Основы землеведения. Общее землеведение - Мильков Ф.Н

Курс предназначен для желающих получить начальные сведения о том, чем занимается географическая наука в целом.

Землеведение - раздел науки естествознания, в которую входят геология и биология. Изучает наиболее общие закономерности строения и развития географической оболочки Земли, её пространственно-временную организацию, круговорот вещества и энергии и т. д.

Данный термин был введен немецким географом К. Риттером в первой половине XIX века.

Введение, определение предмета

Землеведение - одна из фундаментальных географических наук. Задачей общего землеведения является познание географической оболочки как динамической структуры, ее пространственная дифференциация. Следует понимать, что по сути своей землеведение это прелюдия к «настоящей» географии. Учение о географической оболочке - та призма, которая позволяет определить принадлежность тех или иных предметов и явлений к сфере интересов географии. Так, составные части географической оболочки изучаются отраслевыми науками, в частности земная кора - геологией, однако как составная часть географической оболочки она является предметом изучения землеведения; итак, землеведение - наука о наиболее общих закономерностях географической оболочки. Общее землеведение тесно связано с ландшафтоведением, поскольку предметом изучения ландшафтоведения является ландшафтная сфера Земли - наиболее активная часть географической оболочки, состоящая из природно-территориальных комплексов (ПТК) различного ранга. Объединение идей землеведения и ландшафтоведения возможно при применении регионального подхода, ввиду избранного масштаба (не отдельный ландшафт, но и не вся географическая оболочка) - это нашло отражение в появлении физико-географического страноведения (к примеру, С. Н. Рязанцев «Киргизия» (1946 г.), А. Боли «Северная Америка» (1948 г.) и др.).

Литература по курсу

  1. Бобков В. А., Селиверстов Ю. П., Черванев И. Г. Общее землеведение. С.Петербург, 1998.
  2. Геренчук К. И., Боков В. А., Черванев И. Г. Общее землеведение. М.: Высшая школа, 1984.
  3. Ермолаев М. М. Введение в физическую географию. Л.: Изд. ЛГУ, 1975.
  4. Калесник С. В. Общие географические закономерности Земли. М.: Мысль, 1970.
  5. Калесник С. В. Основы общего землеведения. М.: Учпедгиз, 1955.
  6. Мильков Ф. Н. Общее землеведение. М.: Высшая школа, 1990.
  7. Шубаев Л. П. Общее землеведение. М.: Высшая школа, 1977.

Происхождение Земли и Солнечной системы

Солнечная система

Согласно современным научным представлениям, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака. Большая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды - Солнца. Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты, их спутники, астероиды и другие малые тела Солнечной системы.

Земля сформировалась около 4,54 млрд лет назад из протопланетарного диска пыли и газа, оставшегося после формирования Солнца.

Ядро планеты стремительно сжималось. Из-за ядерных реакций и распада радиоактивных элементов в недрах Земли выделялось так много тепла, что образующие её горные породы плавились: более легкие вещества, богатые кремнием отделились в земном ядре от более плотных железа и никеля и образовали первую земную кору. Спустя примерно миллиард лет, когда Земля существенно охладилась, земная кора затвердела и превратилась в прочную внешнюю оболочку нашей планеты, состоящую из твердых горных пород.

Остывая, Земля выбрасывала из своего ядра множество различных газов. В состав первичной атмосферы входили пары воды, метан, аммиак, углекислый газ, водород и инертные газы. В состав вторичной атмосферы - метан, аммиак, углекислый газ и водород. Часть водяных паров из атмосферы конденсировалась при охлаждении, и на Земле начали возникать океаны.

Предположительно 4 млрд лет назад, интенсивные химические реакции привели к возникновению самовоспроизводящихся молекул, и в течение полумиллиарда лет появился первый живой организм - клетка. Развитие фотосинтеза позволило живым организмам напрямую накапливать солнечную энергию. В результате в атмосфере стал накапливаться кислород, а в верхних слоях - формироваться озоновый слой. Слияние мелких клеток с более крупными привело к развитию сложных клеток. Настоящие многоклеточные организмы, состоящие из группы клеток, стали всё больше приспосабливаться к окружающим условиям.

Поверхность планеты постоянно менялась континенты появлялись и разрушались, перемещались, сталкивались и расходились. Последний суперконтинент распался 180 миллионов лет назад.

Общие статистические сведения

Площадь Земли:

  • Поверхность: 510,073 миллионов км²
  • Суша: 148,94 миллионов км²
  • Вода: 361,132 миллионов км²

70,8 % поверхности планеты покрыто водой, и 29,2 % занимает суша.

Строение Земли

Модель Земли в разрезе

Земля имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек и металлического ядра. Внешняя часть ядра - жидкая, а внутренняя - твёрдая. Геологические слои Земли по глубине от поверхности:

  • Земная кора - это верхний слой Земли. От мантии она отделена границей с резким повышением скоростей сейсмических волн - границей Мохоровичича. Толщина коры колеблется от 6 км под океаном, до 30-50 км на континентах, соответственно, различают два типа коры - континентальная и океаническая. В строении континентальной коры выделяют три геологических слоя: осадочный чехол, гранитный и базальтовый. Океаническая кора сложена преимущественно породами основного состава, плюс осадочный чехол.
  • Мантия - это силикатная оболочка Земли, сложенная преимущественно перидотитами - породами, состоящими из силикатов магния, железа, кальция и т. д. Мантия составляет 67 % всей массы Земли и около 83 % всего объёма Земли. Она простирается от глубин 5 - 70 километров ниже границы с земной корой, до границы с ядром на глубине 2900 км.
  • Ядро - наиболее глубокая часть планеты, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания - 2900 км. Средний радиус сферы - 3,5 тыс. км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро радиусом около 2200 км, между которыми иногда выделяется переходная зона. Температура в центре ядра Земли достигает 5000 °C, плотность около 12,5 т/м3,давление до 361 ГПа. Масса ядра - 1,932·10 24 кг.

Географическая оболочка

Географическая оболочка - целостная и непрерывная оболочка Земли, в пределах которой соприкасаются, взаимно друг в друга проникают и взаимодействуют литосфера, гидросфера, нижние слои атмосферы и биосфера или живое вещество. Географическая оболочка включает в себя всю толщу гидросферы, всю биосферу, в атмосфере простирается до слоя озона, в земной коре охватывает область гипергенеза. Наибольшая мощность географической оболочки - около 40 км (ряд ученых за верхнюю границу принимает тропопаузу, за нижнюю - подошву стратисферы. Географическая оболочка отличается от других частей планеты наибольшей сложностью состава и строения, наибольшим разнообразием в степени агрегированности вещества (от свободных элементарных частиц через атомы, ионы до сложнейших соединений) и наибольшим богатством разными видами свободной энергии. На Земле только в географической оболочке есть организмы, почвы, осадочные породы, разные формы рельефа, концентрируется солнечное тепло, существует человеческое общество. Понятие географической оболочки сформулировал А. А. Григорьев. Близкими по значению понятиями являются ландшафтная оболочка (Ю. К. Ефремов), эпигеосфера (А. Г. Исаченко). Следует отметить, что в последнее время ряд ученых выдвигает тезисы о фактическом отсутствии географической оболочки, ее теоретическом характере (ввиду якобы обнаруженного отсутствия поверхности Мохоровичича (анализ данных с Кольской сверхглубокой скважины) и некоторых других свидетельств), однако это мнение не является устоявшимся и представляется не вполне удовлетворительно обоснованным.

Структура географической оболочки - внутренняя организация вещественного состава и энергетических процессов географической оболочки, проявляющаяся в характере взаимосвязей и сочетаний между различными ее компонентами, в первую очередь в соотношении тепла и влаги. Важнейшей структурной чертой географической оболочки в целом является её территориальная географическая дифференциация, подчиненная законам зональности, секторности, высотной поясности.

Составные части географической оболочки:

  • Литосфера - внешняя сфера планеты, включающая земную кору до поверхности Мохоровичича.
  • Гидросфера - прерывистая водная оболочка Земли, располагающаяся между атмосферой и земной корой и представляющая совокупность океанов, морей, континентальных водных масс. Гидросфера покрывает 70,8 % земной поверхностей. Объем гидросферы - 1370,3 млн км³, что составляет 1/800 общего объема планеты. Из общей массы гидросферы 98,31 % сосредоточено в океанах и морях, 1,65 % - в материальных льдах приполярных областей и лишь 0,045 % в пресных водах рек, озер, болот. Химический состав гидросферы приближается к среднему составу морской воды. Гидросфера находится в постоянном взаимодействии с атмосферой, земной корой и биосферой.
  • Атмосфера - воздушная оболочка, окружающая земной шар и связанная с ним силой тяжести; принимают участие в суточном и годовом вращении Земли. Состав, движение и физические процессы в атмосфере являются предметом изучения метеорологии. Атмосфера не имеет четкой верхней границы; на высоте около 3000 км плотность атмосферы приближается к плотности вещества в межпланетном пространстве. В вертикальном направлении атмосферу подразделяют на: нижний слой - тропосферу (до высоты в 8-18 км), вышележащие - стратосферу (до 40-50 км), мезосферу (до 80-85 км), термосферу, или ионосферу (до 500-600 км, по другим данным - да 800 км), экзосферу и земную корону. Система движений атмосферы в общепланетном масштабе называется общей циркуляцией атмосферы. Практически единственный источник энергии атмосферных процессов - солнечная радиация. Из атмосферы, в свою очередь, уходит в космическое пространство длинноволновая радиация; между атмосферой и земной поверхностью происходит постоянный обмен теплом и влагой.
  • Биосфера - совокупность частей земных оболочек, находящихся под воздействием живых организмов и занятая продуктами их жизнедеятельности.

Географическая оболочка – предмет общего землеведения

Географическая оболочка – это внешний слой планеты, в котором соприкасаются и взаимодействуют литосфера, гидросфера, атмосфера и биосфера, т.е. косное и живое вещество. Географической эта система называется потому, что объединяет в единое целое неживую и живую природу. Ни одна другая земная сфера, как и любая известная оболочка остальных планет Солнечной системы, не имеет подобного комплексного объединения из-за отсутствия в них органического мира. Географическая оболочка

Важнейшими особенностями географической оболочки является ее исключительное богатство формами проявления свободной энергии, чрезвычайное разнообразие веществ по химическому составу и агрегатному состоянию, их видами и массами - от свободных элементарных частиц через атомы, молекулы к химическим соединениям и сложных тел, включая растительный и животный мир, на вершине эволюции которого находится человек. Среди других специфических признаков стоит выделить наличие в пределах этой природной системы воды в жидком состоянии, осадочных пород, различных форм рельефа, почвенного покрова, концентрацию и аккумуляцию солнечного тепла, большую активность большинства физико-географических процессов.

Географическая оболочка генетически неразрывно связана с поверхностью Земли, является ареной ее развития. На земной поверхности очень динамично развиваются процессы, обусловленные солнечной энергией (например действие ветра, воды, льда). Эти процессы вместе с внутренними силами и влиянием силы тяжести перераспределяют огромные массы горных пород, воды, воздуха и даже вызывают спуска и подъема определенных участков литосферы. Наконец, на поверхности Земли или вблизи от нее наиболее интенсивно развивается жизнь.

Главными чертами и закономерностями географической оболочки является целостность, ритмичность, зональность и круговорот вещества и энергии .

Целостность географической оболочки заключается в том, что изменение в развитии любого компонента природы обязательно вызывает изменение всех других (например, изменение климата в различные эпохи развития Земли отразилась на природе всей планеты). Масштабы этих изменений различны: они могут равномерно охватывать всю географическую оболочку или проявляться только на отдельных ее участках.

Ритмичность - это повторение одинаковых явлений природы через определенные промежутки времени. Таковы, например, суточные и годовые ритмы, особенно наиболее заметны в природе. Циклическими являются длительные эпохи потеплений и похолоданий, колебания уровня озер, морей, Мирового океана в целом, наступление и отступление ледников и т.

Зональность - закономерное изменение в пространстве строения компонентов географической оболочки. Различают горизонтальную (широтную ) и вертикальную (высотное) зональность. Первая обусловлена различным количеством тепла, поступающего на различные широты в связи с шаровидной формой Земли. Другой вид зональности - высотная поясность - проявляется только в горах и обусловлена изменением климата в зависимости от высоты.

Круговорот вещества и энергии приводит непрерывное развитие географической оболочки. Все вещества в ней находятся в постоянном движении. Часто круговороты вещества сопровождаются кругооборотами энергии. Например, в результате круговорота воды происходит выделение тепла при конденсации водяного пара и поглощения тепла при испарении. Биологический круговорот чаще всего начинается с превращения растениями неорганических веществ в органические. После отмирания органическое вещество превращается в неорганическую. Благодаря круговоротом происходит тесное взаимодействие всех компонентов географической оболочки, их взаимосвязанный развитие

Таким образом, географическая оболочка включает в себя всю гидросферу и биосферу, а также нижнюю часть атмосферы (в ней, правда, сосредоточено около 80% массы воздуха) и поверхностные слои литосферы.

Землеведение – наука о наиболее общих закономерностях географической оболочки Земли, ее вещественном составе, структуре, развитии и территориальном расчленении. Землеведение – раздел физической географии. Слово «география» означает «землеописание». Объектом землеведения является географическая оболочка Земли.

Географическая оболочка – это внешний слой планеты, в котором соприкасаются и взаимодействуют литосфера, гидросфера, атмосфера и биосфера, т.е. косное и живое вещество. Географическая оболочка - физическое тело. Верхняя ее граница находится между тропосферой и стратосферой на высоте 16-18 км. Нижняя граница на суше, находится на глубине 3-5 км. Гидросфера полностью включается географическую оболочку. Энергетическим компонентом географической оболочки является лучистая энергия Солнца и внутренняя энергия Земли.

Та сторона объекта, которая рассматривается наукой на определенном этапе развития, составляет предмет ее исследования. До середины 19 века предметом землеведения было описание земной поверхности. Сегодня предметом землеведения являются также изучение закономерности процесса, происходящего в географической оболочки, круговороты вещества и энергии, взаимодействия человеческого общества и природы.

Задачей землеведения является познание закономерностей строения, динамики и развития географической оболочки для разработки системы оптимального взаимодействия с происходящими процессами в ней. Землеведение в своих исследованиях использует разнообразные методы, как специальные географические, так и методы других наук. Наибольшее значение имеет экспедиционный (для полевых географических исследований); экспериментальный (для выявления роли отдельных факторов в природных явлениях); сравнительно – описательный (для установления характерных черт объектов); математический (для получения количественных характеристик природных явлений); статистический (для характеристики изменяющихся во времени и пространстве показателей; например, температура, соленость вод и прочее); картографический метод (для изучения объектов с помощью модели – карты); геофизический (для исследования строения земной коры и атмосферы); геохимический (для изучения химического состава и географической оболочки); аэрокосмический (использование аэрофотосъемки земной поверхности).

Строение Вселенной

Вселенная предстаёт перед нами всюду одинаковой - «сплошной» и однородной. Проще устройства и не придумать. Нужно сказать, что об этом люди уже давно подозревали. Указывая из соображений максимальной простоты устройства на общую однородность мира, замечательный мыслитель Паскаль (1623-1662) говорил, что мир - это круг, центр которого везде, а окружность нигде. Так с помощью наглядного геометрического образа он утверждал однородность мира.

У Вселенной есть и ещё одно важнейшее свойство, но о нем никогда даже и не догадывались. Вселенная находиться в движении - она расширяется. Расстояние между скоплениями и сверхскоплениями постоянно возрастает. Они как бы разбегаются друг от друга. А сеть ячеистой структуры растягивается.

Во все времена люди предпочитали считать Вселенную вечной и неизменной. Эта точка зрения господствовала вплоть до 20-х годов нашего века. В то время считалось, что она ограничена размерами нашей Галактики. Пути могут рождаться и умирать, Галактика все равно остается все той же, как неизменным остается лес, в котором поколение за поколением сменяются деревья.

Настоящий переворот в науке о Вселенной произвели в 1922 - 1924 годах работы ленинградского математика и физика А. Фридмана. Опираясь на только что созданную тогда А. Эйнштейном общую теорию относительности, он математически доказал, что мир - это не нечто застывшее и неизменное. Как единое целое он живет своей динамической жизнью, изменяется во времени, расширяясь или сжимаясь по строго определённым законам.

Фридман открыл подвижность звёздной Вселенной. Это было теоретическое предсказание, а выбор между расширением и сжатием нужно сделать на основании астрономических наблюдений. Такие наблюдения в 1928 - 1929 годах удалось проделать Хабблу, известному уже нам исследователю галактик.

Он обнаружил, что далёкие галактики и целые их коллективы движутся, удаляясь от нас во все стороны. Но так и должно выглядеть, в соответствии с предсказаниями Фридмана, общее расширение Вселенной.

Если Вселенная расширяется, то, значит, в далёком прошлом скопления были ближе друг к другу. Более того: из теории Фридмана следует, что пятнадцать - двадцать миллиардов лет назад ни звёзд, ни галактик ещё не было и всё вещество было перемешано и сжато до колоссальной плотности. Это вещество было тогда и немыслимо горячим. Из такого особого состояния и началось общее расширение, которое привело со временем к образованию Вселенной, какой мы видим и знаем её сейчас.

Общие представления о строении Вселенной складывались на протяжении всей истории астрономии. Однако только в нашем веке смогла появиться современная наука о строении и эволюции Вселенной - космология.

Гипотезы захвата

Очевидно, что небулярная гипотеза Шмидта, а равным образом и все небулярные гипотезы, имеют целый ряд неразрешимых противоречий. Желая избежать их, многие исследователи выдвигают идею индивидуального происхождения, как Солнца, так и всех тел Солнечной системы. Это так называемые гипотезы захвата.

Однако, избежав целого ряда противоречий, свойственных небулярным гипотезам, гипотезы захвата имеют другие, специфические противоречия, не свойственные небулярным гипотезам. Прежде всего, возникает серьезное сомнение, может ли крупное небесное тело, такое, как планета, особенно планета-гигант, так сильно затормозиться, чтобы перейти с гиперболической орбиты на эллиптическую. Очевидно, ни пылевая туманность, ни притяжение Солнца или планеты не могут создать такой силы тормозящий эффект.

Возникает вопрос: не разлетятся ли вдребезги на мелкие куски две планетозимали при своем столкновении? Ведь под влиянием притяжения Солнца, вблизи которого должно произойти столкновение, они разовьют большие скорости, в десятки км. в секунду. Можно предположить, что обе планетозимали рассыплются на осколки и частично упадут на поверхность Солнца, а частично умчатся в космическое пространство в виде большого роя метеоритов. И только, быть может, несколько осколков будут захвачены Солнцем или одной из его планет и превратятся в их спутники - астероиды.

Второе возражение, которое выдвигают оппоненты авторам гипотез захвата, относится к вероятности такого столкновения. По расчетам, выполненным многими небесными механиками, вероятность столкновения двух крупных небесных тел вблизи третьего, еще более крупного небесного тела, очень мала, так что одно столкновение может произойти за сотни миллионов лет. А ведь это столкновение должно произойти очень «удачно», т. е. столкнувшиеся небесные тела должны иметь определенные массы, направления и скорости движения и столкнуться они должны в определенном месте Солнечной системы. И при этом они должны не только перейти на почти круговую орбиту, но и остаться целыми и невредимыми. А это нелегкая задача для природы.

Что же касается захвата блуждающих планетозималей без столкновения, за счет одной лишь силы гравитационного притяжения (при помощи третьего тела), то такой захват либо невозможен, либо его вероятность ничтожна мала, настолько мала, что такой захват можно считать не закономерностью, а редчайшей случайностью. А между тем в Солнечной системе имеется большое количество крупных тел: планет, их спутников, астероидов и больших комет, что опровергает гипотезы захвата.

УСЛОВИЯ ДЛЯ ЗАТМЕНИЯ СОЛНЦА

Во время солнечного затмения между нами и Солнцем проходит Луна и скрывает его от нас. Рассмотрим подробнее условия, при которых может наступить затмение Солнца.

Наша планета Земля, вращаясь в течение суток вокруг своей оси, одновременно движется вокруг Солнца и за год делает полный оборот. У Земли есть спутник - Луна. Луна движется вокруг Земли, и полный оборот совершает за 29 1/2 суток.

Взаимное расположение этих трех небесных тел все время меняется. При своем движении вокруг Земли Луна в определенные периоды времени оказывается между Землей и Солнцем. Но Луна - темный, непрозрачный твердый шар. Оказавшись между Землей и Солнцем, она, словно громадная заслонка, закрывает собой Солнце. В это время та сторона Луны, которая обращена к Земле, оказывается темной, неосвещенной. Следовательно, солнечное затмение может произойти только во время новолуния. В полнолуние Луна проходит от Земли в стороне, противоположной Солнцу, и может попасть в тень, отбрасываемую земным шаром. Тогда мы будем наблюдать лунное затмение.

Среднее расстояние от Земли до Солнца составляет 149,5 млн. км,а среднее расстояние от Земли до Луны - 384 тыс. км.

Чем ближе предмет, тем большим он нам кажется. Луна по сравнению с Солнцем ближе к нам почти: в 400 раз, и в то же время ее диаметр меньше диаметра Солнца также приблизительно в 400 раз. Поэтому видимые размеры Луны и Солнца почти одинаковы. Луна, таким образом, может закрыть от нас Солнце.

Однако расстояния Солнца и Луны от Земли не остаются постоянными, а слегка изменяются. Происходит это потому, что путь Земли вокруг Солнца и путь Луны вокруг Земли - не окружности, а эллипсы. С изменением расстояний между этими телами изменяются и их видимые размеры.

Если в момент солнечного затмения Луна находится в наименьшем удалении от Земли, то лунный диск будет несколько больше солнечного. Луна целиком закроет собой Солнце, и затмение будет полным. Если же во время затмения Луна находится в наибольшем удалении от Земли, то она будет иметь несколько меньшие видимые размеры и закрыть Солнце целиком не сможет. Останется незакрытым светлый ободок Солнца, который во время затмения будет виден как яркое тоненькое кольцо вокруг черного диска Луны. Такое затмение называют кольцеобразным.

Казалось бы, солнечные затмения должны случаться ежемесячно, каждое новолуние. Однако этого не происходит. Если бы Земля и Луна двигались видной плоскости, то в каждое новолуние Луна действительно оказывалась бы точно на прямой линии, соединяющей Землю и Солнце, и происходило бы затмение. На самом деле Земля движется вокруг Солнца в одной плоскости, а Луна вокруг Земли - в другой. Эти плоскости не совпадают. Поэтому часто во время новолуний Луна приходит либо выше Солнца, либо ниже.

Видимый путь Луны на небе не совпадает с тем путем, по которому движется Солнце. Эти пути пересекаются в двух противоположных точках, которые называются узлами лунной о р б и т ы. Вблизи этих точек пути Солнца и Луны близко подходят друг к другу. И только в том случае, когда новолуние происходит вблизи узла, оно сопровождается затмением.

Затмение будет полным или кольцеобразным, если в новолуние Солнце и Луна будут находиться почти в узле. Если же Солнце в момент новолуния окажется па некотором расстоянии от узла, то центры лунного н солнечного дисков не совпадут и Луна закроет Солнце лишь частично. Такое затмение называется частным.

Луна перемещается среди звезд с запада на восток. Поэтому закрытие Солнца Луной начинается с его западного, т. е. правого, края. Степень закрытия называется у астрономов фазой затмения.

Вокруг пятна лунной тени располагается область полутени, здесь затмение бывает частным. Поперечник области полутени составляет около 6-7 тыс. км. Для наблюдателя, который будет находиться вблизи края этой области, лишь незначительная доля солнечного диска покроется Луной. Такое затмение может вообще пройти незамеченным.

Можно ли точно предсказать наступление затмения? Ученые еще в древности установили, что через 6585 дней и 8 часов, что составляет 18 лет 11 дней 8 часов, затмения повторяются. Происходит это потому, что именно через такой промежуток времени расположение в пространстве Луны, Земли и Солнца повторяется. Этот промежуток был назван саросом, что значит повторение.

В течение одного сароса в среднем бывает 43 солнечных затмения, из них 15 частных, 15 кольцеобразных и 13 полных. Прибавляя к датам затмений, наблюдавшихся в течение одного сароса, 18 лет 11 дней и 8 часов, мы сможем предсказать наступление затмений и в будущем.

В одном и том же месте Земли полное солнечное затмение наблюдается один раз в 250 - 300 лет.

Астрономы вычислили условия видимости солнечных затмений на много лет вперед.

ЛУННЫЕ ЗАТМЕНИЯ

К числу «необыкновенных» небесных явлений относятся также лунные затмения. Происходят они так. Полный светлый круг Луны начинает темнеть у своего левого края, на лунном диске появляется круглая бурая тень, она продвигается все дальше и дальше и примерно через час покрывает всю Луну. Луна меркнет и становится красно-бурого цвета.

Диаметр Земли больше диаметра Луны почти в 4 раза, а тень от Земли даже на расстоянии Луны от Земли более чем в 2 1/2 раза превосходит размеры Луны. Поэтому Луна может целиком погрузиться в земную тень. Полное лунное затмение гораздо продолжительнее солнечного: оно может длиться 1 час 40 минут.

По той же причине, по которой солнечные затмения бывают не каждое новолуние, лунные затмения происходят не каждое полнолуние. Наибольшее число лунных затмений в году - 3, но бывают годы совсем без затмений; таким был, например, 1951 год.

Лунные затмения повторяются через тот же промежуток времени, что и солнечные. В течение этого промежутка, в 18 лет 11 дней 8 часов (сарос), бывает 28 лунных затмений, из них 15 частных и 13 полных. Как видите, число лунных затмений в саросе значительно меньше солнечных, и все же лунные затмения можно наблюдать чаще солнечных. Это объясняется тем, что Луна, погружаясь в тень Земли, перестает быть видимой на всей не освещенной Солнцем половине Земли. Значит, каждое лунное затмение видно на значительно большей территории, чем любое солнечное.

Затмившаяся Луна не исчезает совершенно, как Солнце во время солнечного затмения, а бывает слабо видимой. Происходит это потому, что часть солнечных лучей приходит сквозь земную атмосферу, преломляется в ней, входит внутрь земной тени и попадает на Луну. Так как красные лучи спектра менее всего рассеиваются и ослабляются в атмосфере. Луна во время затмения приобретает медно-красный или бурый оттенок.

ЗАКЛЮЧЕНИЕ

Трудно представить себе, что солнечные затмения происходят так часто: ведь каждому из нас наблюдать затмения приходится чрезвычайно редко. Объясняется это тем, что во время солнечного затмения тень от Луны падает не на всю Землю. Упавшая тень имеет форму почти круглого пятна, поперечник которого может достигать самое большее 270 км. Это пятно покроет лишь ничтожно малую долю земной поверхности. В данный момент только на этой части Земли и будет видно полное солнечное затмение.

Луна движется по своей орбите со скоростью около 1 км/сек, т. е. быстрее ружейной пули. Следовательно, ее тень с большой скоростью движется по земной поверхности и не может надолго закрыть какое-то одно место на земном шаре. Поэтому полное солнечное затмение никогда не может продолжаться более 8 минут.

Таким образом, лунная тень, двигаясь по Земле, описывает узкую, но длинную полосу, па которой последовательно наблюдается полное солнечное затмение. Протяженность полосы полного солнечного затмения достигает нескольких тысяч километров. И все же площадь, покрываемая тенью, оказывается незначительной по сравнению со всей поверхностью Земли. Кроме того, в полосе полного затмения часто оказываются океаны, пустыни и малонаселенные районы Земли.

Последовательность затмений повторяется почти точно в прежнем порядке через промежуток времени, который называется саросом (сарос – египетское слово, означающее «повторение»). Сарос, известный ещё в древности, составляет 18 лет и 11,3 суток. Действительно, затмения будут повторяться в прежнем порядке (после какого-либо начального затмения) спустя столько времени, сколько необходимо, чтобы та же фаза Луны случилась на том же расстоянии Луны от узла её орбиты, как и при начальном затмении.

В течение каждого сароса происходит 70 затмений, из них 41 солнечное и 29 лунных. Таким образом, солнечные затмения происходят чаще лунных, но в данной точке на поверхности Земли чаще можно наблюдать лунные затмения, так как они видны на целом полушарии Земли, тогда как солнечные затмения видны лишь в сравнительно узкой полосе. Особенно редко удаётся видеть полные солнечные затмения, хотя в течение каждого сароса их бывает около 10.

№8 Земля, как шар, эллипсоид вращения, 3-хосный эллипсоид, геоид.

Предположения о шарообразности земли появились в VI веке до нашей эры, а с IV века до нашей эры были высказаны некоторые из известных нам доказательств, что Земля имеет форму шара (Пифагор, Эратосфен). Античными учеными доказательства шарообразности Земли основывались на следующих явлениях:
- кругообразный вид горизонта на открытых пространствах, равнинах, морях и т.д.;
- круговая тень Земли на поверхности Луны при лунных затмениях;
- изменение высоты звезд при перемещении с севера (N) на юг (S) и обратно, обусловленное выпуклостью полуденной линии и др. В сочинении «О небе» Аристотель (384 – 322 г.г. до н.э.) указывал, что Земля не только шарообразна по форме, но и имеет конечные размеры; Архимед (287 – 212 г.г. до н.э.) доказывал, что поверхность воды в спокойном состоянии является шаровой поверхностью. Ими же введено понятие о сфероиде Земли, как геометрической фигуре, близкой по форме к шару.
Современная теория изучения фигуры Земли берет начало от Ньютона (1643 – 1727 г.г.), открывшего закон всемирного тяготения и применившего его для изучения фигуры Земли.
К концу 80-х годов XVII века были известны законы движения планет вокруг Солнца, весьма точные размеры земного шара, определенные Пикаром из градусных измерений (1670 г.), факт убывания ускорения силы тяжести на поверхности Земли от севера (N) к югу (S), законы механики Галилея и исследования Гюйгенса о движении тел по криволинейной траектории. Обобщение указанных явлений и фактов привели ученых к обоснованному взгляду о сфероидичности Земли, т.е. деформации ее в направлении полюсов (сплюсности).
Знаменитое сочинение Ньютона – «Математические начала натуральной философии» (1867 г.) излагает новое учение о фигуре Земли. Ньютон пришел к выводу о том, что фигура Земли должна быть по форме в виде эллипсоида вращения с небольшим полярным сжатием (этот факт обосновывался им уменьшением длины секундного маятника с уменьшением широты и уменьшением силы тяжести от полюса к экватору из-за того, что «Земля на экваторе немного выше»).
Исходя из гипотезы, что Земля состоит из однородной массы плотности, Ньютон теоретически определил полярное сжатие Земли (α) в первом приближении равном, примерно, 1: 230. На самом деле Земля неоднородна: кора имеет плотность 2,6 г/см3, тогда как средняя плотность Земли составляет 5,52 г/см3. Неравномерное распределение масс Земли продуцирует обширные пологие выпуклости и вогнутости, которые сочетаясь образуют возвышенности, углубления, впадины и другие формы. Заметим, что отдельные возвышения над Землей достигают высот более 8000 метров над поверхностью океана. Известно, что поверхность Мирового океана (МО) занимает 71 %, суша – 29 %; средняя глубина МО (Мирового океана) 3800м, а средняя высота суши – 875 м. Общая площадь земной поверхности равна 510 х 106 км2. Из приведенных данных следует, большая часть Земли покрыта водой, что дает основание принять ее за уровенную поверхность (УП)и, в конечном итоге, за общую фигуру Земли. Фигуру Земли можно представить, вообразив поверхность, в каждой точке которой сила тяжести направлена по нормали к ней (по отвесной линии).
Сложную фигуру Земли, ограниченную уровенной поверхностью, являющуюся началом отчета высот, принято называть геоидом. Иначе, поверхность геоида, как эквипотенциальная поверхность, фиксируется поверхностью океанов и морей, находящихся в спокойном состоянии. Под материками поверхность геоида определяется как поверхность, перпендикулярная силовым линиям (рис. 3-1).
P.S. Название фигуры Земли – геоид – предложено немецким ученым –физиком И.Б. Листигом (1808 – 1882 г.г.). При картографировании земной поверхности, на основании многолетних исследований ученых, сложную фигуру геоида без ущерба для точности, заменяют математически более простой – эллипсоидом вращения . Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.
Эллипсоид вращения близко подходит к телу геоида (уклонение не превышает 150 метров в некоторых местах). Размеры земного эллипсоида определялись многими учеными мира.
Фундаментальные исследования фигуры Земли, выполненные русскими учеными Ф.Н. Красовским и А.А. Изотовым, позволили развить идею о трехосном земном эллипсоиде с учетом крупных волн геоида, в результате были получены его основные параметры.
В последние годы (конец XX и начало XXI в.в.) параметры фигуры Земли и внешнего гравитационного потенциала определены с использованием космических объектов и применением астрономо–геодезических и гравиметрических методов исследований так надежно, что теперь речь идет об оценке их измерений во времени.
Трехосный земной эллипсоид, характеризующий фигуру Земли, подразделяют на общеземной эллипсоид (планетарный), подходящий для решения глобальных задач картографии и геодезии и референц – эллипсоид, который используют в отдельных регионах, странах мира и их частях. Эллипсо́ид враще́ния (сферо́ид) - это поверхность вращения в трёхмерном пространстве, образованная при вращении эллипса вокруг одной из его главных осей. Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.

Геоид - фигура Земли, ограниченная уровенной поверхностью потенциала силы тяжести, совпадающей в океанах со средним уровнем океана и продолженной под континенты (материки и острова) так, что эта поверхность всюду перпендикулярна направлению силы тяжести. Поверхность геоида более сглажена, чем физическая поверхность Земли.

Форма геоида не имеет точного математического выражения, и для построения картографических проекций подбирается правильная геометрическая фигура, которая мало отличается от геоида. Лучшим приближением геоида служит фигура, получающаяся в результате вращения эллипса вокруг короткой оси (эллипсоид)

Термин «геоид» был предложен в 1873 году немецким математиком Иоганном Бенедиктом Листингом для обозначения геометрической фигуры, более точно, чем эллипсоид вращения, отражающей уникальную форму планеты Земля.

Крайне сложная фигура - геоид. Она существует лишь теоретически, однако на практике ее нельзя ни пощупать, ни увидеть. Можно представить себе геоид в виде поверхности, сила земного притяжения в каждой точке которой направлена строго вертикально. Если бы наша планета была правильным шаром, заполненным равномерно каким-либо веществом, то отвес в любой ее точке смотрел бы в центр шара. Но ситуация осложняется тем, что неоднородной является плотность нашей планеты. В одних местах имеются тяжелые горные породы, в других пустоты, горы и впадины разбросаны по всей поверхности, так же неравномерно распределены равнины и моря. Все это меняет в каждой конкретной точке гравитационный потенциал. В том, что форма земного шара - геоид, виноват также эфирный ветер, который обдувает нашу планету с севера.

Метеорные тела

Чёткого разграничения между метеороидами (метеорными телами) и астероидами нет. Обычно метеороидами называют тела размерами менее сотни метров , а астероидами - более крупные. Совокупность метеороидов, ображающихся вокруг Солнца, образует метеорное вещество в межпланетном пространстве . Некоторая доля метеорных тел является остатком того вещества, из которого когда-то образовалась Солнечная система, некоторая – остатки постоянного разрушения комет, обломки астероидов.

Метеорное тело или метеороид – твёрдое межпланетное тело, которое при влете в атмосферу планеты вызывает явление метеора и иногда завершается падением на поверхность планеты метеорита .

Что обычно бывает, когда метеорное тело достигает поверхности Земли? Обычно ничего, так как из-за незначительных размеров метеорные тела сгорают в атмосфере Земли. Крупные скопления метеорных тел называется метеорным роем . Во время сближения метеорного роя с Землей наблюдаются метеорные потоки .

  1. Метеоры и болиды

Явление сгорания метеорного тела в атмосфере планеты называется метеором . Метеор – это кратковременная вспышка, след от сгорания проходит через несколько секунд.

За сутки в атмосфере Земли сгорает около 100000000 метеорных тел.

Если следы метеоров продолжить назад, то они пересекутся в одной точке, называемой радиантом метеорного потока .

Многие метеорные потоки являются периодическими, повторяются из года в год и названы по созвездиям, в которых лежат их радианты. Так, метеорный поток, наблюдаемый ежегодно примерно с 20 июля по 20 августа, назван Перcеидами, поскольку его радиант лежит в созвездии Персея. От созвездий Лиры и Льва получили соответственно свое название метеорные потоки Лириды (середина апреля) и Леониды(середина ноября).

Исключительно редко метеорные тела бывают сравнительно больших размеров, в этом случае говорят, что наблюдают болид . Очень яркие болиды видны и днём.

  1. Метеориты

Если метеорное тело достаточно большое и не смогло полностью сгореть в атмосфере при падении, то оно выпадает на поверхность планеты. Такие упавшие на Землю или другое небесное тело метеорные тела называют метеоритами .

Самые массивные метеорные тела, имеющие большую скорость, выпадают на поверхность Земли с образованием кратера .

В зависимости от химического состава метеориты подразделяются на каменные (85 %), железные (10 %) и железо-каменные метеориты (5 %).

Каменные метеориты состоят из силикатов с включениями никелистого железа. Поэтому небесные камни, как правило, тяжелее земных. Основными минералогическими составляющими метеоритного вещества являются железо-магнезиальные силикаты и никелистое железо. Более 90 % каменных метеоритов содержит округлые зерна – хондры. Такие метеориты называются хондритами.

Железные метеориты почти целиком состоят из никелистого железа. У них удивительная структура, состоящая из четырех систем параллельных камаситовых пластин с низким содержанием никеля и с прослойками, состоящими из тэнита.

Железо-каменные метеориты состоят наполовину из силикатов, наполовину из металла. Они обладают уникальной структурой, не встречающейся нигде, кроме метеоритов. Эти метеориты представляют собой либо металлическую, либо силикатную губку.

Один из крупнейших железных метеоритов, Сихотэ-Алинский, упавший на территорию СССР в 1947 г., был найден в виде россыпи множества осколков.

Виды масштаба

Масштаб на планах и картах выражается в:

1. Численной форме (численный масштаб ).

2. Именованной форме (именованный масштаб ).

3. Графической форме (линейный масштаб ).

Численный масштаб выражается простой дробью, в числителе которой единица, а в знаменателе – число, показывающее, во сколько раз горизонтальное проложение линии местности уменьшено при нанесении на план (карту). Масштабы могут быть любыми. Но чаще используются их стандартные величины: 1:500; 1:1000; 1:2000; 1:5000; 1:10 000 и т.д. Например, масштаб плана 1:1000 указывает, что горизонтальное проложение линии уменьшено на карте в 1000 раз, т. е. 1 см на плане соответствует 1000 см (10 м) на горизонтальной проекции местности. Чем меньше знаменатель численного масштаба, тем крупнее считается масштаб, и наоборот. Численный масштаб – величина безразмерная; она не зависит от системы линейных мер, т. е. им можно пользоваться, проводя измерения в любых линейных мерах.

Именованный масштаб(словесный) - вид масштаба, словесное указание того, какое расстояние на местности соответствует 1 см на карте, плане, снимке, записывается как в 1 см 100 км

Линейный масштаб представляет собой графическое выражение численного и именованного масштабов в виде линии, разделенной на равные отрезки – основания. Левый из них делится на 10 равных частей (десятые доли). Сотые доли оцениваются «на глаз».

Градусная сеть.

Находить месторасположение самых разных географических объектов на карте, а также ориентироваться на ней, нам помогает градусная сетка. Градусная сетка – это система меридианов и параллелей. Меридианы представляют собой невидимые линии, которые пересекают нашу планету вертикально по отношению к экватору. Меридианы начинаются и заканчиваются на полюсах Земли, соединяя их. Параллели – невидимые линии, которые проводят условно параллельно экватору. Теоретически меридиан и параллелей может быть множество, однако в географии принято размещать их с интервалом 10 – 20 °. Благодаря градусной сетке мы можем вычислить долготу и широту объекта на карте, а значит узнать его географическое расположение. Все точки, которые располагаются на одном меридиане, имеют идентичную долготу, точки, расположенные на одной параллели, обладают одинаковыми показателями широты.

Изучая географию, трудно не заметить, что на разных картах меридианы и параллели изображены неодинаково. Рассматривая карту полушарий, мы можем заметить, что все меридианы обладают формой полукруга и только один меридиан, который делит полушарие пополам, изображен в виде прямой линии. Все параллели на карту полушарий наносятся в виде дуг, за исключением экватора, который представлен прямой. На картах отдельных государств, как правило, меридианы изображаются исключительно в виде прямых линий, а параллели могут быть лишь немного изогнуты. Такие отличия изображения градусной сетки на карте объясняются тем, что нарушения земной градусной сетки при ее переносе на прямую поверхность недопустимы.

Азимуты.

Азимут - это угол, образуемый в данной точке на местности или на карте, между направлением на север и направлением на какой-либо предмет. Азимутом пользуются для ориентирования при передвижении в лесу, в горах, в пустынях или в условиях плохой видимости, когда нет возможности привязать и сориентировать карту. Также, с помощью азимута определяют направление движения судов и самолетов.

На местности, отсчет азимутов проводится от северного направления стрелки компаса, от северного, красного конца, по ходу часовой стрелки от 0° до 360°, иначе говоря - от магнитного меридиана данной точки. Если предмет находится от наблюдателя точно на Севере, то азимут равен 0°, если ровно на Востоке (справа) - 90°, на Юге (сзади) - 180°, на Западе (слева) - 270°.

Мильков Ф.Н. Общее землеведение: Учеб. для студ. географ. спец. вузов. - M.: Высш. шк., 1990. - 335 c.
ISBN 5-06-000639-5
Скачать (прямая ссылка): obsh_zemleveden.pdf Предыдущая 1 2 > .. >> Следующая
Общее землеведение принадлежит к числу фундаментальных географических наук. Его нельзя рассматривать как введение в физическую географию.
По существу, это методологическое вступление в мир географии в целом. Учение о географической оболочке - та призма, которая помогает определить географическую принадлежность изучаемых предметов, процессов и целых научных дисциплин. Например, земная кора, если изучать только ее физические свойства, представляет собой предмет геофизики; земная кора с точки зрения ее состава, строения и развития изучается геологией; и та же земная кора как структурная часть географической оболочки исследуется географией, точнее, общим землеведением. To же самое относится к атмосфере, изучением которой занимается геофизическая наука метео-
1 Гагарин Ю. Вижу Землю. M., 1971. С. 56.
5

рология. Однако ее нижние слои (тропосфера), входящие в географическую оболочку, служат носителями климата и изучаются одной из отраслевых географических дисциплин - климатологией. Принципы и методы изучения географической оболочки как целостной динамической системы являются сквозными для всех других физико-географических наук - страноведческих и отраслевых. Системный же подход с анализом взаимосвязей между структурными частями объекта, широко используемый при установлении закономерностей общего землеведения, сохраняет свое значение во всех подразделениях не только физической, но и экономической географии.
Современная география, подобно биологии, химии, физике и другим фундаментальным наукам, представляет сложную систему обособившихся в разное время научных дисциплин. Какое же место занимает общее землеведение в системной классификации географических наук? Отвечая на этот вопрос, сделаем одно пояснение. У каждой науки различаются объект изучения и предмет изучения. При этом предмет изучения науки становится объектом изучения целой системы наук на более низкой классификационной ступени. Таких классификационных ступеней - таксонов - четыре: цикл, семейство, род, вид (рис. 1).
Вместе с географией в цикл наук о Земле входят биология, гео-югия, геофизика, геохимия. У всех этих наук один объект изучения- Земля, но каждая из них имеет свой предмет изучения. У биологии это органическая жизнь, у геохимии - химический состав Земли, у геологии - ее недра, а у географии - земная поверхность как неразрывный комплекс естественного и социального происхождения. На уровне цикла мы видим предметную сущность единства географии, о чем давно уже писал В. А. Анучин (1960). Географию обособляет в цикле наук о Земле не один предмет изучения, но и основной метод - описательный. Старейший и общий для всех географических наук описательный метод продолжает усложняться и совершенствоваться вместе с развитием науки. В самом названии география (от греч. ge-Земля и grapho - пишу), заключен и предмет и основной метод исследования этой науки.
География на уровне цикла - это нерасчлененная география, родоначальница всех других географических наук. Она изучает наиболее общие закономерности и нерасчлененной называется потому, что ее выводы одинаково распространяются на все последующие подразделения географической науки.
Семейство географических наук образуют физическая и экономическая география, страноведение, картография, история и методология географической науки. Все они имеют один объект изучения - земную поверхность, предметы же изучения -разные. Предметом изучения физической географии служит географическая оболочка Земли, экономической географии - хозяйство и население в форме территориальных социально-экономических систем. Науки
6

[,Ландшафтная] сфера
Ландшафтное страноведение Общее ландшафт оведение Морфология ландшафтов Картирование ландшафтов Геофизика ландшафта Геохимия I ландшафта 1 Биофизика ландшафта
Вид ландшафтоведч еоких наук
Рис. 1. Место общего землеведения в системной классификации географических
наук
7

географического семейства в той или иной мере связаны с науками других семейств цикла наук о Земле. Физическая география немыслима без знания основ геологии, биологии, геофизики. Особенно далекие «внецикловые» взаимосвязи свойственны экономической географии - общественной науке, опирающейся во многом на законы политической экономии. И все же теснее всего она связана с физической географией, своей «соседкой» по семейству наук. Приходится сожалеть, что в недалеком прошлом было затрачено много усилий не на поиски системных взаимосвязей физической географии с экономической, а на их различия, даже противопоставление, что вело к разрыву этих близких наук.
Наиболее полное выражение синтез физической географии с экономической находит в страноведении. На уровне семейства оно имеет общегеографический - триединый (природа, население, хозяйство) - характер. Одни из лучших страноведческих монографий этого типа - «Киргизия» (1946) С. Н. Рязанцева, «Центральная Европа» Э. Мартонна (1938), «Северная Америка» А. Боли (1948), «Индия и Пакистан» О. Спейта (1957).
В семействе географических наук особое место занимает история и методология географической науки. Это не традиционная история географических открытий, а история географических идей (разумеется, на фоне расширявшихся географических открытий), история становления современных методологических основ географической науки. Первый опыт создания лекционного курса по истории и методологии географической науки принадлежит Ю. Г. Ca-ушкину (1976).

Землеведение в настоящее время будет фундаментальной наукой, основой для развития других физико-географических дисциплин, в частности — почвоведения, ландшафтоведения, биогеографии, космического землеведения, геологии, метеорологии, океанологии, климатологии и других. Землеведение изучает строение планеты Земля, ее непосредственное окружение, а также географическую оболочку — среду деятельности человека. Сегодня в окружающей среде наблюдается быстрое развитие негативных процессов, в частности, изменение климата, возрастание загрязнения и др.

Проблемы взаимоотношений человеческого общества и природы в наши дни как никогда актуальны. Стоит сказать, для грамотного контроля за происходящими процессами крайне важно прежде всего знать строение нашей планеты и законы, управляющие ее развитием. Земля — наш общий дом, а от современных действий человеческого общества будут зависеть качество и комфортность проживания нашего и будущих поколений.

Как наука Землеведение прошло длительный путь исторического развития. Проблемы строения Земли волновали ученых с глубокой древности. Уже в древнем Китае, Египте, Не стоит забывать, что вавилоне составлялись изображения поверхности Земли. Планы города Не стоит забывать, что вавилон, побережья Средиземного моря сохранились до сих пор. Землеописание, т. е. география (от. гео — греч. «Земля» и графил — «описание») активно разрабатывалось в Древней Греции. Многих ученых античного периода интересовал вопрос о форме Земли. Высказывались различные идеи, в частности, что Земля находится на трех слонах, кᴏᴛᴏᴩые стоят на черепахе, плавающей в океане, и другие.

Выдающийся древнегреческий ученый Аристотель (384- 322 гг. до н. э.) в труде «Метеорологика» высказал гениальные идеи о строении Земли, ее шарообразной форме, о существовании разных «сфер», проникающих друг в друга, круговороте воды, морских течениях, зонах Земли, причинах землетрясений и т. д. Современные идеи землеведения во многом подтверждают его догадки.

Многих ученых интересовал также вопрос о размерах Земли. В наибольшей степени точные измерения были проведены Эратосфеном Киренским — древнегреческим ученым (около 276-194 до н.э.) Им были заложены основы математической географии. Стоит заметить, что он впервые вычислил окружность Земли по меридиану, и, что удивительно, полученные цифры близки современным вычислениям — 40 тыс. км. Эратосфен впервые употребил термин «географика».

Античная география выполняла в основном описательные функции. Значительную роль в развитии ϶ᴛᴏго направления сыграли работы древнегреческого географа и астронома Клавдия Птоломея (около 90-168 до н. э.) В ϲʙᴏем труде «Руководство по географии», включающем восемь томов, он предлагает различать географию и хорографию. География имеет дело с изображением всей известной части Земли и всем, что находится на ней. Хорография занимается подробным описанием местности, т. е. ϲʙᴏего рода краеведением, по современным понятиям. Птоломей составлял различные карты, и именно его считают «отцом» картографии. Им были предложены несколько новых картографических проекций. Наибольшую известность принесла ему идея о геоцентрическом устройстве мира, считавшая центром мироздания Землю, вокруг кᴏᴛᴏᴩой вращаются Солнце и другие планеты.

Считается, что труды Птоломея завершают античный период в развитии географии, занимавшейся тогда в основном описанием вновь открытых земель.

В эпоху Великих географических открытий (XVI-XVII вв.) проявилось другое направление — аналитическое.

Началом формирования землеведения как самостоятельной научной дисциплины считается выход в свет в Голландии «Всеобщей географии» Бернхарда Не стоит забывать, что варениуса в 1650 г. В ϶ᴛᴏй работе представлены достижения в области астрономии и создания гелиоцентрической системы мира (Н. Коперник, Г. Галилей, Дж. Бруно, И. Кеплер) Наряду с данным обобщены результаты Великих географических открытий. Предметом изучения землеведения, по Б. Не стоит забывать, что варениусу, будет земноводный круг, состоящий из земли, воды, атмосферы, проникающих друг в друга. При этом значение человека и его деятельности было исключено.

Ведущей идеей ϶ᴛᴏго периода был анализ взаимосвязей между различными частями природы. В разработке ϶ᴛᴏй идеи большое значение имели работы Александра фон Гумбольдта (1769-1859), выдающегося немецкого ученого-энциклопедиста, натуралиста, путешественника. Есть мнение, что труды Б. Не стоит забывать, что варениуса будут началом развития общего землеведения, а достижения Гумбольдта — ϶ᴛᴏ одна из замечательных вершин. А. Гумбольдт много путешествовал, изучал природу Европы, Центральной и Южной Америки, Урала, Сибири. Именно в его трудах доказано значение анализа взаимосвязей в качестве основной идеи всей географической науки. Анализируя взаимосвязи рельефа, климата, животного мира и растительности, А. Гумбольдт заложил основы географии растений и географии животных, учения о жизненных формах, климатологии, общего землеведения обосновал идею вертикальной и широтной зональности.
В его работах «Путешествие в равноденственные области Нового света», т. 1-30 (1807-1834) и «Космос» развивается идея о земной поверхности как особой оболочке, где не только существует взаимосвязь, но и взаимодействие земли, воздуха, воды, наблюдается единство неорганической и органической природы. А. Гумбольдт впервые употребляет термины «жизнесфера», что по смыслу ϲᴏᴏᴛʙᴇᴛϲᴛʙует современному «биосфера», и «сфера разума», ϲᴏᴏᴛʙᴇᴛϲᴛʙующий «ноосфере».

Книга А. Гумбольдта «Картины природы» никого не может оставить равнодушным, поскольку в ней сочетаются достоверные факты и высокохудожественные описания природы. Его считают основоположником художественного ландшафтоведения.

Основателем первой кафедры географии в Берлинском университете будет живший в одно время с А. Гумбольдтом Карл Риттер (1779-1859) В ϲʙᴏих широко известных трудах по землеведению он рассматривал Землю как жилище рода человеческого, существующего благодаря силе Божественного провидения.

К. Риттер ввел в науку термин «землеведение». Стоит заметить, что он пытался количественно определить пространственные соотношения между разными объектами.

В многотомном труде «Земля и люди. Всеобщая география» Э. Реклю (1830-1905) достаточно подробно описывает большинство стран мира. Стоит заметить, что он считается основоположником современного страноведения.

Из учебных пособий по землеведению, выходивших в XIX в., следует отметить работы Э. Ленца (1851), А. Рихтгофена (1883), Э. Ленда (1851) При этом данные авторы исключали из ϲʙᴏих работ биогеографию.

В России в XVIII-XIX вв. развитие географических идей связано с именами выдающихся ученых М. В. Ломоносова, В. Н. Татищева, С. П. Крашенинникова.

Материалистический подход к изучению явлений и процессов в природе особенно ярко наблюдался в трудах М. В. Ломоносова (1711 — 1765) В работе «О слоях земных» (1763) он изложил законы формирования рельефа Земли, в целом ϲᴏᴏᴛʙᴇᴛϲᴛʙующие современным представлениям.

В XIX-XX вв. в России выходили труды по географии П. П. Семенова-Тян-Шанского, Н. М. Пржевальского, В. А. Обручева, Д. Н. Анучина и др.

С 80-х годов XIX в. на передовых позициях в области общего землеведения оказалась Русская географическая школа. В работах В.В.Докучаева (1846-1903) «Русский чернозем» (1883) и А. И. Воейкова (1842-1916) «Климаты земного шара» вскрывается на примере почв и климата сложный механизм взаимодействия компонентов географической оболочки.

В. В. Докучаев в конце XIX в. открыл закон мировой географической зональности. Материал опубликован на http://сайт
Это было выдающееся теоретическое обобщение. В. В. Докучаев полагал, что зональность будет всеобщим законом природы. Этот закон распространяется как на органическую, так и неорганическую природу. Естественно-исторические зоны, существующие на земном шаре, будут пространственным выражением ϶ᴛᴏго закона. Зеркалом закона мировой географической зональности будут почвы, отражающие взаимодействие живой и неживой природы. Год выхода монографии «Русский чернозем» — 1883 г. — считается годом рождения новой самостоятельной науки — почвоведения. В. В. Докучаев стал основоположником научного почвоведения. В его труде «Русский чернозем» доказывается, что почва — ϶ᴛᴏ самостоятельное естественно-историческое тело, возникшее вследствие взаимодействия пяти факторов почвообразования: 1) материнской породы; 2) климата; 3) рельефа местности; 4) живых организмов (микроорганизмов, растений, животных); 5) возраста страны. Впоследствии присоединился еше один фактор — хозяйственная деятельность человека. В. В. Докучаев пришел к выводу, что крайне важно изучать не только отдельные факторы, но и закономерные связи и взаимодействия между ними. Стоит заметить, что он показал, что с почвенными зонами тесно связаны сельскохозяйственные области. Отсюда следует, что в каждой зоне сельское хозяйство имеет ϲʙᴏи особенности и ϲʙᴏи методы решения производственных задач.

Вместе с В. В. Докучаевым самостоятельно работали его ученики и последователи: А. Н. Краснов, В. И. Вернадский, Г. И. Танфильсв, Г. Н. Высоцкий, К. Д. Глинка, С. А. Захаров, Л. И. Прасолов, Б. Б. Стоит сказать - полынов и др. В 1894 г. в Петровской земледельческой и лесной академии (ныне Московская сельскохозяйственная академия им. К. А. Тимирязева) была создана кафедра почвоведения, кᴏᴛᴏᴩую возглавил В. Р. Вильяме (1863-1939) В его учебнике «Почвоведение», выдержавшем пять изданий, оббазируется идея тесной связи знаний о почвах с запросами земледелия. Ученик В. В. Докучаева и ботаника А. Н. Бекетова (Петербургский университет) А. Н. Краснов (1862-1914) в 1889 г. организовал кафедру географии в Харьковском университете, занимался изучением степей и зарубежных тропиков, создал Батумский ботанический сад. А. Н. Краснов обосновал черты научного землеведения, отличающие его от старой географии, в частности отыскание взаимной связи и взаимной обусловленности между явлениями природы, изучение генезиса (происхождения) явлений, а также изучение изменяющейся природы, а не статичной. Стоит заметить, что он создал первый русский учебник по общему землеведению для университетов. В учебнике А. Н. Краснов развивает новый взгляд на географию как науку, изучающую не отдельные явления и предметы, а географические комплексы — пустыни, степи и др.

Исходя из всего выше сказанного, мы приходим к выводу, что на протяжении столетий — от Аристотеля до Докучаева — предмет изучения физической географии усложнялся от двумерной земной поверхности до объемной географической оболочки с тесными связями между компонентами, ее составляющими.

В учебнике «Курс физической географии» II. И. Броунов четко сформулировал идею о том, что наружная оболочка Земли состоит из четырех сферических составляющих: литосферы, атмосферы, гидросферы и биосферы, проникающих друг в друга: отсюда задачей физической географии будет изучение ϶ᴛᴏго взаимодействия. Его идеи оказали значительное влияние на дальнейшее развитие физической географии.

Мысль о том, что именно природная оболочка Земли будет основным предметом изучения физической географии, развивалась постепенно, начиная с А. Гумбольдта.

При этом, что такое оболочка Земли, какие компоненты входят в нее, каковы ее границы, было неясно. Впервые данные вопросы были рассмотрены Андреем Александровичем Григорьевым (1883- 1968) в 1932 г. в статье «Предмет и задачи физической географии».

В ϶ᴛᴏй статье А. А. Григорьев впервые предложил термин «физико-географическая оболочка», в частности, он полагал, что «земная поверхность представляет качественно особую вертикальную физико-географическую зону или оболочку, характеризующуюся глубоким взаимопроникновением и активным взаимодействием литосферы, атмосферы и гидросферы, возникновением и развитием именно в ней органической жизни, наличием в ней сложного, но единого физико-географического процесса». В 1937 г. выходит монография А. А. Григорьева, в кᴏᴛᴏᴩой он лает подробное обоснование географической оболочки как основного предмета физической географии, рассматривает границы географической оболочки и методы ее изучения.

Примерно в ϶ᴛᴏ же время Л.С. Берг развивает учение В. В. Докучаева о географических зонах и разрабатывает учение о ландшафтах. Ряд ученых в конце 1940-х годов развернули дискуссию, пытаясь противопоставить учение А. А. Григорьева и Л. С. Берга. При этом в фундаментальной работе С. В. Калесника «Основы общего землеведения» (1947, 1955) было доказано, что данные два направления не противоречат, а взаимно дополняют друг друга.

Качественно новый этап в изучении географической оболочки наступил после запусков искусственных спутников Земли, полета 12 апреля 1961 г. Юрия Алексеевича Гагарина, выведения многочисленных лабораторий в ближний и дальний космос. Это дало возможность изучать географическую оболочку со стороны. Всех космонавтов восхищала красота Земли, наблюдаемая из космоса, и вместе с тем очевидным стало глобальное загрязнение человеком ее поверхности. Сохранение чистоты географической оболочки стало насущной задачей человечества, а теория охраны окружающей человека среды — основой современного землеведения.

Сегодня — ϶ᴛᴏ одна из основных отраслей в системе географических наук, изучающая закономерности географической оболочки, ее пространственно-временную организацию и дифференциацию; круговорот веществ, энергии и информации; ее функционирование, динамику и эволюцию. Современное землеведение исследует геосферы, слагающие географическую оболочку, следит за их состоянием, составляет региональные и глобальные прогнозы ее развития.

Все данные задачи землеведения решаются на базе как традиционных и новых методов географических исследований (картографического, статистического, геофизического и др.), так и новейших достижений геоинформатики, дистанционного зондирования, космического землеведения.

Землеведение в настоящее время является фундаментальной наукой, основой для развития других физико-географических дисциплин, в частности — почвоведения, ландшафтоведения, биогеографии, космического землеведения, геологии, метеорологии, океанологии, климатологии и других. Землеведение изучает строение планеты Земля, ее непосредственное окружение, а также географическую оболочку — среду деятельности человека. В настоящее время в окружающей среде наблюдается быстрое развитие негативных процессов, в частности, изменение климата, возрастание загрязнения и др.

Проблемы взаимоотношений человеческого общества и природы в наши дни как никогда актуальны. Для грамотного контроля за происходящими процессами необходимо прежде всего знать строение нашей планеты и законы, управляющие ее развитием. Земля — наш общий дом, а от современных действий человеческого общества будут зависеть качество и комфортность проживания нашего и будущих поколений.

Как наука Землеведение прошло длительный путь исторического развития. Проблемы строения Земли волновали ученых с глубокой древности. Уже в древнем Китае, Египте, Вавилоне составлялись изображения поверхности Земли. Планы города Вавилон, побережья Средиземного моря сохранились до сих пор. Землеописание, т. е. география (от. гео — греч. «Земля» и графил — «описание») активно разрабатывалось в Древней Греции. Многих ученых античного периода интересовал вопрос о форме Земли. Высказывались различные идеи, в частности, что Земля находится на трех слонах, которые стоят на черепахе, плавающей в океане, и другие.

Выдающийся древнегреческий ученый Аристотель (384- 322 гг. до н. э.) в труде «Метеорологика» высказал гениальные идеи о строении Земли, ее шарообразной форме, о существовании разных «сфер», проникающих друг в друга, круговороте воды, морских течениях, зонах Земли, причинах землетрясений и т. д. Современные идеи землеведения во многом подтверждают его догадки.

Многих ученых интересовал также вопрос о размерах Земли. Наиболее точные измерения были проведены Эратосфеном Киренским — древнегреческим ученым (около 276-194 до н.э.). Им были заложены основы математической географии. Он впервые вычислил окружность Земли по меридиану, и, что удивительно, полученные цифры близки современным вычислениям — 40 тыс. км. Эратосфен впервые употребил термин «географика».

Античная география выполняла в основном описательные функции. Значительную роль в развитии этого направления сыграли работы древнегреческого географа и астронома Клавдия Птоломея (около 90-168 до н. э.). В своем труде «Руководство по географии», включающем восемь томов, он предлагает различать географию и хорографию. География имеет дело с изображением всей известной части Земли и всем, что находится на ней. Хорография занимается подробным описанием местности, т. е. своего рода краеведением, по современным понятиям. Птоломей составлял различные карты, и именно его считают «отцом» картографии. Им были предложены несколько новых картографических проекций. Наибольшую известность принесла ему идея о геоцентрическом устройстве мира, считавшая центром мироздания Землю, вокруг которой вращаются Солнце и другие планеты.

Считается, что труды Птоломея завершают античный период в развитии географии, занимавшейся тогда в основном описанием вновь открытых земель.

В эпоху Великих географических открытий (XVI-XVII вв.) проявилось другое направление — аналитическое.

Началом формирования землеведения как самостоятельной научной дисциплины считается выход в свет в Голландии «Всеобщей географии» Бернхарда Варениуса в 1650 г. В этой работе представлены достижения в области астрономии и создания гелиоцентрической системы мира (Н. Коперник, Г. Галилей, Дж. Бруно, И. Кеплер). Наряду с этим обобщены результаты Великих географических открытий. Предметом изучения землеведения, по Б. Варениусу, является земноводный круг, состоящий из земли, воды, атмосферы, проникающих друг в друга. Однако значение человека и его деятельности было исключено.

Ведущей идеей этого периода был анализ взаимосвязей между различными частями природы. В разработке этой идеи большое значение имели работы Александра фон Гумбольдта (1769-1859), выдающегося немецкого ученого-энциклопедиста, натуралиста, путешественника. Есть мнение, что труды Б. Варениуса являются началом развития общего землеведения, а достижения Гумбольдта — это одна из замечательных вершин. А. Гумбольдт много путешествовал, изучал природу Европы, Центральной и Южной Америки, Урала, Сибири. Именно в его трудах доказано значение анализа взаимосвязей в качестве основной идеи всей географической науки. Анализируя взаимосвязи рельефа, климата, животного мира и растительности, А. Гумбольдт заложил основы географии растений и географии животных, учения о жизненных формах, климатологии, общего землеведения обосновал идею вертикальной и широтной зональности. В его работах «Путешествие в равноденственные области Нового света», т. 1-30 (1807-1834) и «Космос» развивается идея о земной поверхности как особой оболочке, где не только существует взаимосвязь, но и взаимодействие земли, воздуха, воды, наблюдается единство неорганической и органической природы. А. Гумбольдт впервые употребляет термины «жизнесфера», что по смыслу соответствует современному «биосфера», и «сфера разума», соответствующий «ноосфере».

Книга А. Гумбольдта «Картины природы» никого не может оставить равнодушным, поскольку в ней сочетаются достоверные факты и высокохудожественные описания природы. Его считают основоположником художественного ландшафтоведения.

Основателем первой кафедры географии в Берлинском университете является живший в одно время с А. Гумбольдтом Карл Риттер (1779-1859). В своих широко известных трудах по землеведению он рассматривал Землю как жилище рода человеческого, существующего благодаря силе Божественного провидения.

К. Риттер ввел в науку термин «землеведение». Он пытался количественно определить пространственные соотношения между разными объектами.

В многотомном труде «Земля и люди. Всеобщая география» Э. Реклю (1830-1905) достаточно подробно описывает большинство стран мира. Он считается основоположником современного страноведения.

Из учебных пособий по землеведению, выходивших в XIX в., следует отметить работы Э. Ленца (1851), А. Рихтгофена (1883), Э. Ленда (1851). Однако эти авторы исключали из своих работ биогеографию.

В России в XVIII-XIX вв. развитие географических идей связано с именами выдающихся ученых М. В. Ломоносова, В. Н. Татищева, С. П. Крашенинникова.

Материалистический подход к изучению явлений и процессов в природе особенно ярко наблюдался в трудах М. В. Ломоносова (1711 — 1765). В работе «О слоях земных» (1763) он изложил законы формирования рельефа Земли, в целом соответствующие современным представлениям.

В XIX-XX вв. в России выходили труды по географии П. П. Семенова-Тян-Шанского, Н. М. Пржевальского, В. А. Обручева, Д. Н. Анучина и др.

С 80-х годов XIX в. на передовых позициях в области общего землеведения оказалась Русская географическая школа. В работах В.В.Докучаева (1846-1903) «Русский чернозем» (1883) и А. И. Воейкова (1842-1916) «Климаты земного шара» вскрывается на примере почв и климата сложный механизм взаимодействия компонентов географической оболочки.

В. В. Докучаев в конце XIX в. открыл закон мировой географической зональности. Это было выдающееся теоретическое обобщение. В. В. Докучаев полагал, что зональность является всеобщим законом природы. Этот закон распространяется как на органическую, так и неорганическую природу. Естественно-исторические зоны, существующие на земном шаре, являются пространственным выражением этого закона. Зеркалом закона мировой географической зональности являются почвы, отражающие взаимодействие живой и неживой природы. Год выхода монографии «Русский чернозем» — 1883 г. — считается годом рождения новой самостоятельной науки — почвоведения. В. В. Докучаев стал основоположником научного почвоведения. В его труде «Русский чернозем» доказывается, что почва — это самостоятельное естественно-историческое тело, возникшее вследствие взаимодействия пяти факторов почвообразования: 1) материнской породы; 2) климата; 3) рельефа местности; 4) живых организмов (микроорганизмов, растений, животных); 5) возраста страны. Впоследствии присоединился еше один фактор — хозяйственная деятельность человека. В. В. Докучаев пришел к выводу, что необходимо изучать не только отдельные факторы, но и закономерные связи и взаимодействия между ними. Он показал, что с почвенными зонами тесно связаны сельскохозяйственные области. Отсюда следует, что в каждой зоне сельское хозяйство имеет свои особенности и свои методы решения производственных задач.

Вместе с В. В. Докучаевым самостоятельно работали его ученики и последователи: А. Н. Краснов, В. И. Вернадский, Г. И. Танфильсв, Г. Н. Высоцкий, К. Д. Глинка, С. А. Захаров, Л. И. Прасолов, Б. Б. Полынов и др. В 1894 г. в Петровской земледельческой и лесной академии (ныне Московская сельскохозяйственная академия им. К. А. Тимирязева) была создана кафедра почвоведения, которую возглавил В. Р. Вильяме (1863-1939). В его учебнике «Почвоведение», выдержавшем пять изданий, обосновывается идея тесной связи знаний о почвах с запросами земледелия. Ученик В. В. Докучаева и ботаника А. Н. Бекетова (Петербургский университет) А. Н. Краснов (1862-1914) в 1889 г. организовал кафедру географии в Харьковском университете, занимался изучением степей и зарубежных тропиков, создал Батумский ботанический сад. А. Н. Краснов обосновал черты научного землеведения, отличающие его от старой географии, в частности отыскание взаимной связи и взаимной обусловленности между явлениями природы, изучение генезиса (происхождения) явлений, а также изучение изменяющейся природы, а не статичной. Он создал первый русский учебник по общему землеведению для университетов. В учебнике А. Н. Краснов развивает новый взгляд на географию как науку, изучающую не отдельные явления и предметы, а географические комплексы — пустыни, степи и др.

Таким образом, на протяжении столетий — от Аристотеля до Докучаева — предмет изучения физической географии усложнялся от двумерной земной поверхности до объемной географической оболочки с тесными связями между компонентами, ее составляющими.

В учебнике «Курс физической географии» II. И. Броунов четко сформулировал идею о том, что наружная оболочка Земли состоит из четырех сферических составляющих: литосферы, атмосферы, гидросферы и биосферы, проникающих друг в друга: отсюда задачей физической географии является изучение этого взаимодействия. Его идеи оказали значительное влияние на дальнейшее развитие физической географии.

Мысль о том, что именно природная оболочка Земли является основным предметом изучения физической географии, развивалась постепенно, начиная с А. Гумбольдта.

Однако, что такое оболочка Земли, какие компоненты входят в нее, каковы ее границы, было неясно. Впервые эти вопросы были рассмотрены Андреем Александровичем Григорьевым (1883- 1968) в 1932 г. в статье «Предмет и задачи физической географии».

В этой статье А. А. Григорьев впервые предложил термин «физико-географическая оболочка», в частности, он полагал, что «земная поверхность представляет качественно особую вертикальную физико-географическую зону или оболочку, характеризующуюся глубоким взаимопроникновением и активным взаимодействием литосферы, атмосферы и гидросферы, возникновением и развитием именно в ней органической жизни, наличием в ней сложного, но единого физико-географического процесса». В 1937 г. выходит монография А. А. Григорьева, в которой он лает подробное обоснование географической оболочки как основного предмета физической географии, рассматривает границы географической оболочки и методы ее изучения.

Примерно в это же время Л.С. Берг развивает учение В. В. Докучаева о географических зонах и разрабатывает учение о ландшафтах. Ряд ученых в конце 1940-х годов развернули дискуссию, пытаясь противопоставить учение А. А. Григорьева и Л. С. Берга. Однако в фундаментальной работе С. В. Калесника «Основы общего землеведения» (1947, 1955) было доказано, что эти два направления не противоречат, а взаимно дополняют друг друга.

Качественно новый этап в изучении географической оболочки наступил после запусков искусственных спутников Земли, полета 12 апреля 1961 г. Юрия Алексеевича Гагарина, выведения многочисленных лабораторий в ближний и дальний космос. Это дало возможность изучать географическую оболочку со стороны. Всех космонавтов восхищала красота Земли, наблюдаемая из космоса, и вместе с тем очевидным стало глобальное загрязнение человеком ее поверхности. Сохранение чистоты географической оболочки стало насущной задачей человечества, а теория охраны окружающей человека среды — основой современного землеведения.

Сегодня — это одна из основных отраслей в системе географических наук, изучающая закономерности географической оболочки, ее пространственно-временную организацию и дифференциацию; круговорот веществ, энергии и информации; ее функционирование, динамику и эволюцию. Современное землеведение исследует геосферы, слагающие географическую оболочку, следит за их состоянием, составляет региональные и глобальные прогнозы ее развития.

Все эти задачи землеведения решаются на базе как традиционных и новых методов географических исследований (картографического, статистического, геофизического и др.), так и новейших достижений геоинформатики, дистанционного зондирования, космического землеведения.