От чего зависит продуктивность экосистемы. Продуктивность экосистемы

Чтобы оценить значение того или иного вида для круговорота веществ в данном биогеоценозе необходимо знать не только его биомассу, но и относительную скорость ее создания, т.е.биологическую продуктивность .

Таким образом,

Биологическая продуктивность - это скорость создания определенного количества биомассы растений, животных и микроорганизмов, входящих в состав биогеоценоза.

Биологическая продуктивность определяется количеством биомассы, синтезируемой за единицу времени на единицу площади (или объема) и выражается чаще всего в граммах углерода или сухого органического вещества или в энергетических единицах – эквивалентном числе калорий или джоулей.

Биологическую продуктивность можно выразить продукцией за сезон, за год, за несколько лет или за любую другую единицу времени.

Для наземных и донных организмов биологическая продуктивность определяется количеством биомассы на единицу площади, а для планктонных и почвенных - на единицу объема.

Ключевое слово в понятии продуктивность – скорость. Однако вместо термина «продуктивность» часто используется термин «продукция», но при этом все равно учитывается фактор времени.

Биологическую продуктивность нельзя смешивать с биомассой.

Биомасса - это выраженное в единицах массы (веса) или энергии количество живого вещества тех или иных организмов, обитающих на исследуемой площади или в исследуемом объеме.

Например:

    планктонные водоросли за год на единицу площади синтезируют столько же органического вещества, сколько и высокопродуктивные леса, однако биомасса последних в сотни тысяч раз больше;

    популяции мелких млекопитающих по сравнению с крупными обладают большей скоростью роста и размножения и поэтому имеют более высокую продуктивность при равной биомассе.

Различают первичную и вторичную продуктивность экосистем.

Первичная продуктивность экосистем - это скорость, с которой автотрофные организмы (продуценты) в процессе фотосинтеза связывают солнечную энергию и запасают ее в форме химических связей органических веществ, т.е. скорость образования биомассы органического вещества автотрофами (продуцентами).

Первичная продуктивность подразделяется на валовую и чистую продуктивность.

Валовая первичная продуктивность – это скорость накопления органического вещества продуцентами, включая затраты на дыхание (т.е. включая ту его часть, которая будет израсходована в процессах жизнедеятельности растений).

Так, например, в тропических лесах и зрелых лесах умеренной зоны затраты на дыхание составляют 40-70%, а у планктонных водорослей и у большинства сельскохозяйственных культур – 40%.

Чистая первичная продуктивность – это скорость накопления органического вещества в растительных тканях за вычетом той его части, которая использовалась на дыхание растений.

Поэтому чистая первичная продукция, накопленная в виде биомассы растений всегда меньше валовой первичной продукции, созданной ими в процессе фотосинтеза.

Чистая первичная продуктивность автотрофных организмов (продуцентов) может служить источником питания для гетеротрофных организмов, которые на ее основе образуют свою биомассу.

Вторичная продуктивность - это скорость образования биомассы гетеротрофными организмами (консументами).

Вторичная продуктивность уже не делится на валовую и чистую продуктивность, так как гетеротрофы увеличивают свою массу за счет первичной ранее созданной продукции.

Вторичную продуктивность рассчитывают отдельно для каждого трофического уровня, так как прирост биомассы на каждом из них происходит за счет энергии, поступающей с предыдущего уровня.

При этом необходимо учитывать, что при переходе с одного трофического уровня консументов на другой значительная часть энергии расходуется в процессах жизнедеятельности, поэтому вторичная продукция каждого последующего трофического уровня будет меньше продукции предыдущего.

Если в экосистеме скорость образования чистой первичной продукции выше темпов переработки ее консументами, то это ведет к увеличению биомассы продуцентов.

Если при этом присутствует недостаточная утилизация продуктов опада в цепях разложения редуцентами, то происходит накопление мертвого органического вещества (в форме каменного угля, горючих сланцев, сухих листьев и т.д.).

В стабильных экосистемах биомасса остается постоянной, так как практически вся созданная продукция расходуется в цепях питания разнообразными консументами и редуцентами, т.е. природа стремится использовать полностью валовую продукцию.

Однако равенство между приходом и расходом продукции – явление достаточно редкое и наблюдается в наиболее стабильных сообществах, например, в тропической зоне. Однако это создает объективные трудности для развития там сельского хозяйства.

Человек, выжигая пышный тропический лес надеется получить на освободившейся территории высокие урожаи. Однако вскоре оказывается, что почвы на этой территории абсолютно бесплодны – вся годовая продукция росшего на этом месте леса потреблялась различными консументами и редуцентами и в почвах ничего не откладывалось.

Кроме первичной и вторичной продукции биогеоценозов, различают промежуточную и конечную продукцию.

Промежуточная продукция - это продукция, которая после потребления членами биогеоценоза снова возвращается в круговорот веществ этой системы.

Конечная продукция - это продукция, которая выводится за пределы данной экосистемы.

Например, продукция, получаемая человеком в процессе возделывания сельскохозяйственных культур, разведения домашних животных, охоты, промысла и т.д.

Продуктивность различных экосистем неодинакова и зависит от ряда экологических факторов, в первую очередь, климатических (тепло, влага и др).

При этом первичная продукция органического вещества в экосистемах, богатых жизнью, может превосходить продукцию сравнительно бедных экосистем более, чем в 50 раз.

Наиболее продуктивны экосистемы эстуариев и коралловых рифов (средняя продуктивность достигает 20 г / м 2 в сутки), влажных тропических лесов и болот (средняя продуктивность составляет 10 г / м 2 в сутки).

Высокопродуктивные экосистемы встречаются там, где климатические условия благоприятны, особенно при дополнительном поступлении в экосистему энергии извне.

Поступление энергии со стороны абиотических компонентов уменьшает затраты живых организмов на поддержание собственной жизнедеятельности, т.е. они компенсируют свои затраты на дыхание.

Например, энергия приливов повышает продуктивность природной прибрежной экосистемы, компенсируя потери энергии при дыхании.

Низкой продуктивностью (0,1-0,5 г / м 2 в сутки) характеризуются экосистемы пустынь и тундр, в которых дефицит влаги и тепла лимитирует развитие низшего трофического уровня, а также открытые воды морей и океанов, где при избытке воды объем органических веществ сравнительно невысок.

При этом необходимо отметить, что большая часть земного шара покрыта океанами и пустынями с низкой продуктивностью, тогда как высокая продуктивность характерна для сравнительно незначительных участков Земли (эстуарии, коралловые рифы, болота, влажные леса).

Изменение первичной продуктивности экосистем по направлению с севера на юг происходит в следующем порядке:

    в наземных арктических биогеоценозах продуктивность низкая, а арктические моря, так же как и антарктические являются высокопродуктивными;

    в тропиках огромная часть суши занята малопродуктивными пустынями, бедны и моря этой зоны;

    в экваториальной зоне располагаются самые высокопродуктивные биогеоценозы коралловых рифов, эстуариев, болот и особенно влажных тропических лесов.

По мере продвижения с севера на юг увеличивается удельное количество солнечной энергии, попадающей на единицу поверхности Земли, что приводит к большему количеству видов, накоплению более значительной биомассы и повышению продуктивности экосистем суши.

В морских экосистемах иная ситуация, чем на суше.

Высока продуктивность северных морей, а также морей крайних южных широт, где из глубин поступают холодные воды, богатые кислородом и биогенами. В теплой воде кислород растворяется хуже и мало биогенов (тропики богаты видами, но сравнительно мало продуктивны).

Общая чистая первичная продуктивность на Земле составляет 170 млрд. тонн в год, из которых 115 млрд. тонн дают экосистемы суши, а 55 млрд. тонн - экосистемы морей.

Вторичная продукция (биомасса гетеротрофных организмов, прежде всего животных - зоомасса), во много раз меньше первичной продукции (биомассы растений - фитомассы).

В разных экосистемах зоомасса составляет незначительную долю биомассы (от 0,05% до 5% всей биомассы), тем не менее животные суши играют большую роль в регулировании процессов, происходящих в отдельных экосистемах и биосфере в целом.

Совершенно очевидно, что жизнь людей, их производственная деятельность зависят от продуктивности основных биогеоценозов, от первичной продукции и ее мирового распределения.

Питание людей обеспечивается главным образом сельскохозяйственными культурами, занимающими около 10% площади суши и дающие примерно 9,1 млрд. тонн органического вещества в год, что составляет значительную часть мировых ресурсов.

Кроме того, огромная масса первичной продукции используется человеком как техническое сырье в промышленности и быту (топливо, хлопок, лен, эфиромасличные культуры и др.), причем около 50% теряется в отходах.

Но человек потребляет не только первичную продукцию. Он изымает из биосферы большое количество вторичной продукции в виде животной пищи, расходы которой подсчитать очень трудно.

Таким образом, имеющиеся представления о продуктивности экосистем и мировом распределении первичной продукции дают возможность ориентироваться в обстановке, сложившейся на нашей планете и на строго научной основе разрабатывать мероприятия по рациональному использованию природных ресурсов.

Продуктивность экосистем тесно связана с потоком энергии, проходящим через ту или иную экосистему. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, накапливается в виде органических соединений. Безостановочное производство биомассы (живой материи) - один из фундаментальных процессов биосферы. Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называют первичной продукцией экосистемы (сообщества). Количественно ее выражают в сырой или сухой массе растений или в энергетических единицах -эквивалентном числе ккалорий или джоулей. Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы, а следовательно, и биомасса живых организмов, которые могут существовать в экосистеме (рис. 12.33).

Теоретически возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. А как известно, лишь часть энергии света, получаемой зеленой поверхностью, может быть использована растениями. Из коротковолнового излучения Солнца только 44\% относится к фотосинтетически активной радиации (ФАР) - свет по длине волны, пригодный для фотосинтеза.

Скорость накопления органического вещества за вычетом этого расхода называется чистой первичной продуктивностью (ЧПП). Это энергия, которую могут использовать организмы следующих трофических уровней. Количество органического вещества, накопленного гетеротрофными организмами, называется вторичной продукцией. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего. Гетеротрофы, включаясь в трофические цепи, в конечном итоге живут за счет чистой первичной продукции сообщества. Полнота ее расхода в разных экосистемах различна. Постеленное увеличение общей биомассы продуцентов отмечается, если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений.

Мировое распределение первичной биологической продукции весьма неравномерно. Чистая продукция меняется от 3000 г/м2/год до нуля в экстрааридных пустынях, лишенных растений, или в условиях Антарктиды с ее вечными льдами на поверхности суши, а запас биомассы - соответственно от 60 кг/м2 до нуля. Р. Уиттекер (1980) делит по продуктивности все сообщества на четыре класса.

1. Сообщества высшей продуктивности, 3000-2000 г/м2/год. Сюда относятся тропические леса, посевы риса и сахарного тростника. Запас биомассы в этом классе продуктивности весьма различен и превышает 50 кг/м2 в лесных сообществах и равен продуктивности у однолетних сельскохозяйственных культур.


2. Сообщества высокой продуктивности, 2000-1000 г/м2/год. В этот класс включены листопадные леса умеренной полосы, луга при применении удобрений, посевы кукурузы. Максимальная биомасса приближается к биомассе первого класса. Минимальная биомасса соответственно равна чистой биологической продукции однолетних культур.

3. Сообщества умеренной продуктивности, 1000-250 г/м2/год. К этому классу относится основная масса возделываемых сельскохозяйственных культур, кустарники, степи. Биомасса степей меняется в пределах 0,2-5 кг/м2.

4. Сообщества низкой продуктивности, ниже 250 г/м^год - пустыни, полупустыни (в отечественной литературе их называют чаще опустыненными степями), тундры.

Общая годовая продуктивность сухого органического вещества на Земле составляет 150-200 млрд т. Две трети его образуется на суше, третья часть - в океане.

Практически вся чистая первичная продукция Земли служит для поддержки жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, гумусе почв и органических осадках водоемов. Питание людей большей частью обеспечивается сельскохозяйственными культурами, занимающими около 10 % площади суши. Годовой прирост культурных растений равен примерно 16\% всей продуктивности суши, большая часть которой приходится на леса.

Половина урожая идет непосредственно на питание людей, остальное - на корм домашним животным, используется в промышленности и теряется в отходах. Всего человек потребляет около 0,2\% первичной продукции Земли. Ресурсы, имеющиеся на Земле, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно только 50\% потребностей современного населения Земли.

Следовательно, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством.

Изменения в экосистемах – 2 типа:

1. Циклические – отражают суточную, сезонную, многолетнюю периодичность (смена времени года, суток, и т. д.);

2. Поступательные – приводят к смене одного биоценоза другим, господствующим. Чаще всего данные изменения носят отрицательный характер (пример: постепенное загрязнение водоемов в результате мелиорации, что ведет к изменениям почвы – водоем высыхает и происходит смена биоценоза).

Последовательная смена одного биоценоза другим называется экологической сукцессией – неполным экологическим круговоротом в биоценозе.

Продуктивность экосистемы тесно связана с потоком энергии, проходящим через нее. Органическое вещество, создаваемое продуцентами в процессе фотосинтеза, называется первичной продукцией экосистем. Она выражается в калориях.

Калория – масса органического вещества, создаваемая продуцентами в единицу времени на единицу площади. Чем больше первичной продукции, тем продуктивнее экосистема.

В доисторическое время человек являлся частью биосферы. Его взаимодействие происходило через нее. Постепенно происходило выделение человека из природной среды и становление особой системы – социума. Для этой системы характерно наличие общественных формаций, образование общества, общественных отношений, общественного регулирования и хозяйственной деятельности.

В настоящее время человек занимает двойственное положение.

С одной стороны, человек является биологическим объектом и участвует в круговороте веществ; с другой стороны, человек формирует социальную систему, в которой есть свои культурные, бытовые, технические и другие а. То есть в жизнедеятельность человека по мере развития входит теория Вернадского.

Она заключается в том, что по мере развития человечества в определенное время должна наступить эпоха человеческого разума, то есть человек, руководствуясь знаниями, должен преобразовать биосферу с разумной точки зрения. По Вернадскому человек – это один из видов животного царства со сложной социальной организацией и трудовой деятельностью. Человек не может существовать в естественных условиях, как было раньше, поэтому он взаимодействует с окружающей средой и воздействует на нее.

Поэтому человек зависит от множества факт: например, на жизнедеятельность человека влияют холод, жара, засуха, суховей; на наследственность человека влияют миграции, мутации, естественный отбор. Рост популяции человека ограничен природными ресурсами, а также социально-экономическими и генетическими процессами.

Главная задача человечества – принять принцип экологического империтива, который означает, что выживание человека возможно только в том случае, если сохраняется жизнь на Земле.

Жизнь человека тесно связана с его здоровьем. Здоровье – это не только отсутствие болезней, а состояние полного физического, психологического и социального благополучия. Здоровье зависит от устойчивости энергопотенциала: чем больше мощность и емкость реализуемого энергопотенциала, а также эффективность его расходования, тем выше уровень здоровья.

Окружающая среда человека состоит из двух систем: природной и техногенной.

Она для человека – это комплекс условий, которые влияют на жизнедеятельность человека. Природная среда человека – это атмосфера, гидросфера, литосфера. Техногенная среда – здания, сооружения, заводы, фабрики, города, транспортные, строительные системы, и т. д.

Для нормальной жизнедеятельности человеческого организма необходимо удовлетворение потребностей, извлекаемое из окружающей среды. Все потребности человека удовлетворяются природными ресурсами.

Природные ресурсы – объекты и явления, которые человек использует для создания материальных благ, обеспечивающих не только поддержание своего существования, но и постепенное улучшение качества жизни. К природным объектам и явлениями относят тела и явления, используемые человеком как ресурсы.

Все природные ресурсы делятся по источникам происхождения на:

1. Биологические – все живые средообразующие компоненты биосферы (продуценты, редуценты, косументы).

2. Минеральные – все пригодные для употребления естественные составляющие литосферы, которые используются в хозяйстве как минеральное сырье или источник энергии.

3. Энергетические – совокупность энергии солнца и космоса (атомные энергоресурсы и т. п.).

По использованию природные ресурсы делят на:

1. Земельный фонд – все земли в пределах страны и мира (всего составляет 13, 4 млрд. гектар). З. ф. делится на категории:

А) сельскохозяйственного значения,

Б) земли населенных пунктов,

В) земли промышленности,

Г) земли транспорта,

Д) горные земли.

2. Лесной фонд – часть земельного фонда, на которой произрастает или может произрастать лес.

3. Водные ресурсы – количество подземных и поверхностных вод.

4. Полезные ископаемые – природное скопление минералов в земной коре.

Природные ресурсы делятся по исчерпаемости:

1. Неисчерпаемые – солнечная энергия (и вызванные ею природные силы),

2. Исчерпаемые.

Основным фактором, лимитирующим использование природные ресурсов человеком, является их ограниченность и исчерпаемость.

Продуктивность экосистемы - это накопление экосистемой органического вещества в процессе ее жизнедеятельности. Продуктивность экосистемы измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади.

Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией , а прирост за единицу времени массы консументов - вторичной продукцией .

Первичная продукция подразделяется на два уровня - валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

Растения тратят на дыхание от 40 до 70% валовой продукции. Меньше всего ее тратят планктонные водоросли - около 40% от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной продукции, т.е. используют ранее созданную продукцию.

Рассчитывают вторичную продукцию отдельно для каждого трофического уровня , так как она формируется за счет энергии, поступающей с предшествующего уровня.

Все живые компоненты экосистемы - продуценты, консументы и редуценты - составляют общую биомассу (живой вес) сообщества в целом или его отдельных частей, тех или иных групп организмов. Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах - в калориях, джоулях и т.п, что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

По величине биологической продуктивности экосистемы подразделяют на 4 класса:

  1. экосистемы очень высокой продуктивности — >2 кг/м 2 в год (тропические леса, коралловые рифы);
  2. экосистемы высокой продуктивности – 1-2 кг/м 2 в год (липово-дубовые леса, прибрежные заросли рогоза или тростника на озерах, посевы кукурузы и многолетних трав при орошении и внесении высоких доз удобрений);
  3. экосистемы умеренной продуктивности — 0,25-1 кг/м 2 в год (сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера);
  4. экосистемы низкой продуктивности — < 0,25 кг/м 2 в год (пустыни, тундра, горные степи, большая часть морских экосистем). Средняя биологическая продуктивность экосистем на планете равна 0,3 кг/м 2 в год.

Биологическая продуктивность экосистем.

Источник: методичка «Остров», лекция 4.

Ответ:

Автотрофные экосистемы, используя энергию Солнца, углекислый газ и минеральные вещества, производят различные органические вещества – древесину, листья, плоды, т.е. живую биомассу. Производительность экосистемы измеряется количеством органического вещества, которое создано за единицу времени на единице площади, и называется биологической продуктивностью.

Общая годовая продукция сухого органического вещества на планете составляет 150-200 миллиардов тонн. В океане образуется 1/3 этой продукции, на суше – 2/3. Почти вся чистая первичная продукция планеты служит для поддержания жизни гетеротрофов. Неиспользуемая консументами энергия запасается в их телах, в органических осадках водоемов, в гумусе почвы.

Различают первичную, валовую, чистую, вторичную продукцию сообществ.

Биологическая продукция измеряется количеством сухой или сырой массы органического вещества (растений), производимого в единицу времени на единицу площади (т/га в год, г/м 2 в день) или в энергетических единицах – эквивалентном числе джоулей.

Растения создают первичную продукцию , вторичная продукция сообществ (создается гетеротрофами) – прирост за единицу времени массы консументов.. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего уровня. Гетеротрофы живут за счет чистой первичной продукции сообщества.

Первичная продукция подразделяется на валовую первичную продукцию – количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза, то есть общая продукция фотосинтеза (расходуется на процессы жизнедеятельности, выделения, рост биомассы органического вещества), и чистую первичную продукцию – величина прироста растений (биомассы органического вещества).

При переходе с одного трофического уровня на другой, 90% энергии теряется. Поэтому количество вторичной биологической продукции в 20-50 раз меньше, чем первичной.

Продуктивность основных экосистем планеты показана в табл. 2 - 4.

Под биомассой понимают массу организма, организмов определенной группы, всего сообщества в целом или экосистемы. Под биомассой понимают всю живую органическую массу, которая содержится в экосистеме или ее элементах вне зависимости от того, за какой период она образовалась и накопилась. Различают фитомассу (массу живых растений), зоомассу, микробную массу, массу мертвого вещества. Также различают биомассу надземную, подземную, водную.

Таблица 2

Продуктивность экологических систем за год

  • 6.Антропогенное влияние на круговороты основных биогенных элементов в биосфере.
  • 7.Основные этапы изменения взаимоотношений человека с природой в ходе его исторического развития.
  • 8.Проблема глобального изменения климата на планете: возможные причины, последствия, пути решения.
  • 9.Опустынивание земель как глобальная экологическая проблема.
  • 10.Проблема обеспечения пресной водой как глобальная экологическая проблема.
  • 11.Проблема деградации почв: причины и последствия в глобальном масштабе.
  • 12.Экологическая оценка глобальной демографической ситуации.
  • 13.Глобальная экологическая проблема загрязнения Мирового океана. В чем причины и экологическая опасность этого процесса?
  • 14.Проблема сокращения биологического разнообразия: причины, экологические последствия, возможные пути решения проблемы.
  • 15.Экологические факторы: понятие и классификация. Основные механизмы действия экологических факторов на живые организмы.
  • 16.Адаптация: понятие адаптации, ее экологическая роль.
  • 17.Основные закономерности действия экологических факторов на живые организмы.
  • 18.Типы биотических взаимоотношений в природе, их экологическая роль.
  • 19.Понятия – стенобионтность и эврибионтность.
  • 20.Понятие популяции, ее биологический и экологический смысл.
  • 21.Численность, плотность, прирост популяции. Регуляция численности.
  • 22.Рождаемость и смертность в популяции: теоретическая и экологическая. Факторы их определяющие.
  • 23.Половая структура популяции и факторы ее определяющие.
  • 24.Возрастная структура популяции, основные типы популяций в зависимости от соотношения возрастов.
  • 25.Пространственная структура популяции и факторы ее определяющие.
  • 26.Этологическая (поведенческая) структура популяции и факторы ее определяющие.
  • 27.Экологические стратегии популяций (r- и k- жизненные стратегии). Их экологический смысл.
  • 28.Выживаемость и кривые выживания организмов в популяции, экологический смысл кривых выживания.
  • 29. Кривые роста популяций, экологическая значимость каждой из стадий роста.
  • 30.Понятие экосистемы, ее основные компоненты, типы экосистем.
  • 31. Пирамиды численности, биомассы, энергии в экосистемах, их экологический смысл.
  • 32.Поток энергии в экосистеме. Правило 10 % энергии.
  • 33.Поток вещества в экосистеме. Принципиальная разница потока вещества и энергии.
  • 34.Пищевые цепи. Эффект накопления токсикантов в пищевых цепях.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.
  • 36.Экологическая сукцессия, виды сукцессии.
  • 37.Продуценты, консументы и редуценты, их место в цепи питания и экологическая роль в экосистемах.
  • 38.Место и роль человека в экологической системе.
  • 39.Естественные и искусственные экосистемы, их экологическая устойчивость.
  • 40.Понятие загрязнения окружающей среды, естественное и антропогенное загрязнение.
  • 41.Основные виды антропогенного воздействия на окружающую среду: химическое, энергетическое, биологическое загрязнение среды.
  • 42.Экологическая ситуация и здоровье человека. Адаптации человека к действию экстремальных факторов среды.
  • 43.Нормирование качества окружающей среды: цели нормирования, виды нормативов.
  • 44. Принципы, лежащие в основе выработки пдк.
  • 45.Мониторинг среды обитания: понятие, цели и виды мониторинга.
  • 46. Экологические проблемы Дальнего Востока.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.

    Биологическая продукция – это количество биологического вещества, которое создано за единицу времени на единицу площади (гр/м², кг/м²).

    Биологическая продукция:

    Первичная (валовая); Вторичная (чистая).

    Валовая продукция - это та продукция, которую создают растения в процессе фотосинтеза.

    Чистая продукция – это та часть энергии, которая осталась после расходов на дыхание.

    Средняя продуктивность экосистем земли не превышает 0,3кг/м². При переходе энергии с одного уровня на другой, теряется примерно 90% энергии, поэтому вторичная продукция в 20-50 раз меньше, чем первичная

    Производительность экосистемы, измеряемая количеством органического вещества, которое создано за единицу времени на единицу площади, называется биологической продуктивностью. Единицы измерения продуктивности: г/м² в день, кг/м² в год, т/км ² в год.

    Различают первичную биологическую продукцию, которую создают продуценты, и вторичную биологическую продукцию, которую создают консументы и редуценты.

    Первичную продукцию подразделяют на: валовую – это общее количество созданного органического вещества, и чистую – это то, что осталось после расхода на дыхание и корневые выделения.

    По продуктивности экосистемы делятся на четыре класса:

    1.Экосистемы очень высокой биологической продуктивности – свыше 2 кг/м² в год. К ним относятся заросли тростника в дельтах Волги, Дона и Урала.

    2.Экосистемы высокой продуктивности – 1-2 кг/м² в год. Это липово-дубовые леса, заросли рогоза или тростника на озере, посевы кукурузы.

    3.Экосистемы средней биологической продуктивности – 0,25-1 кг/м² в год. К ним относятся сосновые, берёзовые леса, сенокосные луга, степи.

    4.Экосистемы низкой биологической продуктивности – менее 0,25 кг/м² в год.

    Это арктические пустыни, тундры, большая часть морских экосистем.

    Средняя продуктивность экосистем земли составляет 0,3 кг/м² в год, т. е. на Земле преобладают средние и низкопродуктивные экосистемы.

    При переходе с одного трофического уровня на другой теряется 90% энергии.

    Примером повышенной продуктивности на стыках экосистем мо­гут служить переходные экосистемы между лесом и полем («опу­шечный эффект»), а в водных средах - экосистемы, возникающие в эстуариях рек (места впадения их в моря, океаны и озера и т. п.).

    Этими же закономерностями во многом обусловливаются упо­минавшиеся выше локальные сгущения больших масс живого ве­щества (наиболее высокопродуктивные экосистемы).

    Обычно в океане выделяют следующие сгущения жизни:

    1. Прибрежные. Они располагаются на контакте водной и наземно-воздушной среды. Особенно высокопродуктивны экосистемы эстуариев. Протяженность этих сгущений тем значительнее, чем больше вынос реками органических и минеральных веществ с суши.

    2. Коралловые рифы. Высокая продуктивность этих экосистем связана прежде всего с благоприятным температурным режимом, фильтрационным типом питания многих организмов, видовым бо­гатством сообществ, симбиотическими связями и другими факто­рами.

    3. Саргассовые сгущения. Создаются большими массами плавающих водорослей, чаще всего саргассовых (в Саргассовом море) и филлофорных (в Черном море).

    4. Апвеллинговые. Эти сгущения приурочены к районам океана, где имеет место восходя­щее движение водных масс от дна к поверхности (апвеллинг). Они несут много донных органических и минеральных отложений и в результате активного перемешивания хорошо обеспечены кисло­родом. Эти высокопродуктивные экосистемы являются одним из основных районов промысла рыб и других морепродуктов.

    5. Рифтовые глубоководные (абиссальные) сгущения. Эти экосистемы были открыты только в 70-х годах настоящего столетия. Они уникальны по своей природе: существуют на больших глубинах (2-3 тыс. метров). Первичная продукция в них образуется только в результате процессов хемосинтеза за счет высвобождения энергии из сернистых соединений, поступающих из разломов дна (рифтов). Высокая продуктивность здесь обязана прежде всего благо­приятным температурным условиям, поскольку разломы одновременно являются очагами выхода из недр подогретых (термальных) вод. Это единственные экосистемы, не использующие солнечную энергию. Они живут за счет энергии недр Земли.

    На суше к наиболее высокопродуктивным экосистемам (сгущениям живого вещества) относят: 1) экосистемы берегов морей и океанов в районах, хорошо обеспеченных теплом; 2) экосистемы пойм, периодически заливаемые водами рек, которые откладывают ил, а вместе с ним органические и биогенные вещества, 3) экосистемы небольших внутренних водоемов, бога­тые питательными веществами, а также 4) экосистемы тро­пических лесов. Продуктивность других экосистем видна из табл.3. Выше мы уже отмечали, что человек должен стремиться сохранить высокопродуктивные экосистемы - этот мощнейший каркас биосферы. Его разрушение связано с наиболее значительными отрицательными последствиями для всей биосферы.

    Что касается вторичной (животной) продукции, то она заметно выше в океане, чем в наземных экосистемах. Это связано с тем, что на суше в звено консументов (травоядных) в среднем включается лишь около 10% первичной продукции, а в океане - до 50%. Поэтому, несмотря на более низкую первичную продуктивность океана, чем суши, по массе вторичной продукции эти экосистемы примерно равны.

    В наземных экосистемах основную продукцию (до 50%) и особенно биомассу (около 90%) дают лесные экосистемы. Вместе с тем основная масса этой продукции поступает сразу в звено деструкторов и редуцентов. Для таких экосистем характерно преобладание детритных (за счет мертвого органического вещества) цепей питания. В травянистых экосистемах (луга, степи, прерии, саванны), как и в океане, значительно большая часть первичной продукции прижизненно отчуждается фитофагами (травоядными животными). Такие цепи носят название пастбищных или цепей выеданния.