок букв слова «конус», в которых буквы К, О, Н стоят рядом?

Решение.

Дано 5 букв, из которых три буквы должны стоять рядом. Три буквы К, О, Н могут стоять рядом одним из Р3 = 3! = 6 способов. Для каждого способа «склеивания» букв К, О, Н получаем Р3 = 3! = 6 способов перестановки букв, «склейка», У, С. Общее число различных перестановок букв слова «конус», в которых буквы К, О, Н стоят рядом, равно 6 6 = 36 перестановок- анаграмм.

Ответ: 36 анаграмм.

18. Т. Сколькими способами 5 мальчиков и 5 девочек могут занять в театре в одном ряду места с 1 по 10? Сколькими способами они могут это сделать, если мальчики будут сидеть на нечетных местах, а девочки - на четных?

Решение.

Каждый вариант расположения мальчиков может сочетаться с каждым из вариантов расположения девочек, поэтому по правилу произведения общее число способов рассадить детей в этом случае равно 120 20= 14400.

Ответ: 3 628 800 способов; 14 400 способов.

19. Т. Пять мальчиков и четыре девочки хотят сесть на девятиместную скамейку так, чтобы каждая девочка сидела между двумя мальчиками. Сколькими способами они могут это сделать?

Решение.

По условию задачи мальчики и девочки должны чередоваться, т. е. девочки могут сидеть только на четных местах, а мальчики -только на нечетных. Поэтому меняться местами девочки могут только с девочками, а мальчики - только с мальчиками. Четырех девочек можно рассадить на четырех четных местах Р4 = 4! = 24 способами, а пятерых мальчиков на пяти нечетных местах Р5 = 5! = 120 способами.

Каждый способ размещения девочек может сочетаться с каждым способом размещения мальчиков, поэтому по правилу произведения общее число способов равно: Р4 20 = 2 880 способов.

Ответ: 2 880 способов.

20. Ф. Разложить на простые множители числа 30 и 210. Сколькими способами можно записать в виде произведения продых множителей число: 1) 30; 2) 210?

Решение.

Разложим данные числа на простые множители:

30 = 2 ; 210 = 2 .

    Число 30 можно записать в виде произведения простых множителей

Р 3 = 3! = 6 разными способами (переставляя множители).

    Число 210 можно записать в виде произведения простых
    множителей Р 4 = 4! = 24 разными способами.

Ответ: 1) 6 способов; 2) 24 способа.

21. Ф. Сколько различных четных четырехзначных чисел с неповторяющимися цифрами можно записать, используя цифры 1, 2, 3, 5?

Решение.

Чтобы число было четным, оно должно заканчиваться четной цифрой, т. е. 2. Зафиксируем двойку на последнем месте, остальные три цифры должны стоять перед ней в произвольном порядке. Количество различных перестановок из 3 цифр равно P3 = 3! = 6; следовательно, различных четных четырехзначных чисел будет также 6 (к каждой перестановке из трех цифр добавляется цифра 2).

Ответ: 6 чисел.

22. Ф. Сколько различных нечетных пятизначных чисел, в которых нет одинаковых цифр, можно записать с помощью Цифр 1,2, 4, 6, 8?

Решение.

Чтобы составленное число было нечетным, необходимо, чтобы оно оканчивалось нечетной цифрой, т. е. единицей. Остальные 4 Цифры можно переставлять местами, располагая каждую перестановку перед единицей.

Общее число нечетных пятизначных чисел равно числу перестановок: Р4 = 4! =24.

23. Ф. Сколько различных шестизначных чисел с неповторяющимися цифрами можно записать с помощью цифр 1; 2 3, 4, 5, 6, если: 1) число должно начинаться с 56; 2) цифры 5 и 6 в числе должны стоять рядом?

Решение.

Две цифры 5 и 6 фиксируем в начале числа и дописываем к ним различные перестановки из 4 оставшихся цифр; количество различных шестизначных чисел равно: Р4 = 4! = 24.

Общее количество различных шестизначных чисел, в которых цифры 5 и 6 стоят рядом (в любом порядке), равно 120 + 120 = 240 чисел. (Варианты 56 и 65 несовместны, не могут реализоваться одновременно; применяем комбинаторное правило суммы.)

Ответ: 1) 24 числа; 2) 240 чисел.

24. Ф. Сколько различных четных четырехзначных чисел, в записи которых нет одинаковых цифр, можно составить из цифр 1,2,3,4?

Решение.

Четное число должно оканчиваться четной цифрой. Фиксируем на последнем месте цифру 2, тогда 3 предшествующие цифры можно переставить Р3 = 3! = 6 различными способами; получим 6 чисел с двойкой на конце. Фиксируем на последнем месте цифру 4, получим Р3 = 3! = 6 различных перестановок трех предшествующих цифр и 6 чисел, оканчивающихся цифрой 4.

Общее количество четных четырехзначных чисел будет 6 + 6 = 12 различных чисел.

Ответ: 12 чисел.

Замечание. Общее количество вариантов мы находим, пользуясь комбинаторным правилом суммы (6 вариантов чисел, оканчивающихся двойкой, 6 вариантов чисел, оканчивающихся четверкой; способы построения чисел с двойкой и с четверкой на конце являются взаимоисключающими, несовместными, поэтому общее количество вариантов равно сумме числа вариантов с двойкой на конце и числа вариантов с 4 на конце). Запись 6 + 6 = 12 лучше отражает основания наших действий, чем запись Р .

25. Ф. Сколькими способами можно записать в виде произведения простых множителей число 1) 12; 2) 24; 3) 120?

Решение.

Особенностью этой задачи является то, что в разложении каждого из данных чисел есть одинаковые, повторяющиеся множители. При образовании различных перестановок из множителей мы не получим новую перестановку, если поменяем местами какие-нибудь два одинаковых множителя.

1) Число 12 разлагается на три простых множителя, два из которых одинаковы: 12 = .

Если бы все множители были различны, то их можно было бы переставить в произведении Р3 = 3! = 6 различными способами. Чтобы перечислить эти способы, условно «различим» две двойки, подчеркнем одну из них: 12 = 2 .

Тогда возможны следующие 6 вариантов разложения на жители:

Но на самом деле подчеркивание цифр не имеет в математике никакого значения, поэтому полученные 6 перестановок в обычной записи имеют вид:

т. е. фактически мы получили не 6, а 3 различные перестановки Количество перестановок уменьшилось в два раза за счет того, что мы не должны учитывать перестановки двух двоек между собой.

Обозначим Р х искомое число перестановок из трех элементов среди которых два одинаковых; тогда полученный нами результат можно записать так: Рз = Р х Но 2 - это количество разных перестановок из двух элементов, т. е. 2 = = 2! = Р 2 , поэтому Р3, = Р х Р 2 , отсюда Р х = . (это формула для числа перестановок с повторениями).

Можно рассуждать иначе, основываясь только на комбинаторном правиле произведения.

Чтобы составить произведение из трех множителей, сначала выберем место для множителя 3; это можно сделать одним из трех способов. После этого оба оставшихся места заполняем двойками; это можно сделать 1 способом. По правилу произведения общее число способов равно: 3-1 =3. , Р х =20.

Второй способ. Составляя произведение из пяти множителей, сначала выберем место для пятерки (5 способов), затем для тройки (4 способа), а оставшиеся 3 места заполним двойками (1 способ); по правилу произведения 5 4 1 = 20.

Ответ: 1) 3; 2) 4; 3) 20.

26. Ф. Сколькими способами можно закрасить 6 клеток таким образом, чтобы 3 клетки были красными, а 3 оставшиеся были закрашены (каждая своим цветом) белым, черным или зеленым?

Решение.

Перестановки из 6 элементов, среди которых три - одинаковые:

Иначе: для закраски белым цветом можно выбрать одну из 6 клеток, черным - из 5, зеленым - из 4; три оставшиеся клетки закрашиваем красным цветом. Общее число способов: 6 5 4 1 = 120.

Ответ: 120 способов.

27.Т. Пешеход должен пройти один квартал на север и три квартала на запад. Выпишите все возможные маршруты пешехода. = 4.

Ответ: 4 маршрута.

28. М. а) На дверях четырех одинаковых кабинетов надо повесить таблички с фамилиями четырех заместителей директора. Сколькими способами это можно сделать?

б) В 9 «А» классе в среду 5 уроков: алгебра, геометрия, физкультура, русский язык, английский язык. Сколько можно составить вариантов расписания на этот день?

в) Сколькими способами четыре вора могут разбежаться по одному на все четыре стороны?

г) Адъютант должен развезти пять копий приказа генерала пяти полкам. Сколькими способами он может выбрать маршрут доставки копий приказа?

Решение.

а) Для первой таблички можно выбрать любой из 4 кабинетов,
Для второй - любой из трех оставшихся, для третьей - любой из двух оставшихся, для четвертой - один оставшийся; по правилу
произведения общее число способов равно: 4 3 2 1 = 24, или Р4 = 4! = 24. = 120, или Р5 = 5! = 120.

Ответ: а) 24; б) 120; в) 24; г) 120.

Литература

    Афанасьев В.В. Теория вероятностей в примерах и задачах, - Ярославль: ЯГПУ, 1994.

    Баврин И. И. Высшая математика: Учебник для студентов химико-математических специальностей педагогических вузов-2-е издание, переработанное. - М.:Просвещение, 1993.

    Бунимович Е. А., Булычёв В.А. Вероятность и статистика. 5-9 классы: Пособие для общеобразовательных учебных заведений, - М.:Дрофа, 2005.

    Виленкин Н. Я. и другие. Алгебра и математический анализ для 10 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики. - М.:Просвещение,1992.

    Виленкин Н. Я. и другие. Алгебра и математический анализ для 11 класса: Учебное пособие для учащихся школ и классов с углублённым изучением математики - М.:Просвещение, 1990.

    Глейзер Г.И. История математики в школе: 9-10 класс. Пособие для учителей. - М.: Просвещение 1983.

    Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. Математика 9:Алгебра. Функции. Анализ данных - М.: Дрофа, 2000.

    Колягин и другие. Алгебра и начала анализа 11 класс. Математика в школе - 2002 - №4 - с.43,44,46.

    Люпшкас В.С. Факультативные курсы по математике: теория вероятностей: Учебное пособие для 9-11 классов.- М.,1991.

    Макарычев Ю.Н., Миндюк Н.Г. Элементы статистики и теории вероятностей: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

    Мордкович А.Г., Семенов П.В. Алгебра и начала анализа 10 класс: Учебник для общеобразовательных учреждений (профильный уровень) – М.: Мнемозина, 2005.

    Ткачева М.В., Федорова Н.Е. Элементы статистики и вероятность: Учебное пособие для учащихся 7-9 классов.- М.: Просвещение, 2005.

Число размещений без повторений из n по k n k различными координатами.

Число размещений без повторений находится по формуле:

Пример: Сколькими способами можно построить 3-значное число с различными цифрами, не содержащее цифры 0?

Количество цифр
, размерность вектора с различными координатами

Число размещений с повторениями

Число размещений с повторениями из n по k – это число способов, сколькими можно из n различных элементов построить векторов с k координатами, среди которых могут быть одинаковые.

Число размещений с повторениями находится по формуле:

.

Пример: Сколько слов длины 6 можно составить из 26 букв латинского алфавита?

Количество букв
, размерность вектора

Число перестановок без повторений

Число перестановок без повторений из n элементов – это число способов, сколькими можно расположить на n различных местах n различных элементов.

Число перестановок без повторений находится по формуле:

.

Замечание: Мощность искомого множества А удобно искать по формуле:
, гдех – число способов выбрать нужные места; у – число способов расположить на них нужные элементы; z – число способов расположить остальные элементы на оставшихся местах.

Пример. Сколькими способами можно расставить на книжной полке 5 различных книг? В скольких случаях две определенные книги А и В окажутся рядом?

Всего способов расставить 5 книг на 5-ти местах – равно = 5! = 120.

В задаче х – число способов выбрать два места рядом, х = 4; у – число способов расположить две книги на двух местах, у = 2! = 2; z – число способов расположить остальные 3 книги на оставшихся 3-х местах, z = 3! = 6. Значит
= 48.

Число сочетаний без повторений

Число сочетаний без повторений из n по k – это число способов, сколькими можно из n различных элементов выбрать k штук без учета порядка.

Число сочетаний без повторений находится по формуле:

.

Свойства:

1)
; 2)
; 3)
;

4)
; 5)
; 6)
.

Пример. В урне 7 шаров. Из них 3 белых. Наугад выбирают 3 шара. Сколькими способами это можно сделать? В скольких случаях среди них будет ровно один белый.

Всего способов
. Чтобы получить число способов выбрать 1 белый шар (из 3-х белых) и 2 черных шара (из 4-х черных), надо перемножить
и
Таким образом искомое количество способов

Упражнения

1. Из 35 учащихся класс по итогам года имели “5” по математике – 14 человек; по физике – 15 человек; по химии – 18 человек; по математике и физике – 7 человек; по математике и химии – 9 человек; по физике и химии – 6 человек; по всем трем предметам – 4 человек. Сколько человек имеют “5” по указанным предметам? Сколько человек не имеет “5” по указанным предметам? Имеет “5” только по математике? Имеет “5” только по двум предметам?

2. В группе из 30 студентов каждый знает, по крайней мере, один иностранный язык – английский или немецкий. Английский знают 22 студента, немецкий – 17. Сколько студентов знают оба языка? Сколько студентов знают немецкий язык, но не знают английский?

3. В 20 комнатах общежития института Дружбы Народов живут студенты из России; в 15 – из Африки; в 20 – из стран Южной Америки. Причем в 7 – живут россияне и африканцы, в 8 – россияне и южноамериканцы; в 9 – африканцы и южноамериканцы; в 3 – и россияне, и южноамериканцы, и африканцы. В скольких комнатах живут студенты: 1) только с одного континента; 2) только с двух континентов; 3) только африканцы.

4. Каждый из 500 студентов обязан посещать хотя бы один из трех спецкурсов: по математике, физике и астрономии. Три спецкурса посещают 10 студентов, по математике и физике – 30 студентов, по математике и астрономии – 25; спецкурс только по физике – 80 студентов. Известно также, что спецкурс по математике посещают 345 студентов, по физике – 145, по астрономии – 100 студентов. Сколько студентов посещают спецкурс только по астрономии? Сколько студентов посещают два спецкурса?

5. Староста курса представил следующий отчет по физкультурной работе. Всего – 45 студентов. Футбольная секция – 25 человек, баскетбольная секция – 30 человек, шахматная секция – 28 человек. При этом, 16 человек одновременно посещают футбольную и баскетбольную секции, 18 – футбольную и шахматную, 17 – баскетбольную и шахматную, 15 человек посещают все три секции. Объясните, почему отчет не был принят.

6. В аквариуме 11 рыбок. Из них 4 красных, остальные золотые. Наугад выбирают 4 рыбки. Сколькими способами это можно сделать? Найти число способов сделать это так, чтобы среди них будет: 1) ровно одна красная; 2) ровно 2 золотых; 3) хотя бы одна красная.

7. В списке 8 фамилий. Из них 4 – женские. Сколькими способами их можно разделить на две равные группы так, чтоб в каждой была женская фамилия?

8. Из колоды в 36 карт выбирают 4 . Сколько способов сделать это так, чтобы: 1) все карты были разных мастей; 2) все карты были одной масти; 3) 2 красные и 2 черные.

9. На карточках разрезной азбуки даны буквы К, К, К, У, У, А, Е, Р. Сколько способов сложить их в ряд так, что бы получилось «кукареку».

10. Даны карточки разрезанной азбуки с буквами О, Т, О, Л, О, Р, И, Н, Г, О, Л, О, Г. Сколько способов сложить их так, что бы получилось слово «отолоринголог».

11. Даны карточки нарезной азбуки с буквами Л, И, Т, Е, Р, А, Т, У, Р, А. Сколько способов сложить их в ряд так, что бы получилось слово «литература».

12. 8 человек становятся в очередь. Сколько способов сделать это так, что бы два определенных человека А и Б оказались: 1) рядом; 2) на краях очереди;

13. 10 человек садятся за круглый стол на 10 мест. Сколькими способами это можно сделать так, чтоб рядом оказались: 1) два определенных человека А и Б; 2) три определенных человека А, Б и С.

14. Из 10 арабских цифр составляют 5-значный код. Сколькими способами это можно сделать так, чтобы: 1) все цифры были разными; 2) на последнем месте четная цифра.

15. Из 26 букв латинского алфавита (среди них 6 гласных) составляется шестибуквенное слово. Сколькими способами это можно сделать так, чтобы в слове были: 1) ровно одна буква «а»; 2) ровно одна гласная буква; ровно две буквы «а»; в) ровно две гласные.

16. Сколько четырехзначных чисел делятся на 5?

17. Сколько четырехзначных чисел с различными цифрами делятся на 25?

19. Брошены 3 игральные кости. В скольких случаях выпала: 1) ровно 1 «шестерка»; 2) хотя бы одна «шестерка».

20. Брошены 3 игральные кости. В скольких случаях будет: 1) все разные; 2) ровно два одинаковых числа очков.

21. Сколько слов с различными буквами можно составить из алфавита а, в, с, d. Перечислить их все в лексикографическом порядке: abcd, abcd….

КОМБИНАТОРИКА

Комбинаторика - раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.

Правила сложения и умножения в комбинаторике

Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В - n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Решение

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n 1 способами, второе действие n 2 способами, третье - n 3 способами и так до k-го действия, которое можно выполнить n k способами, то все k действий вместе могут быть выполнены:

способами.

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Решение

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

Сочетания без повторений. Сочетания с повторениями

Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Решение

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.



Размещения без повторений. Размещения с повторениями

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Решение.

В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно вы б рать и разместить по m различным местам m из n предметов, с реди которых есть одинаковые?

Пример 6.

У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера- составить каталог. Сколько различных пятизначных номеров может составить мальчик?

Перестановки без повторений . Перестановки с повторениями

Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?

Пример 7.

Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?

Решение

Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.

Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k < n), т. е. есть одинаковые предметы.

Пример 8.

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Решение

Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно

ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ "КОМБИНАТОРИКА"

Реферат на тему:

Выполнил ученик 10 класса «В»

средней школы №53

Глухов Михаил Александрович

г. Набережные Челны

2002 г.
Содержание

Из истории комбинаторики_________________________________________ 3
Правило суммы___________________________________________________ 4
-
Правило произведения_____________________________________________ 4
Примеры задач____________________________________________________ -
Пересекающиеся множества________________________________________ 5
Примеры задач____________________________________________________ -
Круги Эйлера_____________________________________________________ -
Размещения без повторений________________________________________ 6
Примеры задач____________________________________________________ -
Перестановки без повторений_______________________________________ 7
Примеры задач____________________________________________________ -
Сочетания без повторений__________________________________________ 8
Примеры задач____________________________________________________ -
Размещения и сочетания без повторений______________________________ 9
Примеры задач____________________________________________________ -
Перестановки с повторениями_______________________________________ 9
Примеры задач____________________________________________________ -
Задачи для самостоятельного решения________________________________ 10
Список используемой литературы___________________________________ 11

Из истории комбинаторики

Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Нидийцы умели вычислять числа, которые сейчас называют "сочетания". В XII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из n слогов. Как научная дисциплина, комбинаторика сформировалась в XVII в. В книге "Теория и практика арифметики" (1656 г.) французский автор А. Также посвящает сочетаниям и перестановкам целую главу.
Б. Паскаль в "Трактате об арифметическом треугольнике" и в "Трактате о числовых порядках" (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин "комбинаторика" стал употребляться после опубликования Лейбницем в 1665 г. работы "Рассуждение о комбинаторном искусстве", в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги "Ars conjectandi" (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в XIX в.

Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств – правило суммы и правило произведения.

Правило суммы

Если конечные множества не пересекаются, то число элементов X U Y {или} равно сумме числа элементов множества X и числа элементов множества Y.

То есть, если на первой полке стоит X книг, а на второй Y, то выбрать книгу из первой или второй полки, можно X+Y способами.

Примеры задач

Ученик должен выполнить практическую работу по математике. Ему предложили на выбор 17 тем по алгебре и 13 тем по геометрии. Сколькими способами он может выбрать одну тему для практической работы?

Решение: X=17, Y=13

По правилу суммы X U Y=17+13=30 тем.

Имеется 5 билетов денежно-вещевой лотереи, 6 билетов спортлото и 10 билетов автомотолотереи. Сколькими способами можно выбрать один билет из спортлото или автомотолотереи?

Решение: Так как денежно-вещевая лотерея в выборе не участвует, то всего 6+10=16 вариантов.

Правило произведения

Если элемент X можно выбрать k способами, а элемент Y-m способами то пару (X,Y) можно выбрать k*m способами.

То есть, если на первой полке стоит 5 книг, а на второй 10, то выбрать одну книгу с первой полки и одну со второй можно 5*10=50 способами.

Примеры задач

Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать?

Решение: Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12*3=36 вариантов переплета.

Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

Решение: В таких числах последняя цифра будет такая же, как и первая, а предпоследняя - как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX , где Y и Z -любые цифры, а X - не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.


Пересекающиеся множества

Но бывает, что множества X и Y пересекаются, тогда пользуются формулой

, где X и Y - множества, а - область пересечения. Примеры задач

20 человекзнаютанглийскийи 10 - немецкий, изних 5 знаютианглийский, инемецкий. СколькоЧеловеквсего?

Ответ: 10+20-5=25 человек.

Также часто для наглядного решения задачи применяются круги Эйлера. Например:

Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским - 28, французским - 42. Английским и немецким одновременно владеют 8 человек, английским и французским - 10, немецким и французским - 5, всеми тремя языками - 3. Сколько туристов не владеют ни одним языком?

Решение: Выразим условие этой задачи графически. Обозначим кругом тех, кто знает английский, другим кругом - тех, кто знает французский, и третьим кругом - тех, кто знают немецкий.

Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человек.

Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части.

Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек.

По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.


Размещения без повторений.

Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны?

Это пример задачи на размещение без повторений. Размещаются здесь 10 цифр по 6. А варианты, при которых одинаковые цифры стоят в разном порядке считаются разными.

Если X-множество, состоящие из n элементов, m≤n, то размещением без повторений из n элементов множества X по m называется упорядоченное множество X, содержащее m элементов называется упорядоченное множество X, содержащее m элементов.

Количество всех размещений из n элементов по m обозначают

n! - n-факториал (factorial анг. сомножитель) произведение чисел натурального ряда от 1 до какого либо числа n

n!=1*2*3*...*n 0!=1

Значит, ответ на вышепоставленную задачу будет

Задача

Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец?

Решение : два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами считаются, разными, поэтому:

Возможно 360 вариантов.


Перестановки без повторений

В случае n=m (см. размещения без повторений) из n элементов по m называется перестановкой множества x.

Количество всех перестановок из n элементов обозначают P n.

Действительно при n=m:

Примеры задач

Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются?

1) Найдем количество всех перестановок из этих цифр: P 6 =6!=720

2) 0 не может стоять впереди числа, поэтому от этого числа необходимо отнять количество перестановок, при котором 0 стоит впереди. А это P 5 =5!=120.

P 6 -P 5 =720-120=600

Проказница Мартышка

Да косолапый Мишка

Затеяли играть квартет

Стой, братцы стой! –

Кричит Мартышка, - погодите!

Как музыке идти?

Ведь вы не так сидите…

И так, и этак пересаживались – опять музыка на лад не идет.