Остроградского гаусса поверхностный интеграл. Квадр формулы гаусса

К.Ф. Гаусс (1777–1855) выдающийся немецкий математик, астроном и физик в 1839г. предложил теорему, которая устанавливает связь потока вектора напряженности электрического поля череззамкнутую поверхность со значением зарядаq , находящегося внутри этой поверхности.Эта теорема выведена математически для векторного поля любой природы русским математиком М.В. Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю – К.Гауссом.

Теорема Остроградского – Гаусса (теорема Гаусса): поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на :

.

Докажем эту теорему. Пусть поле создается точечным зарядом q . Окружим заряд замкнутой поверхностьюS произвольной формы. Разобьем замкнутую поверхность на элементарные площадкиdS , к каждой из которых проведем вектор нормали.

Элементарный поток вектора напряженности через площадкуdS (рис. 2.8) определится соотношением:

где
–проекция
на направление нормали. Тогда
, где
- элементарный телесный угол, под которым элемент
виден из места положения заряда. Вычислим поток вектора напряженности через замкнутую поверхностьS от точечного зарядаq , находящегося внутри этой поверхности.

,

так как
, то

.

Как видно, поток вектора напряженности выходящий из поверхности не зависит от формы поверхности, охватывающей заряд и пропорционален величине заряда.

Если заряд находится вне замкнутой поверхности, то суммарный поток через любые элементарные площадки dS 1 иdS 2 , находящиеся внутри телесного углаd Ω(рис. 2.9) равен сумме потоков напряженности выходящего из этой поверхности (положительный поток) и входящего в нее (отрицательный поток).

Тогда , следовательно, поток напряженности электрического поля через любую поверхностьS , не охватывающую заряды равен нулю, т.е.Ф Е =0.

Пусть внутри замкнутой поверхности имеется зарядов, тогда алгебраическим суммированием (согласно принципу суперпозиции) находим, что общий поток вектора напряженности через замкнутую поверхность равен
.

Теорема доказана.

Таким образом теорему Гаусса можно сформулировать следующим образом: поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на :

(1),

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью , то теорема Гаусса имеет вид:

(2)

где интеграл справа берется по объему V, охватываемому поверхностьюS .

Необходимо обратить внимание на следующее обстоятельство: в то время как само поле зависит от конфигурации всех зарядов, поток
сквозь произвольную замкнутую поверхность определяется только алгебраической суммой зарядов внутри поверхностиS . Это значит, чтоесли передвинуть заряды внутри замкнутой поверхности , тоизменится всюду , и на поверхностиS , апоток вектора через эту поверхность останется прежним .

Таким образом, чтобы рассчитать поле, созданное какой-то конфигурацией зарядов в данной точке, нужно через эту точку провести замкнутую поверхность произвольной формы и рассчитать поток вектора напряженности через эту поверхность. Так как по т еореме Гаусса поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на , то, зная величину заряда, находящегося внутри замкнутой поверхности можно найти напряженность поля в интересующей нас точке пространства.

Рассмотрим примеры применения теоремы Гаусса.

И поэтому если вы зашли с поисковика, то, пожалуйста, начните с первой части, где мы подробно разобрали и решили важную задачу. А именно нашли поток векторного поля через замкнутую поверхность в направлении её внешней нормали:

В ходе длинного-длинного решения нами был получен ответ , что в рамках условной гидродинамической модели означает следующее: сколько жидкости в единицу времени поступило в пирамиду – столько из неё и вытекло.

Однако так бывает далеко не всегда, и на практике поток часто получается положительным или отрицательным. Задумаемся над содержательным смыслом этих результатов и для бОльшей наглядности рассмотрим не пирамиду, а кусок реки, ограниченный внешне-ориентированной поверхностью и поле скоростей этой реки в области .

Предположим, что поток через замкнутую поверхность оказался положителен: . Что это означает? Это означает, что за единицу времени из области жидкости вытекло БОЛЬШЕ, чем туда поступило. Следовательно, в области где-то есть источник(и) поля. Это может быть, например, приток реки, который увеличивает её скорость, или просто кто-то вылил ведро воды.

Отрицательное значение потока через замкнутую поверхность говорит нам о том, что за единицу времени область «поглотила» жидкость (зашло больше, чем вышло). И причина тому – сток(и) поля в данной области. Например, подземная пещера или насос, выкачивающий воду.

И, наконец, при нулевом потоке возможны две ситуации: либо в области нет источников и стоков , либо они компенсируют друг друга.

К слову, взаимная компенсация чаще всего имеет место и в первых двух случаях. Так, например, если , то это ещё не значит, что стоков нет. Возможно, источники оказались мощнее, и по итогу за единицу времени через поверхность выплеснулось 5 единиц жидкости.

И поэтому появляется интерес выяснить, есть ли у векторного поля источники / стоки, и если есть – то где. И в этом нам поможет акваланг хитрая наука под названием математический анализ.

Рассмотрим некоторую точку области и её бесконечно малую замкнутую окрестность (например, сферу или куб) . Поток векторного поля через поверхность этой окрестности во внешнем направлении называется дивергенцией поля в данной точке , и обозначается через . И вот тут-то уж никуда не деться от разоблачения:

– если , то у векторного поля есть источник в данной точке (её бесконечно малой окрестности) ;

– если , то сток ;

– и если , то в точке нет источников и стоков.

Далее. Как найти эту самую дивергенцию? Если в каждой точке области определено векторное поле и его компоненты дифференцируемы в этих точках, то скалярная функция дивергенции имеет следующий вид:

или, как записывают короче:

Таким образом, в области векторному полю ставится в соответствие скалярное поле его дивергенции.

И здесь сразу можно выделить особый случай. Поле, дивергенция которого равна нулю ВО ВСЕХточках области, называется бездивергентным или соленоидальным . Это означает, что у него нет источников и стоков. В качестве примера часто приводят трубу-«бублик» с циркулирующей водой, которая никуда не исчезает, и новой воды там не появляется. Но ещё более показательный пример – это магнитное поле с его замкнутыми силовыми линиями , у которых нет начала и конца.

Хорошо. Функция позволяет нам вычислить дивергенцию в отдельно взятых точках, и возникает вопрос: а можно ли подсчитать суммарную дивергенцию по всему телу?

…вы когда-нибудь думали, что будете так рады тройным интегралам? =)

Вернёмся к эпичному Примеру 1 , где у нас получился нулевой поток через пирамиду, и вычислим дивергенцию векторного поля . Очевидно, что само поле и производные его компонент определены не только в пирамиде , но и вообще во всём пространстве:

Составим скалярную функцию дивергенции, или как чаще говорят – найдём дивергенцию:

Полученная функция каждой точке пространства ставит в соответствие ноль, значит векторное поле всюду соленоидально . По формуле Гаусса-Остроградского, поток векторного поля через внешнюю сторону пирамиды равен:

Примечание : т.к. поле бездивергентно во всём пространстве, то поток равен нулю и через любую замкнутую поверхность

Огорчаться, однако, не стОит, поскольку если уж от вас потребовали вычислить поток первым способом, то никуда не деться =) А требуют, между прочим, частенько.

И здесь ещё нужно подчеркнуть следующее: если вы вычислили поток через замкнутую поверхность, и у вас получился ноль, то это ещё не значит , что в области нет источников и стоков. Они могут и существовать, но компенсировать друг друга. И первый способ решения не даёт нам ответ на этот вопрос.

Поэтому решаем второй пример вторым способом:)

Пример 2

Проверить, будет ли векторное поле соленоидальным, и найти его поток через замкнутую поверхность по формуле Гаусса-Остроградского

Результаты должны совпасть. Обращаю внимание, что проверка поля на соленоидальность является неотъемлемой частью задания, и на этот вопрос нужно дать аргументированный письменной ответ. Примерный образец решения в конце урока, и что приятно – задачу можно оформить в минималистичном стиле, без лишних обозначений и даже без записи самой формулы.

Ну а теперь я расскажу вам, а точнее напомню универсальный метод нахождения нормальных векторов поверхности :

Пример 3

Дано векторное поле и замкнутая поверхность . Вычислить поток векторного поля через данную поверхность в направлении внешней нормали:

а) непосредственно;
б) по формуле Гаусса-Остроградского.

Распространённая формулировка, позволяющая ещё раз осознать всю ценность формулы =)

Решение : чертёж здесь прост:

но вот решение – «труба» =)

а) Найдём поток векторного поля через полную поверхность цилиндра в направлении внешней нормали напрямую. В силу аддитивности поверхностного интеграла:

– боковая поверхность цилиндра ;
– его нижнее основание (единичный круг в плоскости );
– и верхнее основание (единичный круг в плоскости ).

1) Цилиндрическая поверхность параллельна оси и возникает вопрос, как найти её векторы нормали? Очень просто. Вектор нормали к поверхности в точке задаётся следующим образом:

В данном случае:

Таким образом, мы получаем целую функцию нормальных векторов для различных точек цилиндра:

Но нам нужны единичные векторы. Они разыскиваются стандартно:

Контроль:

Да, убедимся, что они «смотрят» вовне. Для этого можно взять несколько конкретных точек поверхности (проще всего в плоскости ) и посмотреть, какие векторы будут получаться. Так, например, для точки получаем:
– всё ОК. Собственно, этот вектор в качестве примера и изображён на чертеже. Самостоятельно проверьте какие-нибудь другие точки, и удостоверьтесь, что получаются векторы нужного направления.

и сведём решение к поверхностному интегралу 1-го рода:

В данном случае плоскость не годится для проецирования. Почему? Потому что цилиндрическая поверхность спроецируется в окружность нулевой площади и получится ноль. Но из боковой же поверхности торчат векторы поля, и через неё запросто может идти поток!

Поэтому в нашем распоряжении остаются две координатные плоскости, я выберу для проецирования более наглядную фронтальную плоскость . И тут возникает другая трудность – цилиндрическую поверхность , а значит, и полученный интеграл 1-го рода придётся разделить на 2 части:
, где:

– ближний к нам кусок цилиндра, а – дальний его кусок.

Проведём вычисления для первого интеграла:

Используем соответствующую формулу:
, где:

По формуле:

Проекция на плоскость очевидна:

Выберем следующий порядок обхода области:

При вычислении второго интеграла получится точно такой же результат:

Таким образом:

Это я привел длинное общее решение (на всякий случай), но на самом деле тут есть короткий и изящный путь – в сумму интегралов можно сразу подставить и :


и, согласно, геометрическому смыслу этих интегралов , данная сумма равна площади боковой поверхности цилиндра:

Знание – сила =)

2) Вычислим поток векторного поля через ориентированный единичный круг .

С нормалью и скалярным произведением всё просто:

а с поверхностным интегралом – ещё проще:
, поскольку

3) Третий интеграл начинается похоже:

Используем формулу , в данном случае:

Проекция (поверхности на плоскость ) представляет собой круг площади , и согласно геометрическому смыслу интеграла :

И, наконец, поток через всю поверхность:

Ответ :

Что, кстати, означает этот результат? Положительный поток через внешнюю поверхность означает, что внутри цилиндра есть источники поля. Иначе, откуда бы там взяться единицам жидкости, которые вытекли наружу? (за единицу времени)

б) Решим задачу по формуле Гаусса- Остроградского:

И, прежде всего, тут нужно убедиться, что компоненты и их производные определены во всех точках тела. В противном случае формулу применять нельзя! Должен предупредить, что это не пустая формальность – на практике встречаются поля с корнями и логарифмами, и вот там могут быть проблемы.

Составим функцию дивергенции:
, которую очень полезно проанализировать:

При увеличении «зет» от 0 до 2 дивергенция строго положительна и нарастает. Это означает то, что, во-первых, внутри цилиндра находятся исключительно источники поля. И, во-вторых, эти источники усиливаются, т.е. текущая снизу вверх жидкость начинает разгоняться. Поэтому сразу можно сказать, что поток через внешнюю поверхность будет положительным. В чём мы сейчас ещё раз убедимся аналитически:

Поскольку проекция тела на плоскость представляет собой круг единичного радиуса (чертить уж не буду), то удобно перейти к цилиндрической системе координат :

Таким образом, с помощью «ро», «тета» и «фи» можно однозначно определить любую точку пространства.

Где используется сферическая система координат? Ну, конечно же, в астрономии. Но своё скромное применения она нашла и при

1. В основе теории векторного поля лежат две интегральные формулы. Первая из них принадлежит русскому математику и механику Михаилу Васильевичу Остроградскому (1801-1861). Эта формула была открыта Остроградским в 1826 г. и опубликована в 1838 г. в связи с его исследованиями в области вариациоиного исчисления,

относящимися к проблеме максимумов и минимумов кратных интегралов. При этом получил он ее в гораздо более общем виде, чем тот, в котором она применяется в теории векторного поля.

Вторая интегральная формула теории поля была найдена английским гидромехаником Стоксом (1819-1903) в 1854 г.

2. Преобразование Остроградского.

Это преобразование решает задачу сведения интеграла любой кратности к интегралу меньшей кратности. Для целей теории поля мы разберем эту задачу лишь применительно к тройному интегралу.

Мы знаем, что для вычисления тройного интеграла следует сначала частным образом проинтегрировать подинтегральную функцию по одному из аргументов, а затем вычислить двойной интеграл от полученного результата.

Для сведения тройного интеграла, распространенного по произвольной области, к двойному интегралу нужно, чтобы первое интегрирование было выполнено в общем виде. для этого нужно, чтобы подинтегральная функция была частной производной от некоторой функции по одному из аргументов.

Итак, рассмотрим, например, интеграл

причем пока будем предполагать, что область интеграции (V) нормальная, т. е. пересекающая область вертикаль имеет с пей только один общий отрезок (рис. 162). Кроме того, будем предполагать, что непрерывна в области (V), включая ее границу.

По правилу вычисления тройного интеграла мы получим

Следовательно,

Пусть соответственно нижняя и верхняя части поверхности ограничивающей область интеграции (V). Нормаль к поверхности мы направим наружу но отношению к области Тогда, но определению поверхностного интеграла (гл. XIII, § 3), мы получим

В силу этого формула (15.1) для исходного тройного интеграла примет вид

Объединив поверхностные интегралы, мы получим формулу преобразования тройного интеграла в двойной, которую и называют преобразованием Остроградского:

«Колечко» на знаке поверхностного интеграла напоминает о замкнутости поверхности интеграции

Замечание 1. Если область не является нормальной, то мы разобьем эту область на нормальные области Для каждой из частичных нормальных областей выведенная формула справедлива:

Сложив эти равенства, мы получим

В получепной сумме взаимно уничтожатся поверхностные интегралы по всем тем частям поверхностей по которым соприкасаются друг с другом частичные области и останутся лишь поверхностные интегралы по тем частям которые располагаются на наружной границе Поэтому мы получим

Итак, формула преобразования Остроградского верна для произвольной области

Замечание 2. Аналогичные формулы мы получим, если под знаком тройного интеграла будет стоять частная производная по х или по у:

3. Формула Остроградского.

Рассмотрим поток поля И через замкнутую поверхность ограничивающую трехмерную область (рис. 163). По формуле (14.18) этот поток равен

Рассмотрим поле точечного заряда $q$, найдем поток вектора напряжённости ($\overrightarrow{E}$) через замкнутую поверхность $S$. Будем считать, что заряд находится внутри поверхности. Поток вектора напряженности через любую поверхность равен количеству линий вектора напряженности, которые выходят наружу (начинаются на заряде, если $q>0$) или количеству линий $\overrightarrow{E}$входящих внутрь, если $q \[Ф_E=\frac{q}{{\varepsilon }_0}\ \left(1\right),\]

где знак потока совпадает со знаком заряда.

Теорема Остроградского - Гаусса в интегральной форме

Допустим, что внутри поверхности S находится N точечных зарядов, величины $q_1,q_2,\dots q_N.$ Из принципа суперпозиции мы знаем, что результирующая напряженность поля всех N зарядов может быть найдена как сумма напряженностей полей, которые создаются каждым из зарядов, то есть:

Следовательно, для потока системы точечных зарядов можно записать:

Используем формулу (1), получаем, что:

\[Ф_E=\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\sum\limits^N_{i=1}{q_i\ }\left(4\right).\]

Уравнение (4) значит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, которые находятся внутри данной поверхности, деленой на электрическую постоянную. Это теорема Остроградского - Гаусса в интегральной форме. Данная теорема является следствием закона Кулона. Значение данной теоремы заключается в том, что она позволяет довольно просто вычислять электрические поля при различных распределениях зарядов.

Как следствие теоремы Остроградского - Гаусса надо сказать, что поток вектора напряженности ($Ф_E$) через замкнутую поверхность в случае при котором заряды находятся вне данной поверхности, равен нулю.

В том случае, когда можно не учитывать дискретность зарядов используют понятие объемной плотности заряда ($\rho $), если заряд распределен по объему. Она определена как:

\[\rho =\frac{dq}{dV}\left(5\right),\]

где $dq$ - заряд, который можно считать точечным, $dV$ -- малый объем. (Относительно $dV$ необходимо сделать следующее замечание. Данный объем мал настолько, чтобы плотность заряда в нем можно было считать постоянной, но достаточно велик, чтобы не начала проявляться дискретность заряда). Суммарный заряд, который находится в полости, можно найти как:

\[\sum\limits^N_{i=1}{q_i\ }=\int\limits_V{\rho dV}\left(6\right).\]

В таком случае формулу (4) перепишем в виде:

\[\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(7\right).\]

Теорема Остроградского - Гаусса в дифференциальной форме

Используя формулу Остроградского - Гаусса для любого поля векторной природы, с помощью которой осуществляется переход от интегрирования по замкнутой поверхности к интегрированию по объему:

\[\oint\limits_S{\overrightarrow{a}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{a}dV\ \left(8\right),\]

где $\overrightarrow{a}-$вектор поля (в нашем случае это $\overrightarrow{E}$), $div\overrightarrow{a}=\overrightarrow{\nabla }\overrightarrow{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}$ -- дивергенция вектора $\overrightarrow{a}$ в точке с координатами (x,y,z), которая отображает векторное поле на скалярное. $\overrightarrow{\nabla }=\frac{\partial }{\partial x}\overrightarrow{i}+\frac{\partial }{\partial y}\overrightarrow{j}+\frac{\partial }{\partial z}\overrightarrow{k}$ - оператор набла. (В нашем случае будет $div\overrightarrow{E}=\overrightarrow{\nabla }\overrightarrow{E}=\frac{\partial E_x}{\partial x}+\frac{\partial E_y}{\partial y}+\frac{\partial E_z}{\partial z}$) -- дивергенция вектора напряженности. Следуя вышесказанному, формулу (6) перепишем как:

\[\oint\limits_S{\overrightarrow{E}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{E}dV=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(9\right).\]

Равенства в уравнении (9) выполняются для любого объема, а это осуществимо только, если функции, которые находятся в подынтегральных выражениях, равны в каждой токе пространства, то есть мы можем записать, что:

Выражение (10) -- теорема Остроградского - Гаусса в дифференциальной форме. Трактовка ее такова: заряды являются источниками электрического поля. Если $div\overrightarrow{E}>0$, то в этих точках поля (заряды положительные) мы имеем источники поля, если $div\overrightarrow{E}

Задание: Заряд равномерно распределен по объему, в этом объеме выделена кубическая поверхность, со стороной b. Она вписана в сферу. Найдите отношение потоков вектора напряженности сквозь эти поверхности.

Согласно теореме Гаусса поток ($Ф_E$) вектора напряженности $\overrightarrow{E}$ через замкнутую поверхность при равномерном распределении заряда по объему равен:

\[Ф_E=\frac{1}{{\varepsilon }_0}Q=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV=\frac{\rho }{{\varepsilon }_0}\int\limits_V{dV}=\frac{\rho V}{{\varepsilon }_0}}\left(1.1\right).\]

Следовательно, нам необходимо определить объемы куба и шара, если шар описать вокруг этого куба. Для начала, объем куба ($V_k$) если сторона его b равен:

Найдем объем шара ($V_{sh}$) по формуле:

где $D$ -- диаметр шара и (так как шар описан вокруг куба), главная диагональ куба. Следовательно, нам необходимо выразить диагональ куба через его сторону. Это легко сделать, если использовать теорему Пифагора. Для вычисления диагонали куба, например, (1,5) нам сначала необходимо найти диагональ квадрата (нижнего основания куба) (1,6). Длина диагонали (1,6) равна:

В таком случает длина диагонали (1,5) равна:

\[{D=D}_{15}=\sqrt{b^2+{(\sqrt{b^2+b^2\ \ \ })}^2}=b\sqrt{3}\ \left(1.5\right).\]

Подставим в (1.3) найденный диаметр шара, получим:

Теперь мы можем найти потоки вектора напряженности через поверхность куба, она равна:

\[Ф_{Ek}=\frac{\rho V_k}{{\varepsilon }_0}=\frac{\rho b^3}{{\varepsilon }_0}\left(1.7\right),\]

через поверхность шара:

\[Ф_{Esh}=\frac{\rho V_{sh}}{{\varepsilon }_0}=\frac{\rho }{{\varepsilon }_0}\frac{\sqrt{3}}{2}\pi b^3\ \left(1.8\right).\]

Найдем отношение $\frac{Ф_{Esh}}{Ф_{Ek}}$:

\[\frac{Ф_{Esh}}{Ф_{Ek}}=\frac{\frac{с}{\varepsilon_0}\frac{\sqrt{3}}{2} \pi b^3}{\frac{сb^3}{\varepsilon_0}}=\frac{\pi}{2}\sqrt{3}\ \approx 2,7\left(1.9\right).\]

Ответ: Поток через поверхность шара в 2,7 раза больше.

Задание: Докажите, что заряд проводника располагается на его поверхности.

Используем для доказательства теорему Гаусса. Выделим в проводнике замкнутую поверхность произвольной формы около поверхности проводника (рис.2).

Допустим, что заряды внутри проводника есть, запишем с теорему Остроградского - Гаусса для дивергенции поля имеем для любой точки поверхности S:

где $\rho -плотность\ $внутреннего заряда. Однако поля внутри проводника нет, то есть $\overrightarrow{E}=0$, следовательно, $div\overrightarrow{E}=0\to \rho =0$. Теорема Остроградского - Гаусса в дифференциальной форме локальна, то есть, она записана для точки поля, мы специальным образом точку не выбирали, следовательно, плотность заряда равна нулю в любой точке поля внутри проводника.

Численное интегрирование определённых интегралов

с высокой точностью. Квадратурные формулы

типа Гаусса.

Как было отмечено на предыдущей лекции численное вычисление определённых интегралов сводится к вычислению квадратурной суммы вида

где – любой конечный или бесконечный отрезок числовой оси; р(х) – весовая функция, учитывающая особенности поведения подынтегральной функции; f(x) – произвольная гладкая функция; A k – квадратурные коэффициенты, x k – квадратурные узлы..

Квадратурная сумма однозначно определяется 2n+1 параметром: n значений А к, n – значений х k и сам параметр n – число разбиений отрезка . Чтобы получить более точный результат при вычислениях с помощью простейших квадратурных формул, следует дробить отрезок интегрирования на достаточно большое число интервалов. (Это наблюдалось, при рассмотрении простейших квадратурных формул трапеций и Симпсона)

Однако возможны и другие способы повышения точности квадратурных формул. Достижение точности можно добиться за счёт правильного или оптимального выбора узлов x k и квадратурных коэффициентов A k .

Если по условию задачи узлы можно выбирать произвольным образом и функция f(x) обладает высокой степенью гладкости, то для вычисления определённых интегралов применяют квадратурные формулы типа Гаусса.

Формула Гаусса.

Пусть необходимо вычислить определённый интеграл вида:

где f(x) – имеет высокую степень гладкости на интервале [-1; 1].

Данную задачу можно решить с помощью квадратурной формулы

.

Гауссом было доказано, что для достижения наивысшей точности результата интегрирования необходимо в качестве узлов квадратурной формулы взять корни многочлена Лежандра

.

Коэффициенты А к при этом вычисляются по формулам

.

Рассмотрим применение этих формул.

При n=1 имеем одну узловую точку внутри отрезка [-1; 1], которая определяется из уравнения

Т.к.
, то узловую точку находим из уравнения
Отсюда

Т.к.
,то
.

При n=2 получаем две узловые точки внутри отрезка [-1; 1], которые определяется из уравнения

Преобразовав его получаем

.

Его решение
. Т.к.
,

то общая формула для вычисления квадратурных коэффициентов приобретёт вид
. Подставляя узловые точки, получаем:

при
;

при
.

Для различного числа разбиения отрезка [-1; 1] можно получить таблицу узлов x k и коэффициентов A k . (Как это сделать будет показано на практическом занятии)

К-во точек разбиения

Узлы квадратурной формы

Коэффициенты квадратурной формы

В случае произвольного интервала интегрирования (когда он не совпадает с отрезком [-1; 1]) предварительно делают замену переменной

.

А уже к преобразованному интегралу можно применить формулу Гаусса. Получим

,

где

–узлы квадратурной формулы Гаусса;

–соответствующие коэффициенты;

–остаток квадратуры.

Остаток квадратурной формулы Гаусса определяется по формуле

где

Пример. По формуле Гаусса вычислить интеграл I=(приn=5).

Т.к. интервал интегрирования не совпадает с отрезком [-1; 1], применим

.