Откуда берётся электричество? Базовые понятия о электричестве.

Добавить сайт в закладки

Что нужно знать об электричестве новичкам?

К нам часто обращаются читатели, которые раньше не сталкивались с работами по электричеству, но хотят в этом разобраться. Для этой категории создана рубрика "Электричество для начинающих".

Рисунок 1. Движение электронов в проводнике.

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретиче­ски в этом вопросе.

Термин "электричество" подразумевает движение электронов под действием электромагнитного поля.

Главное - понять, что электричест­во - это энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении (рис. 1).

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток - это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, те­кущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

Рисунок 2. Схема устройства трансформатора.

С током это происходит на­много быстрее, 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного. Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 2).

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи транс­форматора (специаль­ного устройства в виде катушек) переменный ток преобразу­ется с низкого напряжения на высокое, и наоборот, как это представлено на иллюстрации (рис. 3).

Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко: во всех видах батарей, в химической промышленности и некоторых других областях.

Рисунок 3. Схема передачи переменного тока.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это надо обязательно.

Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть - это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электри­ческая цепь состоит из двух проводов. По одному ток идет к потребителю (например к чайнику), а по другому воз­вращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи (рис. 4 А).

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается - нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120° (рис. 4 Б). Более подробно на этот вопрос поможет ответить учебник по электромеханике.

Рисунок 4. Схема электрических цепей.

Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически: не нужны еще два нулевых провода. Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы.

Земля, или, правильнее сказать, заземление - третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предо­хранителем.

Например, в случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток элек­тричества в буквальном смысле слова уходит в землю (рис. 5).

Рисунок 5. Простейшая схема заземления.

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора.

Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током.

При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что нулевой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции.

Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

ВНИМАНИЕ!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте.

При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

ЭЛЕКТРИЧЕСТВО

ЭЛЕКТРИЧЕСТВО , форма энергии, существующая в виде статических или подвижных ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. Заряды могут быть положительными или отрицательными. Одинаковые заряды отталкиваются, противоположные притягиваются. Силы взаимодействия между зарядами описаны ЗАКОНОМ КУЛОНА. Когда заряды движутся в магнитном поле, они испытывают воздействие магнитной силы и в свою очередь создают противоположно направленное магнитное поле (ЗАКОНЫ ФАРАДЕЯ). Электричество и МАГНЕТИЗМ представляют собою различные аспекты одного и того же явления, ЭЛЕКТРОМАГНЕТИЗМА. Поток зарядов образует ЭЛЕКТРИЧЕСКИЙ ток, который в проводнике представляет собою поток отрицательно заряженных ЭЛЕКТРОНОВ. Для того, чтобы в ПРОВОДНИКЕ возник электрический ток, необходима ЭЛЕКТРОДВИЖУЩАЯ СИЛА или РАЗНОСТЬ ПОТЕНЦИАЛОВ между концами проводника. Ток, который движется только в одном направлении, называется постоянным. Такой ток создается, когда источником разности потенциалов является БАТАРЕЙКА. Ток, меняющий направление дважды за цикл, называется переменным. Источником такого тока являются центральные сети. Единицей измерения тока служит АМПЕР, единицей заряда - КУЛОН, ом - это единица сопротивления, а вольт - единица электродвижущей силы. Основными средствами для вычисления параметров электрической цепи являются ЗАКОН ОМА и ЗАКОНЫ КИРХГОФА (о суммировании величин напряжения и тока в цепи). см. также ЭЛЕКТРИЧЕСКИЙ ТОК , ЭЛЕКТРОНИКА .

Электрическую энергию можно получить при помощи индукции в генераторе; напряжение в первичной обмотке создает переменный ток во внешней цепи. Наличие индуктивности или емкости (либо того и другого вместе) приводит к смещению фазы (А) между напряжением V и током I. На рисунке показано, что емкость вызывала смещение фазы на 90°, в результате чего средняя величина мощности равна 0, хотя кривая мощности no-прежнему имеет вид синусоиды. Понижение мощности Р, вызванное смещением фаз, называют коэффициентом мощности. Если три фазы переменного тока смещены между собою, каждая на 120°, то сумма их величин тока или напряжения всегда будет равна нулю (В). Такие трехфазные токи используют в короткозамк-нугых асинхронных электродвигателях с ротором (С). В этой конструкции имеется три электромагнита, вращающихся в созданном магнитном поле. Переменный ток производится также в замкнутых (D) и открытых (Е) колебательных контурах. Высокочастотные электромаг нитные волны, используемые в некоторых системах коммуникации, ПРОИЗВОДЯТСЯ ТЭКИМ1 цепями.


Научно-технический энциклопедический словарь .

Синонимы :

Смотреть что такое "ЭЛЕКТРИЧЕСТВО" в других словарях:

    - (от греч. elektron янтарь, так как янтарь притягивает легкие тела). Особенное свойство некоторых тел, проявляющееся только при известных условиях, напр. при трении, теплоте, или химических реакциях, и обнаруживающееся притягиванием более легких… … Словарь иностранных слов русского языка

    ЭЛЕКТРИЧЕСТВО, электричества, мн. нет, ср. (греч. elektron). 1. Субстанция, лежащая в основе строения материи (физ.). || Своеобразные явления, сопровождающие движение и перемещение частиц этой субстанции, форма энергии (электрический ток и т.п.) … Толковый словарь Ушакова

    Совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов. Связь электричества и магнетизма взаимодействие неподвижных электрических зарядов осуществляется… …

    - (от греч. elektron янтарь) совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве один из основных разделов физики. Часто под… … Большой Энциклопедический словарь

    Лепиздричество, электроток, лепестричество, лепистричество, ток, электроэнергия, освещение Словарь русских синонимов. электричество сущ., кол во синонимов: 13 актиноэлектричество … Словарь синонимов

    ЭЛЕКТРИЧЕСТВО - в самом общем смысле представляет одну из форм движения материи. Обычно же под этим словом понимают или электрический заряд как таковой или самое учение об электрических зарядах, их движении и взаимодействии. Слово Э. происходит от греч. электрон … Большая медицинская энциклопедия

    электричество - (1) EN electricity (1) set of phenomena associated with electric charges and electric currents NOTE 1 - Examples of usage of this concept: static electricity, biological effects of electricity. NOTE 2 - In… … Справочник технического переводчика

    ЭЛЕКТРИЧЕСТВО, а, ср. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Электричество - – 1. Проявление одной из форм энергии, присущая электрическим зарядам как движущимися, так и находящимися в статическом состоянии. 2. Область науки и техники, связанная с электрическими явлениями. [СТ МЭК 50(151) 78] Рубрика термина:… … Энциклопедия терминов, определений и пояснений строительных материалов

    ЭЛЕКТРИЧЕСТВО - совокупность явлений, в которых обнаруживаются существование, движение и взаимодействие (посредством электромагнитного поля) электрических зарядов (см. (4)). Учение об электричестве один из основных разделов физики … Большая политехническая энциклопедия

Многие пользуются электричеством, но далеко не многие знают в чём заключается его суть. Электричество, как явление природы, было и будет всегда. Но люди, в силу своих познавательных способностей, могут лишь отрывать те или иные явления. И в силу своих человеческих особенностей могут порой забывать, терять, скрывать знания о них. Суть электричества в наше время раскрывается в научных теориях тех учёных, которые в своё время вели усердную работу над познанием этой невидимой силы. В разные периоды были сделаны определённые открытия, в последствии порождающие новые вопросы, на которые были очередные попытки на них ответить.

Итак, суть электричества заключается в том, что существуют так называемые элементарные частицы такие как электроны и протоны, входящие в состав атомов и молекул различных веществ. Напомню, модель атома следующая (похожая на солнечную систему): внутри располагается ядро, состоящее из протонов и нейтронов.

Протоны имеют положительный заряд, который проявляет себя в виде силы (по средствам существующего поля вокруг частиц), действующие на другой заряд другой частицы отталкивая её или притягивая. Нейроны, как бы, нейтральны, с точки зрения зарядов. Электроны вращаются на очень большой скорости вокруг ядра атома, и имеют отрицательный заряд. Количество элементарных частиц в атоме может быть разным в зависимости от конкретного вещества.

Именно эти заряды (полевые силы, действующие друг на друга) и являются основой, сутью электричества, поскольку именно эта сила и порождает различные явления, связанные с проявлением электричества в мире. Когда суммарное количество положительного заряда протонов равно отрицательному заряду электронов, входящих в состав атома вещества, то в целом атом будет электрически нейтральным, по отношению к другим атомам. Но вот если в силу тех или иных причин в атоме начнёт преобладать тот или иной вид заряда, то тут уже появятся силы, которые будут стремиться выровнять этот дисбаланс электрического заряда.

Но различные вещества по разному ведут себя, с точки зрения перераспределения электрических зарядов. У одних электроны настолько сильно притягиваются к своим ядрам атома, что не в силах сорваться со своей орбиты вращения. У других же веществ эти электроны достаточно легко отрываютя от атомов и начинают блуждать по соседним атомам данного вещества. В первом случае вещества называют диэлектриками, в другом же случае (где электроны свободно блуждают) вещества называют проводниками электричества. То есть, эти электрические заряды перетекают из одного места в другое, тем самым образуя электрический ток.

Дальнейшая суть электричества уже связана именно с различными движениями этих электронов в различных средах, в различных материалах и различных условиях. В итоге и получаем всё то разнообразие электрических явлений, процессов и взаимодействий. К примеру, обычная батарейка. В ней находятся различные химические вещества, которые взаимодействуя друг с другом с одного своего состояния переходят в другое, а сопутствующим процессом будет перераспределение электронов между изменяющимися веществами внутри. Если есть дисбаланс электрических зарядов, значит есть и сила, стремящаяся выровнять его. Эту самую силу и используют в батарейке для питания различных электрических устройств.

Металлы служат проводником этих самых электронов (заряженных частиц). Они легко перетекают по проводнику с одного участка в другой. Пока же совершается движение электронов, происходят параллельные физические явления. К примеру, когда много электронов упорядоченно движутся через тонкий проводник, они сталкиваются с атомами, неподвижно стоящих на своих местах в кристаллической решётки вещества. В результате таких столкновений энергия движения электронов переходит в энергию тепла атома, с которым было столкновение. То есть, энергия движения электронов частично перешла в энергию тепла, произведя нагрев данного вещества.

Другим примером, проявляющим суть электричества, может служить взаимодействие электромагнитных полей. Напомню, что вокруг неподвижных заряженных частиц существует электрическое поле, а вокруг движущихся электрических частиц ещё возникает и магнитное поле. В итоге, когда заряженные частицы движутся вокруг них образуется общее электромагнитное поле, способное действовать на другие такие же поля других заряженных частиц. Так работает электродвигатель. Именно магнитные поля заставляют вращаться электрический мотор, когда по его обмоткам совершается перетекание электрических зарядов с одного полюса на другой.

P.S. - вот мы и разобрались в общих чертах о сути электричества и его явлениях. Для лучшего понимания просто представляйте, как очень маленькие частички очень быстро перетекают с одного места на другое по своей электрической цепи. Если есть разность потенциалов (в одном месте возникло скопление одного вида зарядов, а в другом, противоположного вида), то при появлении пути (соединение цепи) начинается процесс выравнивания этих самых потенциалов. Бежит электрический ток. Вот и всё.

Электричество (от греч. elektron янтарь, так как янтарь притягивает легкие тела), или ток начали использовать только в 1800 году, когда итальянский физик Алессандро Джузеппе Антонио Анастасио Вольта изобрёл первую в мире батарею и тем самым дал первый надёжный постоянный источник электроэнергии.

А как же возникает электричество?

Всё вокруг состоит и малюсеньких частиц, которые не видны человеческому глазу, – атомов. Атом состоит из более мелких частиц: в центре – ядро, а вокруг него вращаются электроны. Ядро состоит из нейронов и протонов. Электроны, которые вращаются вокруг ядра, имеют отрицательный заряд (-), а протоны, которые находятся в ядре, – положительный (+). Обычно количество электронов в атоме совпадает с количеством протонов в ядре, поэтому атом не имеет заряда – он нейтрален.

Бывают такие атомы, у которых может не хватать одного электрона. Они имеют положительный заряд (+) и начинают притягивать электроны (-) из других атомов. И в этих, других атомах электроны слетают со своих орбит, меняют траекторию движения. Движение электронов от одного атома к другому приводит к образованию энергии. Эта энергия и называется электричеством.

А откуда берётся электричество в наших домах?

Мы получаем электричество благодаря большим электростанциям. На электростанциях есть генераторы – большие машины, которые работают от источника энергии. Обычно источник – это тепловая энергия, которую получают при нагревании воды (пар). А для нагревания воды используют уголь, нефть, природный газ или ядерное топливо. Пар, который образуется при нагревании воды, приводит в действие огромные лопасти турбины, а те в свою очередь запускают генератор.

Энергию можно получить, используя силу воды, падающей с большой высоты: с плотин или водопадов (гидроэнергетика).

Как источник питания для генераторов можно использовать силу ветра или тепло Солнца, но к ним прибегают не часто.

Далее работающий генератор при помощи огромного магнита создаёт поток электрических зарядов (ток), который проходит по медным проводам. Чтобы передавать электричество на большие расстояния, необходимо увеличить напряжение. Для этого используют трансформатор – устройство, которое может повышать и понижать напряжение. Теперь электричество с большой мощностью (до 10000 вольт и более) по огромным кабелям, которые находятся глубоко под землёй или высоко в воздухе, движется к месту назначения. Перед тем, как попасть в квартиры и дома, электричество проходит через другой трансформатор, который понижает его напряжение. Теперь готовое к использованию электричество движется по проводам к необходимым объектам. Количество использованного электричества регулируется специальными счётчиками, которые прикрепляются к проводам, которые проложенные через стены и полы. подводят электричество в каждую комнату дома или квартиры. Благодаря электричеству работает освещение и телевидение, различные бытовые приборы.

Если Вам необходима помощь при решении задач по физике или математике, онлайн репетиторы всегда готовы Вам помочь. В любое время и в любом месте ученик может обратиться за помощью к онлайн репетитору и получить консультацию по любому предмету школьной программы. Обучение проходит посредством специально разработанного программного обеспечения. Квалифицированные педагоги оказывают помощь при выполнении домашних заданий, объяснении непонятного материала; помогают подготовиться к ГИА и ЕГЭ. Ученик выбирает сам, проводить занятия с выбранным репетитором на протяжении длительного времени, или использовать помощь педагога только в конкретных ситуациях, когда возникают сложности с определённым заданием.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Среди жителей планеты найти таких, которые не имеют понятия об электричестве, трудно. Но вот тех, кто знает, когда и кто открыл электричество, из чего оно состоит, кто сделал важное и полезное для человечества открытие, мало. Потому стоит разобраться, что представляют собой электрические явления и кому мы обязаны их открытием.

Вконтакте

Когда и как было открыто

История открытия этого явления была очень длительной. Само слово придумал греческий ученый Фалес. Оно стало производным от понятия «электрон», которое переводится как «янтарь». Появился этот термин до нашей эры, благодаря Фалесу, заметившему свойство янтаря после того, как его потереть, притягивать легкие предметы.

Произошло это за семь столетий до н.э. Фалес проводил много опытов, изучая увиденное. Это были первые опыты с зарядами в мире. На этом его наблюдения и закончились. Далее он не смог продвинуться, но именно этот ученый считается основоположником теории электроэнергии , ее первооткрывателем, хотя как наука это явление не получило развития. Его наблюдения были надолго забыты, не вызвав интереса у ученых.

Первые опыты

В середине XVII столетия Отто Герике занялся научным исследованием наблюдений Фалеса. Немецкий ученый сконструировал первый прибор в форме вращающегося шара, который он зафиксировал на железном штифте.

После его смерти исследования продолжили другие ученые:

  • немецкие физики Бозе и Винклер;
  • англичанин Хоксби.

Они усовершенствовали прибор, изобретенный Генрике, и открыли некоторые другие свойства явления. Первые опыты, проводимые с помощью этого аппарата, послужили толчком для новых изобретений.

История открытия

Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.

В начале 18века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.

Это явление получило название лейденской банки .

Важно! УченыйБ. Франклин первым предположил, что существуют положительные и отрицательные заряды.

Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод , действие которого пояснялось возникновением разности напряжений.

А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.

Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым .

Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:

  • 1791 г. - ученый Л. Гальвани открыл зарядов по проводникам, т.е. электрический ток;
  • 1800 г. – представлен генератор тока А. Вольтом;
  • 1802 г. - Петров открыл электродугу;
  • 1827 г. - Дж. Генри сконструировал изоляцию проводов;
  • 1832 г. - член академии Петербурга Шиллинг показал электрический телеграф;
  • 1834 г. - академик Якоби создал электродвигатель;
  • 1836 год - С. Морзе запатентовал телеграф;
  • 1847 г. - Сименс предложил резиновый материал для изоляции проводов;
  • 1850 год - Якоби изобрел буквопечатающий телеграф;
  • 1866 г. - Сименс предложил динамо-машину;
  • 1872 г. - А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить;
  • 1876 г - изобретен телефон;
  • 1879 год - Эдисон разработал систему электроосвещения, используемую до сих пор;
  • 1890 год - стал стартовым относительно широкого применения электроприборов в быту;
  • 1892 г. - появились первые бытовые приборы, используемые хозяйками на кухне;

Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.

Первые опыты с электричеством

Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд . С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.

Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В. Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.

Явления в природе, связанные с электричеством

Природа богата явлениями электрической природы. Примерами таких явлений, которые связаны с электричеством, служат северное сияние, молния и др.

Северное сияние

Верхние слои воздушной оболочки часто накапливают мелкие частички, прилетающие из космоса. Их столкновение с атмосферой и пылью вызывает свечение на небе, которое сопровождают сполохи. Такое явление наблюдают жители полярных районов. Назвали это явление полярным сиянием . Северное свечение длится порой несколько суток, переливаясь разными цветами.

Молния

Перемещаясь с атмосферными потоками, кучевые облака вызывают трение капель и ледяных кристаллов. В результате трения в облаках накапливаются заряды. Это приводит к образованию между облаками и землей гигантских искр. Это и есть молнии. Они сопровождаются раскатами грома.

Накопление электрических зарядов в воздухе иногда вызывает образование небольших светящихся шариков или крупных искр. Эти шары и искры названы шаровым молниями. Они перемещаются с воздухом, взрываясь от контакта с отдельными предметами. Такие молнии нередко вызывают ожоги и гибель живых существ и людей, возгорание предметов. Точно объяснить причины появления молний ученые пока не могут.

Огни святого Эльма

Так называют явление, знакомое плававшим на парусниках морякам с древности. Они радовались, когда видели свечение мачт в непогоду. Моряки считали, что огни свидетельствуют о покровительстве святого Эльма.

Свечение можно наблюдать в грозу на высоких шпилях. Огоньки выглядят как свечи и кисти голубого или светло-фиолетового оттенка. Длина этих огней иногда достигает метра. Сияние порой сопровождает шипение или негромкий свист.

Моряки пытались отломить часть мачты вместе с огнем. Но это никогда не удавалось, поскольку огонь «перетекал» на мачту и поднимался по ней вверх. Пламя это холодное, от него не происходит возгорания, оно не обжигает руки. И гореть может несколько минут, иногда около часа. Современные ученые установили, что эти огни имеют электрическую природу.

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту . Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Знаковой датой также можно полагать май 1883 г., время, когда рабочие выполнили иллюминацию кремлевского двора к церемонии коронования Александра ІІІ. Для этого на Софийскую набережную установили электростанцию. А чуть позже электрифицировали главную улицу в Петербурге и Зимний.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы). Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

Электроэнергия бывает разной природы: . Кроме того, есть еще статическое электричество. Оно образуется при нарушении равновесия зарядов внутри атомов, как уже было сказано ранее.

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику. Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Теория электричества содержит законы, охватывающие огромное количество электромагнитных явлений и законов взаимодействий.

Это связано с тем, что все тела состоят из заряженных частиц . Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой . Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в . Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество