Основы интегрального исчисления. Интегральное исчисление

Интегральное исчисление, раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением и составляет вместе с ним одну из основных частей математического анализа (или анализа бесконечно малых). Центральными понятиями И. и. являются понятия определённого интеграла и неопределённого интеграла функций одного действительного переменного.

Определённый интеграл. Пусть требуется вычислить площадь S «криволинейной трапеции» - фигуры ABCD (см. рис. ), ограниченной дугой непрерывной линии, уравнение которой у = f (x ), отрезком AB оси абсцисс и двумя ординатами AD и BC. Для вычисления площади S этой криволинейной трапеции основание AB (отрезок [a , b ]) разбивают на n участков (необязательно равных) точками а = x 0 < x 1 < ... < x n-1 < < x n = b , обозначая длины этих участков D x 1 , D x 2 , ..., D x n ; на каждом таком участке строят прямоугольники с высотами f (x 1), f (x 2), ..., f (x n ) где x k - некоторая точка из отрезка [x k - 1 , x k ] (на рис. заштрихован прямоугольник, построенный на k-м участке разбиения; f (x k) - его высота). Сумма S n площадей построенных прямоугольников рассматривается в качестве приближения к площади S криволинейной трапеции:

S » S n = f (x 1) D x 1 + f (x 2) D x 2 + f (x n ) D x n

или, применяя для сокращения записи символ суммы S (греческая буква «сигма»):

Указанное выражение для площади криволинейной трапеции тем точнее, чем меньше длины D x k участков разбиения. Для нахождения точного значения площади S надо найти предел сумм S n в предположении, что число точек деления неограниченно увеличивается и наибольшая из длин D x k стремится к нулю.

Отвлекаясь от геометрического содержания рассмотренной задачи, приходят к понятию определённого интеграла от функции f (x ), непрерывной на отрезке [а, b ], как к пределу интегральных сумм S n при том же предельном переходе. Этот интеграл обозначается

Символ ò (удлинённое S - первая буква слова Summa) называется знаком интеграла, f (x ) - подинтегральной функцией, числа а и b называются нижним и верхним пределами определённого интеграла. Если а = b , то, по определению, полагают

кроме того,

Свойства определённого интеграла:

(k - постоянная). Очевидно также, что

(численное значение определённого интеграла не зависит от выбора обозначения переменной интегрирования).

К вычислению определённых интегралов сводятся задачи об измерении площадей, ограниченных кривыми (задачи «нахождения квадратур»), длин дуг кривых («спрямление кривых»), площадей поверхностей тел, объёмов тел («нахождение кубатур»), а также задачи определения координат центров тяжести, моментов инерции, пути тела по известной скорости движения, работы, производимой силой, и многие другие задачи естествознания и техники. Например, длина дуги плоской кривой, заданной уравнением у = f (x ) на отрезке [a , b ], выражается интегралом

объём тела, образованного вращением этой дуги вокруг оси Ox ,- интегралом

поверхность этого тела - интегралом

Фактическое вычисление определённых интегралов осуществляется различными способами. В отдельных случаях определённый интеграл можно найти, непосредственно вычисляя предел соответствующей интегральной суммы. Однако большей частью такой переход к пределу затруднителен. Некоторые определённые интегралы удаётся вычислять с помощью предварительного отыскания неопределённых интегралов (см. ниже). Как правило же, приходится прибегать к приближённому вычислению определённых интегралов, применяя различные квадратурные формулы (например, трапеций формулу , Симпсона формулу ). Такое приближённое вычисление может быть осуществлено на ЭВМ с абсолютной погрешностью, не превышающей любого заданного малого положительного числа. В случаях, не требующих большой точности, для приближённого вычисления определённых интегралов применяют графические методы (см. Графические вычисления ).

Понятие определённого интеграла распространяется на случай неограниченного промежутка интегрирования, а также на некоторые классы неограниченных функций. Такие обобщения называются несобственными интегралами .

Выражения вида

где функция f (x , a ) непрерывна по x называются интегралами, зависящими от параметра. Они служат основным средством изучения многих специальных функций (см., например, Гамма-функция ).

Неопределённый интеграл. Нахождение неопределённых интегралов, или интегрирование, есть операция, обратная дифференцированию. При дифференцировании данной функции ищется её производная. При интегрировании, наоборот, ищется первообразная (или примитивная) функция - такая функция, производная которой равна данной функции. Таким образом, функция F (x ) является первообразной для данной функции f (x ), если F" (x ) = f (x ) или, что то же самое, dF (x ) = f (x ) dx. Данная функция f (x ) может иметь различные первообразные, но все они отличаются друг от друга только постоянными слагаемыми. Поэтому все первообразные для f (x ) содержатся в выражении F (x ) + С , которое называют неопределённым интегралом от функции f (x ) и записывают

Определённый интеграл как функция верхнего предела интегрирования

(«интеграл с переменным верхним пределом»), есть одна из первообразных подинтегральной функции. Это позволяет установить основную формулу И. и. (формулу Ньютона - Лейбница):

выражающую численное значение определённого интеграла в виде разности значений какой-либо первообразной подинтегральной функции при верхнем и нижнем пределах интегрирования.

Взаимно обратный характер операций интегрирования и дифференцирования выражается равенствами

Отсюда следует возможность получения из формул и правил дифференцирования соответствующих формул и правил интегрирования (см. табл., где C , m , a , k - постоянные и m ¹ -1, а > 0).

Таблица основных интегралов и правил интегрирования

¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

Трудность И. и. по сравнению с дифференциальным исчислением заключается в том, что интегралы от элементарных функций не всегда выражаются через элементарные, могут не выражаться, как говорят, «в конечном виде». И. и. располагает лишь отдельными приёмами интегрирования в конечном виде, область применения каждого из которых ограничена (способы интегрирования излагаются в учебниках математического анализа: обширные таблицы интегралов приводятся во многих справочниках).

К классу функций, интегралы от которых всегда выражаются в элементарных функциях, принадлежит множество всех рациональных функций

где P (x ) и Q (x ) - многочлены. Многие функции, не являющиеся рациональными, также интегрируются в конечном виде, например функции, рационально зависящие от

или же от x и рациональных степеней дроби

В конечном виде интегрируются и многие трансцендентные функции, например рациональные функции синуса и косинуса. Функции, которые изображаются неопределёнными интегралами, не берущимися в конечном виде, представляют собой новые трансцендентные функции. Многие из них хорошо изучены (см., например, Интегральный логарифм , Интегральный синус и интегральный косинус , Интегральная показательная функция ).

Понятие интеграла распространяется на функции многих действительных переменных (см. Кратный интеграл , Криволинейный интеграл , Поверхностный интеграл ), а также на функции комплексного переменного (см. Аналитические функции ) и вектор-функции (см. Векторное исчисление ).

О расширении и обобщении понятия интеграла см. ст. Интеграл .

Историческая справка. Возникновение задач И. и. связано с нахождением площадей и объёмов. Ряд задач такого рода был решен математиками Древней Греции. Античная математика предвосхитила идеи И. и. в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывания метод , созданный Евдоксом Книдским и широко применявшийся Архимедом . Однако Архимед не выделил общего содержания интеграционных приёмов и понятия об интеграле, а тем более не создал алгоритма И. и. Учёные Среднего и Ближнего Востока в 9-15 вв. изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в И. и. они не получили. Деятельность европейских учёных в это время была ещё более скромной. Лишь в 16 и 17 вв. развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождения квадратур, кубатур и определение центров тяжести. Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов дальнейшего развития И. и. Античный «неделимых» метод был возрожден И. Кеплером . В более общей форме идеи этого метода были развиты Б. Кавальери , Э. Торричелли , Дж. Валлисом , Б. Паскалем . Методом «неделимых» был решен ряд геометрических и механических задач. К этому же времени относятся опубликованные позднее работы П. Ферма по квадрированию парабол n -й степени, а затем - работы Х. Гюйгенса по спрямлению кривых.

В итоге этих исследований выявилась общность приёмов интегрирования при решении внешне несходных задач геометрии и механики, приводившихся к квадратурам как к геометрическому эквиваленту определённого интеграла. Заключительным звеном в цепи открытий этого периода было установление взаимно обратной связи между задачами на проведение касательной и на квадратуры, т. е. между дифференцированием и интегрированием. Основные понятия и алгоритм И. и. были созданы независимо друг от друга И. Ньютоном и Г. Лейбницем . Последнему принадлежит термин «интегральное исчисление» и обозначение интеграла ò ydx.

При этом в работах Ньютона основную роль играло понятие неопределённого интеграла (флюенты, см. Флюксий исчисление ), тогда как Лейбниц исходил из понятия определённого интеграла. Дальнейшее развитие И. и. в 18 в. связано с именами И. Бернулли и особенно Л. Эйлера . В начале 19 в. И. и. вместе с дифференциальным исчислением было перестроено О. Коши на основе теории пределов. В развитии И. и. в 19 в. приняли участие русские математики М. В. Остроградский , В. Я. Буняковский , П. Л. Чебышев . В конце 19 - начале 20 вв. развитие теории множеств и теории функций действительного переменного привело к углублению и обобщению основных понятий И. и. (Б. Риман , А. Лебег и др.).

Лит.: История. Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Строек Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М.. Vorleslingen ü ber Geschichte der Mathematik, 2 Aufl., Bd 3-4, Lpz. - B., 1901-24.

Работы основоположников и классиков И. и. Ньютон И., Математические работы, пер. с латин., М.-Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с. латин., «Успехи математических наук», 1948, т. 3, в. 1; Эйлер Л., Интегральное исчисление, пер. с латин., тт. 1-3, М., 1956-58; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864.

Учебники и учебные пособия по И. и. Хинчин Д. Я., Краткий курс математического анализа, 3 изд., 1957; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Ильин В., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Двайт Г.-Б., Таблицы интегралов и другие математические формулы, пер. с англ., М., 1964.

Под редакцией академика А. Н. Колмогорова.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Введение

Символ интеграла введен с 1675 г., а вопросами интегрального исчисления занимаются с 1696 г. Хотя интеграл изучают, в основном, ученые-математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ т введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a) Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования «восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инте грал иное: слово integer означает целый.

В ходе переписки И. Бернулли и Г. Лейбниц согласил ись с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики-интегральное исчисление (calculus integralis), которое ввел И. Бернулли.

Другие известные термины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило бол ее раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»: F(x) = т f(x)dx - начальная (или первоначальная, или первообразная) для f (x), которая получается из F(x) дифференцированием.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную b, называют определенным интегралом (обозначение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эйлер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т.е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикальных отрезков длиной f(х), которым, тем не менее, приписывали площадь, равную бесконечно малой величине f(х)dx . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

1609 г. и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э. Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1, б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения

y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b - а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1, в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезны м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу т хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т.п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В. Остроградский (1801-1862), В.Я. Буняковский (1804-1889), П.Л. Чебышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков, немецкого ученого Б. Римана (1826-1866), французского математика Г. Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875-1941) и А. Данжуа (188 4-1974), советским математиком А.Я. Хинчинчиным (1894-1959).

(287 г. до н. э. - 212 г. до н. э.): в сочинении «Об измерении длины окружности» рассматривается вопрос об определении площади и длины окружности круга, а в трактате «О шаре и цилиндре» - о поверхностях и объёмах некоторых тел. Для решения этих задач Архимед использовал метод исчерпывания Евдокса Книдского (ок. 408 г. до н. э. - ок. 355 г. до н. э.).

Таким образом, интегральное исчисление возникло из потребности создания общего метода нахождения площадей, объёмов и центров тяжести.

Систематическое развитие эти методы получают в XVII веке в работах Кавальери (1598-1647), Торричелли (1608-1647), П. Ферма (1601-1665), Б. Паскаля (1623-1662) и других учёных. Но их изыскания в основном имели разрозненный и утилитарный характер - решались конкретные самостоятельные задачи. В 1659 году И. Барроу (1630-1677) установил взаимосвязь между задачей о нахождении площади и задачей о нахождении касательной.

Основы классического интегрального исчисления были заложены в работах И. Ньютона (1643-1727) и Г. Лейбница (1646-1716), которые в 70-х годах XVII века отвлеклись от упомянутых частных прикладных задач и установили связь между интегральным и дифференциальным исчислением. Это позволило Ньютону, Лейбницу и их ученикам развить технику интегрирования. Своего нынешнего состояния методы интегрирования в основном достигли в работах Л. Эйлера (1707-1783). Развитие методов завершили труды М. В. Остроградского (1801-1861) и П. Л. Чебышёва (1821-1894).

Рисунок 1.1. Геометрическая интерпретация интеграла Римана.

Исторически под интегралом понимали площадь криволинейной трапеции, образованной заданной кривой и осью координат. Для нахождения этой площади отрезок a b {\displaystyle ab} разбивали на n {\displaystyle n} необязательно равных частей и строили ступенчатую фигуру (на она заштрихована). Её площадь равна

F n = y 0 d x 0 + y 1 d x 1 + … + y n − 1 d x n − 1 , {\displaystyle F_{n}=y_{0}\,dx_{0}+y_{1}\,dx_{1}+\ldots +y_{n-1}\,dx_{n-1},} (1.1)

где y i {\displaystyle y_{i}} - значение функции f (x) {\displaystyle f(x)} в i {\displaystyle i} -той точке ( i = 0 , 1 , … , n − 1 {\displaystyle i=0,\;1,\;\ldots ,\;n-1} ), а d x i = x i + 1 − x i {\displaystyle dx_{i}=x_{i+1}-x_{i}} .

Г. Лейбниц в конце XVII века обозначил предел этой суммы как

∫ y d x . {\displaystyle \int y\,dx.} (1.2)

На тот момент понятие предела ещё не сформировалось, поэтому Лейбниц ввёл новый символ для суммы бесконечного числа слагаемых ∫ {\displaystyle \int } - видоизменённую курсивную латинскую « » - первую букву лат. summa (сумма).

Слово «интеграл» происходит от лат. integralis - целостный. Это название было предложено учеником Лейбница Иоганном Бернулли (1667-1748), чтобы отличить «сумму бесконечного числа слагаемых» от обычной суммы.

В дальнейшем обозначение Лейбница усовершенствовал Ж. Фурье (1768-1830). Он явно стал указывать начальное и конечное значение x {\displaystyle x} :

∫ a b y d x {\displaystyle \int \limits _{a}^{b}y\,dx} (1.3)

введя тем самым современное обозначение определённого интеграла .

В теории определённых интегралов интегрирование рассматривается как процесс обобщения суммирования на случай бесконечно большего числа бесконечно малых выражений. Таким образом, результатом определённого интегрирования (в случае его возможности) является некое число (в обобщениях, бесконечность).

Неопределённый интеграл суть функция (точнее, семейство функций).

Интегрирование, в противоположность дифференцированию, рассматривается как искусство, что связано в первую очередь с малым количеством закономерностей, которым бы удовлетворяли все интегралы. При этом для существования интеграла, по основной теореме интегрального исчисления, необходима лишь непрерывность интегрируемой функции. Факт существования интеграла не даёт хоть какого-нибудь способа его нахождения в замкнутой форме, то есть в виде конечного числа операций над элементарными функциями . Многое в вопросе о нахождении интегралов в замкнутой форме было решено в работах Ж. Лиувилля (1809-1882). Дальнейшее развитие эта тема получила в работах, посвящённых разработке алгоритмов символьного интегрирования с использованием ЭВМ. В качестве примера можно привести алгоритм Риша .

Желая подчеркнуть обратность интегрирования по отношению к дифференцированию, некоторые авторы, используют термин «антидифференциал» и обозначают неопределённый интеграл символом D − 1 {\displaystyle D^{-1}} .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Первообразная фу нкция и неопределенный интеграл

Интегральное исчисление является второй частью курса математического анализа, непосредственно следующей за дифференциальным исчислением. Само понятие интеграла наряду с понятием производной и дифференциала является фундаментальным понятием математического анализа. Это понятие возникло, с одной стороны из потребности решать задачи на вычисление площади, длины окружности, объёма, работы переменной силы, центра тяжести и т.д., с другой - из необходимости находить функции по их производным.

В соответствии с этим возникли понятия определённого и неопределённого интегралов.

Как известно, основная задача дифференциального исчисления заключается в отыскании производной или дифференциала заданной функции.

Можно поставить обратную задачу: по данной функции f(x) найти такую функцию F(x) , которая удовлетворяла условию F?(x)=f(x) или dF(x)=f(x)dx. Отыскание функции по заданной её производной или дифференциалу и является одной из основных задач интегрального исчисления.

К задаче восстановления функции по ее производной или дифференциалу приводят самые разнообразные вопросы математического анализа с его многочисленными приложениями в области геометрии, механики, физики, техники.

Приведём пример, с такого рода задачей мы встречаемся, когда по заданной скорости движения материальной точки v=f(t) требуется найти закон движения этой точки, то есть зависимость пройденного точкой пути s от времени t . В дифференциальном исчислении мы имели дело с обратной задачей. Там по заданному закону движения s=s(t) путем дифференцирования функции s(t) мы находили скорость v этого движения, то есть v(t)=s?(t). Следовательно, в поставленной выше задаче мы должны по данной функции v=f(t) восстановить функцию s=s(t), для которой f(t) является производной.

Определение. Функция F(х) называется первообразной функцией для функции f(x) на промежутке X, если в каждой точке х этого промежутка F"(x)=f(x).

Таким образом, функция s(t)- переменный путь - есть первообразная для скорости v=f(t).

Функция sin x является первообразной для функции cos x на всей оси Ох, так как при любом значении х мы будем иметь: (sin x)?=cos x.

является первообразной для функции, так как.

По геометрическому смыслу производной F"(x) есть угловой коэффициент касательной к кривой у=F(х) в точке с абсциссой х. Геометрически найти первообразную для f(х) -- значит найти такую кривую у=F(х), что угловой коэффициент касательной к ней в произвольной точке х равен значению f(х) заданной функции в этой точке (см. рис. 1.1).

Для заданной функции f(х) ее первообразная определена неоднозначно. Дифференцируя, нетрудно убедиться, что функции, и вообще, где С --некоторое число, являются первообразными для функции f(х)=х2. Аналогично в общем случае, если F(х) -- некоторая первообразная для f(х), то, поскольку (Fх)+ С)"= F"(x)=f(x), функции вида F(х)+ С, где С -- произвольное число, также являются первообразными для f(х).

Геометрически это означает, что если найдена одна кривая у=F(х), удовлетворяющая условию F"(x)=tg б=f(х), то, сдвигая ее вдоль оси ординат, мы вновь получаем кривые, удовлетворяющие указанному условию (поскольку такой сдвиг не меняет углового коэффициента касательной в точке с абсциссой х) (см. рис. 1.1).

Остается вопрос, описывает ли выражение вида F(х)+С все первообразные для функции f(х). Ответ на него дает следующая теорема.

Теорема. Если F1 (х) и F2 (х) -- первообразные для функции f(х) на некотором промежутке X, то найдется такое число С, что будет справедливо равенство

F2 (х)= F1 (x)+ С.

Поскольку (F2(x)-F1(x))"=F"2 (x)-F" 1 (х)=f(х)-f(х)=0, то, по следствию из теоремы Лагранжа (см. § 8.1), найдется такое число С, что F2 (х)- F1 (х)= С или F2 (х)=F1 (х)+ С

Из данной теоремы следует, что, если F(х) -- первообразная для функции f(х), то выражение вида F(х)+С, где С -- произвольное число, задает все возможные первообразные для f(х).

Определение. Совокупность всех первообразных для функции f(х) на промежутке X называется неопределенным интегралом от функции f(х) и обозначается f(x) dx, где -знак интеграла, f(х) -- подынтегральная функция, f(x)dx -- подынтегральное выражение, а переменная х - переменной интегрирования.

Итак по определению,

f(x) dx=F(x)+C (1.1)

где F(х) -- некоторая первообразная для f(х), С -- произвольная постоянная.

Таким образом, неопределённый интеграл от какой-нибудь функции представляет собой общий вид всех первообразных для этой функции.

Формула (1.1) показывает, что если известна какая-нибудь первообразная функция для f(x), то тем самым известен ее неопределенный интеграл, и, следовательно, задача отыскания какой-нибудь определенной первообразной для f(x) равносильна задаче отыскания ее неопределенного интеграла.

В этой связи естественно возникает вопрос: для всякой ли функции f(x) , заданной на некотором промежутке, существует первообразная F(x) (а значит и неопределённый интеграл)? Оказывается, что не для всякой. Однако если f(x) непрерывна на каком-нибудь промежутке, то она имеет на нём первообразную (а следовательно, и неопределенный интеграл). В случае разрывной функции речь будет идти лишь об интегрировании ее в одном из промежутков непрерывности.

Например, функция имеет разрыв только при х=0. Поэтому промежутками непрерывности для неё будут (0, +?) и (-?, 0). В первом из них одной из первообразных для является ln(x). Следовательно,

Однако для х из промежутка (-?, 0) эта формула уже лишена смысла (так как ln(x) при х<0 не определён) . В этом случае одной из первообразных для будет уже не ln(x), а ln(-x), ибо

И, стало, быть,

Объединяя оба случая, мы приходим к формуле:

Восстановление функции по ее производной, или, что то же, отыскание неопределенного интеграла по данной подынтегральной функции, называют интегрированием.

Поскольку интегрирование - обратное действие по отношению к дифференцированию, то благодаря этому проверка правильности результата интегрирования осуществляется дифференцированием последовательного: дифференцирование должно дать подынтегральную функцию.

Проверить, что

Действительно, Следовательно, интеграл взят верно.

Вернёмся теперь к поставленной в начале механической задаче: к определению пройденного пути s по заданной скорости движения v=f(t). Так как скорость движущейся точки есть производная от пути по времени, то задача сводится к отысканию первообразной для функции v=f(t) . Следовательно,

Пусть для определенности нам дано, что скорость движения точки пропорционально времени t , то есть и v=at, где а - коэффициент пропорциональности. Тогда согласно формуле мы имеем:

Где С - произвольная постоянная. Мы получили бесчисленное множество решений, отличающихся друг от друга на постоянное слагаемое. Эта неопределенность объясняется тем, что мы не фиксировали того момента времени t , от которого отсчитывается пройденный путь s . Чтобы получить вполне определенное решение задачи, достаточно знать величину s= в какой-нибудь начальный момент времени t= - это так называемые начальные значения. Пусть, например, нам известно, что в начальный момент времени t=0 путь s=0. Тогда, полагая в равенстве t=0, s=0, находим 0=0+С, откуда С=0. Следовательно, искомый закон движения точки выражается формулой.

Интеграл и задача об определении площади. Гораздо важнее истолкование первообразной функции как площади криволинейной фигуры. Так как исторически понятие первообразной функции было теснейшим образом связано с задачей об определении площади, то мы остановимся на этой задаче уже здесь.

Пусть дана в промежутке [а, b] непрерывная функция у=f(х), принимающая лишь положительные (неотрицательные) значения. Рассмотрим фигуру ABCD ,

ограниченную кривой у = f(x), двумя ординатами х = а и х = b и отрезком оси х; подобную фигуру будем называть криволинейной трапецией. Желая определить величину площади Р этой фигуры, мы изучим поведение площади переменной фигуры AMND, заключенной между начальной ординатой х = а и ординатой, отвечающей произвольно выбранному в промежутке значению х. При изменении х эта последняя площадь будет соответственно изменяться, причем каждому x отвечает вполне определенное ее значение, так что площадь криволинейной трапеций AMND является некоторой функцией от х; обозначим ее через Р(х).

Поставим себе сначала задачей найти производную этой функции. С этой целью придадим х некоторое (скажем, положительное) приращение Дх; тогда площадь Р(х) получит приращение ДР.

Обозначим через m и М, соответственно, наименьшее и наибольшее значения функции f(x) в промежутке [х,х + Дх] и сравним площадь ДР с площадями прямоугольников, построенных на основании Дх и имеющих высоты т и М. Очевидно, Дх<ДР<М Дх, откуда

Если Дх>0, то, вследствие непрерывности, т и М будут стремиться к f(x), а тогда и

Таким образом, мы приходим к теореме (обычно называемой теоремой Ньютона и Лейбниц а): производная от переменной площади P(x) по конечной абсциссе х равна конечной ординате у = f(x). Иными словами, переменная площадь Р(х) представляет собой первообразную функцию для данной функции у = f(x). В ряду других первообразных эта первообразная выделяется по тому признаку, что она обращается в 0 при х = а. Поэтому, если известна какая-либо первообразная F(x) для функции f(x),

P(x) = F(x) + C,

то постоянную С легко определить, положив здесь х = а

так что C=-F(a).

Окончательно

В частности, для получения площади Р всей криволинейной трапеции ABCD нужно взять х =b:

Р = F(b) - F(a).

В виде примера, найдем площадь Р(х) фигуры, ограниченной параболой у = ах2, ординатой, отвечающей данной абсциссе х, и отрезком оси х;

так как парабола пересекает ось х в начале координат, то начальное значение х здесь 0. Для функции f(x) = ax2 легко найти первообразную: F(x) = Эта функция как раз и обращается в 0 при х=0, так что

Ввиду той связи, которая существует между вычислением интегралов и нахождением площадей плоских фигур, т. е. квадратурой их, стало обычным и самое вычисление интегралов называть квадратурой.

Для распространения всего сказанного выше на случай функции, принимающей и отрицательные значения, достаточно условиться считать отрицательными площади частей фигуры, расположенных под осью х.

Таким образом, какова бы ни была непрерывная в промежутке [а, b] функция f(x), всегда можно представить себе первообразную для нее функцию в виде переменной площади фигуры, ограниченной графиком данной функции. Однако считать эту геометрическую иллюстрацию доказательством существования первообразной, разумеется, нельзя, поскольку самое понятие площади еще не обосновано.

2. Свойства неопределенного интегра ла

1.Производная неопределенного интеграла равна подынтегральной функции, т.е.

Дифференцируя левую и правую часть равенства (2.1) , получаем:

интеграл первообразная функция производная

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению: т.е. (2.2)

По определению дифференциала и свойству 1 имеем

3.Неопределенного интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная:

где С - произвольное число

Рассматривая функцию F(х) как первообразную для некоторой функции f(х), можно записать

и на основании (2.2) дифференциал неопределенного интеграла f(x)dx=dF(x), откуда

Сравнивая между собой свойства 2 и 3, можно сказать, что операции нах ождения неопределённого интеграла и дифференциала взаимнообратны (знаки d и взаимно уничтожают друг друга, в случае свойства 3, с точностью до постоянного слагаемого).

4. Постоянный множитель можно выносить за знак интеграла, т.е. если б=const?0 , то

где б-- некоторое число.

Найдем производную функции:

(см. свойство 1). По следствию из теоремы Лагранжа найдется такое число С, что g(x)=С и значит. Так как сам неопределенный интеграл находится с точностью до постоянного слагаемого, то в окончательной записи свойства 4 постоянную С можно опустить.

5.Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, т.е.

Действительно, пусть F(x) и G(x) - первообразные для функции f(x) и g(x):

Тогда функции F(x)±G(x) являются первообразными для функции f(x)±g(x). Следовательно,

Свойство 5 справедливо для любого конечного числа слагаемых функций.

3. Таблица основных интегралов

Приведём таблицу основных интегралов. Таблица интегралов вытекает непосредственно из определения неопределённого интеграла и таблицы производных.

А<х<а, а>0

Интегралы, содержащиеся в этой таблице, принято называть табличными.

Так как неопределенный интеграл не зависит от выбора переменной интегрирования, то все табличные интегралы имеют место для любой переменной.

Процесс нахождения первообразной сводится к преобразованию подынтегральной функции к табличному виду.

Простейшие интегралы могут быть найдены путем разложения подынтегральной функции на слагаемые. В состав каждого интеграла входит постоянная интегрирования, но все они могут быть объединены в одну, поэтому обычно при интегрировании алгебраической суммы функций пишут только одну постоянную интегрирования.

4 . Примеры нахождения интегралов

Существуют целые классы интегралов, которые в зависимости от постоянных сомножителей или показателей степеней могут быть найдены по обобщенным формулам интегрирования. Приведем некоторые из них.

где P(х) -- целый относительно х многочлен.

где n -- любое вещественное число п?- 1; т = 1,2,3,...

9. Если обозначить

(n = 1,2, 3,...), то

12. (n=1,2,…);

13. (п=1,2,…);

1.1. Найти интегралы:

а) Представим интеграл как сумму интегралов и воспользуемся табличными интегралами

Проверка:

т. е. производная равна подынтегральной функции.

б) Внесем первый множитель в скобки и представим интеграл в виде разности двух интегралов

в) Сделаем следующие преобразования

г) Вычтем и прибавим в числителе единицу

д) Заменим корни отрицательными степенями и представим интеграл в виде разности двух интегралов

е) Считаем, что в числителе множителем стоит тригонометрическая единица

1 = sin2 х + cos2 х, тогда

1.2. Найти интегралы:

а) Представим 9 как 32 и воспользуемся табличным интегралом (14), где а =3

б) Приведем подынтегральную функцию к виду и воспользуемся табличным интегралом (8)

в) Воспользуемся табличным интегралом (10)

г) Объединим множители в подынтегральной функции и воспользуемся табличным интегралом (4)

д) Преобразуем следующим образом

Метод интегрирования, основанный на применении свойств 4 и 5, называется методом разложения. 1.3. Используя метод разложения, найти интегралы:

Решение. Нахождение каждого из интегралов начинается с преобразования подынтегральной функции. В задачах а) и б) воспользуемся соответствующими формулами сокращенного умножения и последующим почленным делением числителя на знаменатель:

(см. табличные интегралы (2) и (3)). Обращаем внимание на то, что в конце решения записываем одну общую постоянную С, не выписывая постоянных от интегрирования отдельных слагаемых. В дальнейшем мы будем опускать при записи постоянные от интегрирования отдельных слагаемых до тех пор, пока выражение содержит хотя бы один неопределенный интеграл. В окончательном ответе тогда будет одна постоянная.

в) Преобразуя подынтегральную функцию, получим

(см. табличный интеграл (6)).

г) Выделяя из дроби целую часть, получим

(см. табличный интеграл (9)).

Литература

1. Черненко В. Д. Высшая математика в примерах и задачах: В 3 т.: Т. 1..-- СПб.: Политехника, 2003.-- 703 е.: ил.

2. Кремер Н.Ш. Высшая математика для экономистов-М.: ЮНИТИ, 2004-471с.

3. Шипачев В.С. Высшая математика. Учеб. для вузов.-4-е изд. Стер.-М.: Высшая школа. 1998.-479с.: ил.

4. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: В 3т.: Т. 2..-810с.

Размещено на Allbest.ru

Подобные документы

    Первообразная функции и неопределенный интеграл. Геометрический смысл производной. Совокупность всех первообразных для функции f(x) на промежутке Х. Понятие подынтегрального выражения. Проверка правильности результата интегрирования, примеры задач.

    презентация , добавлен 18.09.2013

    Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

    шпаргалка , добавлен 21.08.2009

    Первообразная и неопределенный интеграл. Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Рациональные дроби. Простейшие рациональные дроби.

    реферат , добавлен 16.01.2006

    Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.

    курсовая работа , добавлен 21.10.2011

    Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.

    задача , добавлен 02.10.2009

    Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация , добавлен 11.09.2011

    Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

    курсовая работа , добавлен 21.01.2008

    Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.

    контрольная работа , добавлен 28.03.2014

    Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация , добавлен 15.01.2014

    Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.

Интегральное исчисление

раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением (См. Дифференциальное исчисление) и составляет вместе с ним одну из основных частей математического анализа (или анализа бесконечно малых). Центральными понятиями И. и. являются понятия определённого интеграла и неопределённого интеграла функций одного действительного переменного.

Определённый интеграл. Пусть требуется вычислить площадь S «криволинейной трапеции» - фигуры ABCD (см. рис. ), ограниченной дугой непрерывной линии, уравнение которой у = f (x ), отрезком AB оси абсцисс и двумя ординатами AD и BC. Для вычисления площади S этой криволинейной трапеции основание AB (отрезок [a , b ]) разбивают на n участков (необязательно равных) точками а = x 0 x 1 x n-1 x n = b , обозначая длины этих участков Δx 1 , Δx 2 , ..., Δx n ; на каждом таком участке строят прямоугольники с высотами f (ξ 1), f (ξ 2), ..., f n ) где ξ k - некоторая точка из отрезка [x k - 1 , x k ] (на рис. заштрихован прямоугольник, построенный на k-м участке разбиения; f (ξ k) - его высота). Сумма S n площадей построенных прямоугольников рассматривается в качестве приближения к площади S криволинейной трапеции:

S S n = f (ξ 1) Δx 1 + f (ξ 2) Δx 2 + f n ) Δx n

или, применяя для сокращения записи символ суммы Σ (греческая буква «сигма»):

Указанное выражение для площади криволинейной трапеции тем точнее, чем меньше длины Δx k участков разбиения. Для нахождения точного значения площади S надо найти Предел сумм S n в предположении, что число точек деления неограниченно увеличивается и наибольшая из длин Δx k стремится к нулю.

Отвлекаясь от геометрического содержания рассмотренной задачи, приходят к понятию определённого интеграла от функции f (x ), непрерывной на отрезке [а, b ], как к пределу интегральных сумм S n при том же предельном переходе. Этот интеграл обозначается

Символ ∫ (удлинённое S - первая буква слова Summa) называется знаком интеграла, f (x ) - подинтегральной функцией, числа а и b называются нижним и верхним пределами определённого интеграла. Если а = b , то, по определению, полагают

Свойства определённого интеграла:

(k - постоянная). Очевидно также, что

К вычислению определённых интегралов сводятся задачи об измерении площадей, ограниченных кривыми (задачи «нахождения квадратур»), длин дуг кривых («спрямление кривых»), площадей поверхностей тел, объёмов тел («нахождение кубатур»), а также задачи определения координат центров тяжести, моментов инерции, пути тела по известной скорости движения, работы, производимой силой, и многие другие задачи естествознания и техники. Например, длина дуги плоской кривой, заданной уравнением у = f (x ) на отрезке [a , b ], выражается интегралом

объём тела, образованного вращением этой дуги вокруг оси Ox ,- интегралом

Фактическое вычисление определённых интегралов осуществляется различными способами. В отдельных случаях определённый интеграл можно найти, непосредственно вычисляя предел соответствующей интегральной суммы. Однако большей частью такой переход к пределу затруднителен. Некоторые определённые интегралы удаётся вычислять с помощью предварительного отыскания неопределённых интегралов (см. ниже). Как правило же, приходится прибегать к приближённому вычислению определённых интегралов, применяя различные Квадратурные формулы (например, трапеций формулу (См. Трапеций формула), Симпсона формулу (См. Симпсона формула)). Такое приближённое вычисление может быть осуществлено на ЭВМ с абсолютной погрешностью, не превышающей любого заданного малого положительного числа. В случаях, не требующих большой точности, для приближённого вычисления определённых интегралов применяют графические методы (см. Графические вычисления).

Понятие определённого интеграла распространяется на случай неограниченного промежутка интегрирования, а также на некоторые классы неограниченных функций. Такие обобщения называются несобственными интегралами (См. Несобственные интегралы).

Выражения вида

где функция f (x , α) непрерывна по x называются интегралами, зависящими от параметра. Они служат основным средством изучения многих специальных функций (См. Специальные функции) (см., например, Гамма-функция).

Неопределённый интеграл. Нахождение неопределённых интегралов, или интегрирование, есть операция, обратная дифференцированию. При дифференцировании данной функции ищется её производная. При интегрировании, наоборот, ищется первообразная (или примитивная) функция - такая функция, производная которой равна данной функции. Таким образом, функция F (x ) является первообразной для данной функции f (x ), если F" (x ) = f (x ) или, что то же самое, dF (x ) = f (x ) dx. Данная функция f (x ) может иметь различные первообразные, но все они отличаются друг от друга только постоянными слагаемыми. Поэтому все первообразные для f (x ) содержатся в выражении F (x ) + С , которое называют неопределённым интегралом от функции f (x ) и записывают

Определённый интеграл как функция верхнего предела интегрирования

Взаимно обратный характер операций интегрирования и дифференцирования выражается равенствами

Отсюда следует возможность получения из формул и правил дифференцирования соответствующих формул и правил интегрирования (см. табл., где C , m , a , k - постоянные и m -1, а > 0).

Таблица основных интегралов и правил интегрирования

Трудность И. и. по сравнению с дифференциальным исчислением заключается в том, что интегралы от элементарных функций не всегда выражаются через элементарные, могут не выражаться, как говорят, «в конечном виде». И. и. располагает лишь отдельными приёмами интегрирования в конечном виде, область применения каждого из которых ограничена (способы интегрирования излагаются в учебниках математического анализа: обширные таблицы интегралов приводятся во многих справочниках).

К классу функций, интегралы от которых всегда выражаются в элементарных функциях, принадлежит множество всех рациональных функций

где P (x ) и Q (x ) - многочлены. Многие функции, не являющиеся рациональными, также интегрируются в конечном виде, например функции, рационально зависящие от

или же от x и рациональных степеней дроби

В конечном виде интегрируются и многие трансцендентные функции, например рациональные функции синуса и косинуса. Функции, которые изображаются неопределёнными интегралами, не берущимися в конечном виде, представляют собой новые трансцендентные функции. Многие из них хорошо изучены (см., например, Интегральный логарифм , Интегральный синус и интегральный косинус , Интегральная показательная функция).

Историческая справка. Возникновение задач И. и. связано с нахождением площадей и объёмов. Ряд задач такого рода был решен математиками Древней Греции. Античная математика предвосхитила идеи И. и. в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл Исчерпывания метод , созданный Евдоксом Книдским (См. Евдокс Книдский) и широко применявшийся Архимед ом. Однако Архимед не выделил общего содержания интеграционных приёмов и понятия об интеграле, а тем более не создал алгоритма И. и. Учёные Среднего и Ближнего Востока в 9-15 вв. изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в И. и. они не получили. Деятельность европейских учёных в это время была ещё более скромной. Лишь в 16 и 17 вв. развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождения квадратур, кубатур и определение центров тяжести. Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов дальнейшего развития И. и. Античный «неделимых» метод (См. Неделимых метод) был возрожден И. Кеплер ом. В более общей форме идеи этого метода были развиты Б. Кавальери , Э. Торричелли , Дж. Валлис ом, Б. Паскалем (См. Паскаль). Методом «неделимых» был решен ряд геометрических и механических задач. К этому же времени относятся опубликованные позднее работы П. Ферма по квадрированию парабол n -й степени, а затем - работы Х. Гюйгенс а по спрямлению кривых.

В итоге этих исследований выявилась общность приёмов интегрирования при решении внешне несходных задач геометрии и механики, приводившихся к квадратурам как к геометрическому эквиваленту определённого интеграла. Заключительным звеном в цепи открытий этого периода было установление взаимно обратной связи между задачами на проведение касательной и на квадратуры, т. е. между дифференцированием и интегрированием. Основные понятия и алгоритм И. и. были созданы независимо друг от друга И. Ньютон ом и Г. Лейбниц ем. Последнему принадлежит термин «интегральное исчисление» и обозначение интеграла ∫ydx.

При этом в работах Ньютона основную роль играло понятие неопределённого интеграла (флюенты, см. Флюксий исчисление), тогда как Лейбниц исходил из понятия определённого интеграла. Дальнейшее развитие И. и. в 18 в. связано с именами И. Бернулли и особенно Л. Эйлер а. В начале 19 в. И. и. вместе с дифференциальным исчислением было перестроено О. Коши на основе теории пределов. В развитии И. и. в 19 в. приняли участие русские математики М. В. Остроградский , В. Я. Буняковский , П. Л. Чебышев . В конце 19 - начале 20 вв. развитие теории множеств и теории функций действительного переменного привело к углублению и обобщению основных понятий И. и. (Б. Риман , А. Лебег и др.).

Лит.: История. Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Строек Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М.. Vorleslingen über Geschichte der Mathematik, 2 Aufl., Bd 3-4, Lpz. - B., 1901-24.

Работы основоположников и классиков И. и. Ньютон И., Математические работы, пер. с латин., М.-Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с. латин., «Успехи математических наук», 1948, т. 3, в. 1; Эйлер Л., Интегральное исчисление, пер. с латин., тт. 1-3, М., 1956-58; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864.

Учебники и учебные пособия по И. и. Хинчин Д. Я., Краткий курс математического анализа, 3 изд., 1957; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Ильин В., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Двайт Г.-Б., Таблицы интегралов и другие математические формулы, пер. с англ., М., 1964.

Под редакцией академика А. Н. Колмогорова.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Интегральное исчисление" в других словарях:

    Интегральное исчисление - Интегральное исчисление. Построение интегральных сумм для вычисления определенного интеграла непрерывной функции f(x), график которой кривая MN. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ, раздел математики, в котором изучаются свойства и способы вычисления… … Иллюстрированный энциклопедический словарь

    Раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения к решению различных математических, физических и других задач. В систематической форме интегральное исчисление было предложено в 17 в. И. Ньютоном и Г … Большой Энциклопедический словарь

    Отдел высшей математики, учение о действиях, противоположных дифференциальному вычислению, а именно об определении зависимости между несколькими переменными величинами по данному дифференциальному уравнению из них. Таким образом, находится… … Словарь иностранных слов русского языка

    ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ, см. ИСЧИСЛЕНИЕ … Научно-технический энциклопедический словарь