Основные уравнения квантовой физики. Основные принципы квантовой механики

Основными принципами квантовой механика являются принцип неопределенности В. Гейзенберга и принцип дополнительности Н. Бора.

Согласно принципу неопределенности невозможно одновременно точно определить местоположение частицы и ее импульс. Чем точнее определяется местоположение, или координата, частицы, тем более неопределенным становится ее импульс. И наоборот, чем точнее определен импульс, тем более неопределенным остается ее местоположение.

Проиллюстрировать этот принцип можно при помощи опыта Т. Юнга по интерференции. Этот опыт показывает, что при прохождении света через систему двух близкорасположенных малых отверстий в непрозрачном экране он ведет себя не как прямолинейно распространяющиеся частицы, а как взаимодействующие волны, в результате чего на поверхности, расположенной за экраном, возникает интерференционная картина в виде чередующихся светлых и темных полос. Если же оставить поочередно открытым только одно отверстие, то интерференционная картина распределения фотонов исчезает.

Проанализировать результаты этого опыта можно при помощи следующего мысленного эксперимента. Для того чтобы определить местоположение электрона, его надо осветить, т. е. направить на него фотон. В случае столкновения двух элементарных частиц мы сможем точно рассчитать координаты электрона (определяется место, где он был в момент столкновения). Однако вследствие столкновения электрон неизбежно изменит свою траекторию, так как в результате столкновения ему будет передан импульс от фотона. Поэтому если мы точно определим координату электрона, то одновременно мы лишимся знания о траектории его последующего движения. Мысленный эксперимент по столкновению электрона и фотона аналогичен закрытию одного из отверстий в опыте Юнга: столкновение с фотоном аналогично закрытию одного из отверстий в экране: в случае этого закрытия разрушается интерференционная картина или (что то же самое) траектория электрона становится неопределенной.

Значение принципа неопределенности. Соотношение неопределенности означает, что принципы и законы классической динамики Ньютона не могут использоваться для описания процессов с участием микрообъектов.

По существу этот принцип означает отказ от детерминированности и признание принципиальной роли случайности в процессах с участием микрообъектов. В классическом описании понятие случайности используется для описания поведения элементов статистических ансамблей и является лишь сознательной жертвой полноты описания во имя упрощения решения задачи. В микромире же точный прогноз поведения объектов, дающий значения его традиционных для классического описания параметров, вообще невозможен. По этому поводу до сих пор ведутся оживленные дискуссии: приверженцы классического детерминизма, не отрицая возможности использования уравнений квантовой механики для практических расчетов, видят в учитываемой ими случайности результат нашего неполного понимания законов, управляющих пока непредсказуемым для нас поведением микрообъектов. Приверженцем такого подхода был А. Эйнштейн. Являясь основоположником современного естествознания, отважившимся на пересмотр казавшихся незыблемыми позиций классического подхода, он не счел возможным отказаться от принципа детерминизма в естествознании. Позиция А. Эйнштейна и его сторонников по данному вопросу может быть сформулирована в хорошо известном и весьма образном высказывании о том, что очень трудно поверить в существование Бога, каждый раз бросающего кости для принятия решения о поведении микрообъектов. Однако до настоящего времени не обнаружено никаких экспериментальных фактов, которые указывают на существование внутренних механизмов, управляющих «случайным» поведением микрообъектов.

Следует подчеркнуть, что принцип неопределенности не связан с какими-то недостатками в конструировании измерительных приборов. Принципиально невозможно создать прибор, который одинаково точно измерил бы координату и импульс микрочастицы. Принцип неопределенности проявляется корпускулярно-волновым дуализмом природы.

Из принципа неопределенности также следует, что в квантовой механике отвергается постулируемая в классическом естествознании принципиальная возможность выполнения измерений и наблюдений объектов и происходящих с ними процессов, не влияющих на эволюцию изучаемой системы.

Принцип неопределенности является частным случаем более общего по отношению к нему принципа дополнительности. Из принципа дополнительности следует, что если в каком-либо эксперименте мы можем наблюдать одну сторону физического явления, то одновременно мы лишены возможности наблюдать дополнительную к первой сторону явления. Дополнительными свойствами, которые проявляются только в разных опытах, проведенных при взаимно исключающих условиях, могут быть положение и импульс частицы, волновой и корпускулярный характер вещества или излучения.

Важное значение в квантовой механике имеет принцип суперпозиции. Принцип суперпозиции (принцип наложения) - это допущение, согласно которому результирующий эффект представляет сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простейших примеров является правило параллелограмма, в соответствии с которым складываются две силы, действующие на тело. В микромире принцип суперпозиции - фундаментальный принцип, который наряду с принципом неопределенности составляет основу математического аппарата квантовой механики. В релятивистской квантовой механике, предполагающей взаимное превращение элементарных частиц, принцип суперпозиции должен быть дополнен принципом суперотбора. Например, при аннигиляции электрона и позитрона принцип суперпозиции дополняется принципом сохранения электрического заряда - до и после превращения сумма зарядов частиц должна быть постоянной. Поскольку заряды электрона и позитрона равны и взаимно противоположны, должна возникнуть незаряженная частица, каковой и является рождающийся в этом процессе аннигиляции фотон.

КВАНТОВАЯ МЕХАНИКА
фундаментальная физическая теория динамического поведения всех элементарных форм вещества и излучения, а также их взаимодействий. Квантовая механика представляет собой теоретическую основу, на которой строится современная теория атомов, атомных ядер, молекул и физических тел, а также элементарных частиц, из которых все это состоит. Квантовая механика была создана учеными, стремившимися понять, как устроен атом. Атомные процессы в течение многих лет изучали физики и особенно химики; при изложении данного вопроса мы будем, не вдаваясь в подробности теории, следовать историческому ходу развития предмета. См. также АТОМ .
Зарождение теории. Когда Э.Резерфорд и Н.Бор предложили в 1911 ядерную модель атома, это было подобно чуду. В самом деле, она была построена из того, что было известно уже более 200 лет. Это была, в сущности, коперниковская модель Солнечной системы, воспроизведенная в микроскопическом масштабе: в центре находится тяжелая масса, вскоре получившая название ядра, вокруг которой вращаются электроны, числом которых определяются химические свойства атома. Но мало того, за этой наглядной моделью стояла теория, которая позволила начать расчеты некоторых химических и физических свойств веществ, по крайней мере построенных из наименьших и наиболее простых атомов. Теория Бора - Резерфорда содержала ряд положений, которые здесь полезно напомнить, поскольку все они в том или ином виде сохранились и в современной теории. Во-первых, важен вопрос о природе сил, связывающих атом. С 18 в. было известно, что электрически заряженные тела притягивают или отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними. Используя в качестве пробных тел альфа-частицы, возникающие в результате радиоактивных превращений, Резерфорд показал, что тот же самый закон электрического взаимодействия (закон Кулона) справедлив в масштабах, в миллион миллионов раз меньших тех, для которых он был первоначально экспериментально установлен. Во-вторых, нужно было ответить на вопрос о том, как электроны движутся по орбитам под действием этих сил. Здесь вновь опыты Резерфорда, казалось бы, показывали (и Бор принял это в своей теории), что законы движения Ньютона, сформулированные в его Началах (Principia Mathematica, 1687), можно использовать для описания движения частиц в этих новых масштабах микромира. В-третьих, вставал вопрос о стабильности. В ньютоновско-кулоновском атоме, как и в Солнечной системе, размеры орбит произвольны и зависят лишь от того, каким образом система была первоначально приведена в движение. Однако все атомы одного вещества одинаковы и к тому же стабильны, что совсем необъяснимо с точки зрения старых представлений. Бор высказал предположение, что атомные электроны следует рассматривать как движущиеся вокруг ядра лишь по определенным орбитам, которым отвечают определенные энергетические уровни, причем они должны испускать квант энергии в виде света, переходя с орбиты с более высокой энергией на орбиту с меньшей энергией. Такие "условия квантования" не вытекали ни из каких экспериментальных данных или теорий; они были приняты как постулаты. На основе этих концептуальных элементов, дополненных только что развитыми в то время представлениями М.Планка и А.Эйнштейна о природе света, Бору удалось количественно объяснить весь спектр излучения атомов водорода в газоразрядной трубке и дать качественное объяснение всех основных закономерностей периодической системы элементов. К 1920 пришло время взяться за проблему спектра излучения более тяжелых атомов и вычислить интенсивность химических сил, связывающих атомы в соединениях. Но здесь иллюзия успеха померкла. На протяжении ряда лет Бор и другие исследователи безуспешно пытались рассчитать спектр гелия - следующего за водородом простейшего атома с двумя электронами. Сначала вообще ничего не получалось; в конце концов несколько исследователей различными способами решили эту задачу, но ответ оказался неверным - он противоречил эксперименту. Затем выяснилось, что вообще невозможно построить сколько-нибудь приемлемую теорию химического взаимодействия. К началу 1920-х годов теория Бора исчерпала себя. Пришло время признать справедливость пророческого замечания, которое Бор еще в 1914 сделал в письме другу в присущем ему замысловатом стиле: "Я склонен полагать, что проблема связана с исключительно большими трудностями, которые можно будет преодолеть, лишь гораздо дальше отойдя от обычных соображений, чем требовалось до сих пор, и что достигнутый ранее успех был обусловлен исключительно простотой рассматривавшихся систем".
См. также
БОР Нильс Хенрик Давид ;
СВЕТ ;
РЕЗЕРФОРД Эрнест ;
СПЕКТРОСКОПИЯ .
Первые шаги. Поскольку использованная Бором комбинация существовавших ранее представлений из области электричества и механики с условиями квантования привела к неверным результатам, все это нужно было полностью или частично изменить. Основные положения теории Бора были приведены выше, а для соответствующих расчетов было достаточно не очень сложных выкладок с использованием обычной алгебры и математического анализа. В 1925 молодой немецкий физик В.Гейзенберг посетил Бора в Копенгагене, где провел с ним долгие часы в беседах, выясняя, что из теории Бора обязательно должно войти в будущую теорию, а от чего в принципе можно и отказаться. Бор и Гейзенберг сразу же согласились, что в будущей теории обязательно должно быть представлено все непосредственно наблюдаемое, а все не поддающееся наблюдению может быть изменено или исключено из рассмотрения. С самого начала Гейзенберг считал, что следует сохранить атомы, но орбиту электрона в атоме считать абстрактной идеей, поскольку ни один эксперимент не позволяет определить электронную орбиту по результатам измерений наподобие того, как это можно сделать для орбит планет. Читатель может заметить, что тут есть определенная нелогичность: строго говоря, атом столь же ненаблюдаем непосредственно, как и электронные орбиты, и вообще в нашем восприятии окружающего мира нет ни одного ощущения, которое не требовало бы разъяснения. В наши дни физики все чаще цитируют известный афоризм, который был впервые произнесен Эйнштейном в беседе с Гейзенбергом: "Что именно мы наблюдаем, нам говорит теория". Таким образом, различие между наблюдаемыми и ненаблюдаемыми величинами носит чисто практический характер, не имея никакого обоснования ни в строгой логике, ни в психологии, причем это различие, как бы оно ни проводилось, должно рассматриваться как часть самой теории. Поэтому гейзенберговский идеал теории, очищенной от всего ненаблюдаемого, есть некое направление мысли, но отнюдь не последовательный научный подход. Тем не менее он доминировал в атомной теории почти полвека после того, как был впервые сформулирован. Мы уже напоминали о составных элементах ранней модели Бора, таких, как закон Кулона для электрических сил, законы динамики Ньютона и обычные правила алгебры. Путем тонкого анализа Гейзенберг показал, что можно сохранить известные законы электричества и динамики, если найти надлежащее выражение для динамики Ньютона, а затем изменить правила алгебры. В частности, Гейзенберг высказал мысль, что, поскольку ни положение q, ни импульс p электрона не являются измеримыми величинами в том смысле, в каком ими являются, например, положение и импульс автомобиля, мы можем при желании сохранить их в теории, лишь рассматривая как математические символы, обозначаемые буквами, но не как числа. Он принял для p и q алгебраические правила, согласно которым произведение pq не совпадает с произведением qp. Гейзенберг показал, что простые расчеты атомных систем дают приемлемые результаты, если принять, что для положения q и импульса p выполняется соотношение

Где h - постоянная Планка, уже известная из квантовой теории излучения и фигурировавшая в теории Бора, а. Постоянная Планка h представляет собой обычное число, но очень малое, приблизительно 6,6Ч10-34 Дж*с. Таким образом, если p и q - величины обычного масштаба, то разность произведений pq и qp будет крайне мала по сравнению с самими этими произведениями, так что p и q можно считать обычными числами. Построенная для описания явлений микромира, теория Гейзенберга почти полностью согласуется с механикой Ньютона, когда ее применяют к макроскопическим объектам. Уже в самых ранних работах Гейзенберга было показано, что при всей неясности физического содержания новой теории она предсказывает существование дискретных энергетических состояний, характерных для квантовых явлений (например, для испускания света атомом). В более поздней работе, выполненной совместно с М. Борном и П. Йорданом в Геттингене, Гейзенберг развил формальный математический аппарат теории. Практические вычисления остались, однако, крайне сложными. После нескольких недель напряженной работы В.Паули вывел формулу для энергетических уровней атома водорода, совпадающую с формулой Бора. Но прежде чем удалось упростить вычисления, появились новые и совершенно неожиданные идеи. См. также
АЛГЕБРА АБСТРАКТНАЯ ;
ПЛАНКА ПОСТОЯННАЯ .
Частицы и волны. К 1920 физики были уже довольно хорошо знакомы с двойственной природой света: результаты одних экспериментов со светом можно было объяснить, предполагая, что свет представляет собой волны, а в других он вел себя подобно потоку частиц. Поскольку казалось очевидным, что ничто не может быть в одно и тоже время и волной, и частицей, ситуация оставалась непонятной, вызывая горячие споры в среде специалистов. В 1923 французский физик Л.де Бройль в опубликованных им заметках высказал предположение, что столь парадоксальное поведение, может быть, не является спецификой света, но и вещество тоже может в одних случаях вести себя подобно частицам, а в других подобно волнам. Исходя из теории относительности, де Бройль показал, что если импульс частицы равен p, то "ассоциированная" с этой частицей волна должна иметь длину волны l = h/p. Это соотношение аналогично впервые полученному Планком и Эйнштейном соотношению E = hn между энергией светового кванта Е и частотой n соответствующей волны. Де Бройль показал также, что эту гипотезу можно легко проверить в экспериментах, аналогичных опыту, демонстрирующему волновую природу света, и настойчиво призывал к проведению таких опытов. Заметки де Бройля привлекли внимание Эйнштейна, и к 1927 К.Дэвиссон и Л.Джермер в Соединенных Штатах, а также Дж. Томсон в Англии подтвердили для электронов не только основную идею де Бройля, но и его формулу для длины волны. В 1926 работавший тогда в Цюрихе австрийский физик Э. Шредингер, прослышав о работе де Бройля и предварительных результатах экспериментов, подтверждавших ее, опубликовал четыре статьи, в которых представил новую теорию, явившуюся прочным математическим обоснованием этих идей. Такая ситуация имеет свой аналог в истории оптики. Одной уверенности в том, что свет есть волна определенной длины, недостаточно для детального описания поведения света. Необходимо еще написать и решить выведенные Дж.Максвеллом дифференциальные уравнения, подробно описывающие процессы взаимодействия света с веществом и распространение света в пространстве в виде электромагнитного поля. Шредингер написал дифференциальное уравнение для материальных волн де Бройля, аналогичное уравнениям Максвелла для света. Уравнение Шредингера для одной частицы имеет вид


где m - масса частицы, Е - ее полная энергия, V(x) - потенциальная энергия, а y - величина, описывающая электронную волну. В ряде работ Шредингер показал, как можно использовать его уравнение для вычисления энергетических уровней атома водорода. Он установил также, что существуют простые и эффективные способы приближенного решения задач, не поддающихся точному решению, и что его теория волн материи в математическом отношении полностью эквивалентна алгебраической теории наблюдаемых величин Гейзенберга и во всех случаях приводит к тем же результатам. П.Дирак из Кембриджского университета показал, что теории Гейзенберга и Шредингера представляют собой лишь две из множества возможных форм теории. Теория преобразований Дирака, в которой важнейшую роль играет соотношение (1), обеспечила ясную общую формулировку квантовой механики, охватывающую все остальные ее формулировки в качестве частных случаев. Вскоре Дирак добился неожиданно крупного успеха, продемонстрировав, каким образом квантовая механика обобщается на область очень больших скоростей, т.е. приобретает вид, удовлетворяющий требованиям теории относительности. Постепенно стало ясно, что существует несколько релятивистских волновых уравнений, каждое из которых в случае малых скоростей можно аппрокcимировать уравнением Шредингера, и что эти уравнения описывают частицы совершенно разных типов. Например, частицы могут иметь разный "спин"; это предусматривается теорией Дирака. Кроме того, согласно релятивистской теории, каждой из частиц должна соответствовать античастица с противоположным знаком электрического заряда. В то время, когда вышла работа Дирака, были известны только три элементарные частицы: фотон, электрон и протон. В 1932 была открыта античастица электрона - позитрон. На протяжении нескольких последующих десятилетий было обнаружено много других античастиц, большинство из которых, как оказалось, удовлетворяли уравнению Дирака или его обобщениям. Созданная в 1925-1928 усилиями выдающихся физиков квантовая механика не претерпела с тех пор в своих основах каких-либо существенных изменений.
См. также АНТИВЕЩЕСТВО .
Приложения. Во всех разделах физики, биологии, химии и техники, в которых существенны свойства вещества в малых масштабах, теперь систематически обращаются к квантовой механике. Приведем несколько примеров. Всесторонне исследована структура электронных орбит, наиболее удаленных от ядра атомов. Методы квантовой механики были применены к проблемам строения молекул, что привело к революции в химии. Структура молекул обусловлена химическими связями атомов, и сегодня сложные задачи, возникающие при последовательном применении квантовой механики в этой области, решаются с помощью компьютеров. Большое внимание привлекли к себе теория кристаллической структуры твердых тел и особенно теория электрических свойств кристаллов. Практические результаты впечатляют: примерами их могут служить изобретение лазеров и транзисторов, а также значительные успехи в объяснении явления сверхпроводимости.
См. также
ФИЗИКА ТВЕРДОГО ТЕЛА ;
ЛАЗЕР ;
ТРАНЗИСТОР ;
СВЕРХПРОВОДИМОСТЬ . Многие проблемы еще не решены. Это касается структуры атомного ядра и физики элементарных частиц. Время от времени обсуждается вопрос о том, не лежат ли проблемы физики элементарных частиц за пределами квантовой механики, подобно тому как структура атомов оказалась вне области применимости динамики Ньютона. Однако до сих пор нет никаких указаний на то, что принципы квантовой механики или ее обобщения в области динамики полей где-то оказались неприменимыми. Более полувека квантовая механика остается научным инструментом с уникальной "объясняющей способностью" и не требует существенных изменений своей математической структуры. Поэтому может показаться удивительным, что до сих пор ведутся острые дебаты (см. ниже) по поводу физического смысла квантовой механики и ее истолкования.
См. также
АТОМА СТРОЕНИЕ ;
АТОМНОГО ЯДРА СТРОЕНИЕ ;
МОЛЕКУЛ СТРОЕНИЕ ;
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ .
Вопрос о физическом смысле. Корпускулярно-волновой дуализм, столь очевидный в эксперименте, создает одну из самых трудных проблем физической интерпретации математического формализма квантовой механики. Рассмотрим, например, волновую функцию, которая описывает частицу, свободно движущуюся в пространстве. Традиционное представление о частице, помимо прочего, предполагает, что она движется по определенной траектории с определенным импульсом p. Волновой функции приписывается длина волны де Бройля l = h/p, но это характеристика такой волны, которая бесконечна в пространстве, а потому не несет информации о местонахождении частицы. Волновую функцию, локализующую частицу в определенной области пространства протяженностью Dx, можно построить в виде суперпозиции (пакета) волн с соответствующим набором импульсов, и если искомый диапазон импульсов равен Dp, то довольно просто показать, что для величин Dx и Dp должно выполняться соотношение DxDp і h/4p. Этим соотношением, впервые полученным в 1927 Гейзенбергом, выражается известный принцип неопределенности: чем точнее задана одна из двух переменных x и p, тем меньше точность, с которой теория позволяет определить другую.



Соотношение Гейзенберга могло бы рассматриваться просто как недостаток теории, но, как показали Гейзенберг и Бор, оно соответствует глубокому и ранее не замечавшемуся закону природы: даже в принципе ни один эксперимент не позволит определить величины x и p реальной частицы точнее, чем это допускает соотношение Гейзенберга. Гейзенберг и Бор разошлись в интерпретации этого вывода. Гейзенберг рассматривал его как напоминание о том, что все наши знания по своему происхождению - экспериментальные и что эксперимент неизбежно вносит в исследуемую систему возмущение, а Бор рассматривал его как ограничение точности, с которой само представление о волне и частице применимо к миру атома. Гораздо более широким оказывается спектр мнений о природе самой статиcтичеcкой неопределенности. В этих неопределенностях нет ничего нового; они присущи почти каждому измерению, но обычно считают, что они обусловлены недостатками используемых приборов или методов: точное значение существует, однако найти его практически очень трудно, и потому мы рассматриваем полученные результаты как вероятные значения с присущей им статистической неопределенностью. Одна из школ физико-философской мысли, возглавлявшаяся в свое время Эйнштейном, считает, что то же самое имеет место и для микромира, и что квантовая механика с ее статистическими результатами дает лишь средние значения, которые были бы получены при многократном повторении рассматриваемого эксперимента с небольшими различиями из-за несовершенства нашего контроля. При таком воззрении точная теория каждого отдельного случая в принципе существует, просто она еще не найдена. Другая школа, исторически связанная с именем Бора, стоит на том, что индетерминизм присущ самой природе вещей и что квантовая механика - теория, наилучшим образом описывающая каждый отдельный случай, а в неопределенности физической величины находит отражение та точность, с которой эта величина может определяться и использоваться. Мнение большинства физиков склонялось в пользу Бора. В 1964 Дж. Белл, работавший тогда в ЦЕРНе (Женева), показал, что в принципе эту проблему можно решить экспериментально. Результат Белла явился, пожалуй, важнейшим с 1920-х годов сдвигом в поисках физического смысла квантовой механики. Теорема Белла, как сейчас называют этот результат, утверждает, что некоторые предсказания, сделанные на основе квантовой механики, невозможно воспроизвести путем вычислений на основе какой-либо точной, детерминированной теории с последующим усреднением результатов. Поскольку два таких метода вычислений должны давать разные результаты, появляется возможность экспериментальной проверки. Измерения, выполненные в 1970-х годах, убедительно подтвердили адекватность квантовой механики. И все же было бы преждевременно утверждать, что эксперимент подвел окончательную черту под дебатами Бора и Эйнштейна, поскольку такого рода проблемы нередко возникают как бы заново, в другом языковом обличье каждый раз, когда, казалось бы, все ответы уже найдены. Как бы то ни было, остаются и другие головоломки, напоминающие нам, что физические теории - это не только уравнения, но и словесные объяснения, связывающие кристальную сферу математики с туманными областями языка и чувственного опыта, и что это зачастую и есть самое трудное.
ЛИТЕРАТУРА
Вихман Э. Квантовая физика. М., 1977 Джеммер М. Эволюция понятий квантовой механики. М., 1985 Мигдал А.Б. Квантовая физика для больших и маленьких. М., 1989 Волкова Е.Л. и др. Квантовая механика на персональном компьютере. М., 1995

Энциклопедия Кольера. - Открытое общество . 2000 .

Под квантовой механикой понимают физическую теорию динамического поведения форм излучения и вещества. Это на которой построена современная теория физических тел, молекул и элементарных частиц. Вообще, квантовая механика была создана учеными, которые стремились понять строение атома. В течении многих годов легендарные физики изучали особенности и направления химии и следовали историческому времени развития событий.

Такое понятие, как квантовая механика, зарождалось в течение долгих лет. В 1911 году ученые Н. Бор и предложили ядерную модель атома, которая напоминала модель Коперника с его солнечной системой. Ведь солнечная система имела в своем центре ядро, вокруг которого вращались элементы. На основе этой теории начались расчеты физических и химических свойств некоторых веществ, которые были построены из простых атомов.

Одним из важных вопросов в такой теории, как квантовая механика - это природа сил, которая связывала атом. Благодаря закону Кулона, Э. Резерфорд показал, что данный закон справедлив в огромных масштабах. Затем необходимо было определить, каким образом электроны движутся по своей орбите. В этом пункте помог

На самом деле, квантовая механика нередко противоречит таким понятиям, как здравый смысл. Наряду с тем, что наш здравый смысл действует и показывает только такие вещи, которые можно взять из повседневного опыта. А, в свою очередь, повседневный опыт имеет дело только с явлениями макромира и крупными объектами, в то время как материальные частицы на субатомном и атомарном уровне ведут себя совсем по-другому. Например, в макромире мы с легкостью способны определить нахождение любого объекта при помощи измерительных приборов и методов. А если мы будем измерять координаты микрочастицы электрона, то пренебречь взаимодействием объекта измерения и измерительного прибора просто недопустимо.

Другими словами можно сказать, что квантовая механика представляет собой физическую теорию, которая устанавливает законы движения различных микрочастиц. От классической механики, которая описывает движение микрочастиц, квантовая механика отличается двумя показателями:

Вероятный характер некоторых физических величин, например, скорость и положение микрочастицы определить точно невозможно, можно рассчитать только вероятность их значений;

Дискретное изменение например, энергия какой-либо микрочастицы имеет только определенные некоторые значения.

Квантовая механика еще сопряжена с таким понятием, как квантовая криптография , которая представляет собой быстроразвивающуюся технологию, способную изменить мир. Квантовая криптография направлена на то, чтобы защитить коммуникации и секретность информации. Основана эта криптография на определенных явлениях и рассматривает такие случаи, когда информация может переноситься при помощи объектом квантовой механики. Именно здесь с помощью электронов, фотонов и других физических средств определяется процесс приема и отправки информации. Благодаря квантовой криптографии можно создать и спроектировать систему связи, которая может обнаружить подслушивание.

На сегодняшний момент достаточно много материалов, где предлагается изучение такого понятия, как квантовая механика основы и направления, а также деятельности квантовой криптографии. Чтобы обрести знания в этой непростой теории, необходимо досконально изучать и вникать в эту область. Ведь квантовая механика - это далеко не легкое понятие, которое изучалось и доказывалось величайшими учеными многими годами.

Отправить

Квантовая механика

Что такое квантовая механика?

Квантовая механика (КМ (QM); также известная как квантовая физика или квантовая теория), включая квантовую теорию поля, является областью физики, которая изучает законы природы, проявляющиеся на малых расстояниях и при малых энергиях атомов и субатомных частиц. Классическая физика - физика, существовавшая до квантовой механики, вытекает из квантовой механики как её предельный переход, справедливый только при больших (макроскопических) масштабах. Квантовая механика отличается от классической физики тем, что энергия, импульс и другие величины, часто ограничиваются дискретными значениями (квантование), объекты имеют характеристики и частиц, и волн (корпускулярно-волновой дуализм), и существуют ограничения на точность, с которой величины могут быть определены (принцип неопределенности).

Квантовая механика последовательно вытекает из решения Максом Планком в 1900 году задачи излучения черного тела (опубликовано в 1859 году) и работы Альберта Эйнштейна 1905 года, в которой была предложена квантовая теория для объяснения фотоэлектрического эффекта (опубликована в 1887 году). Ранняя квантовая теория, была глубоко переосмыслена в середине 1920-х годов.

Переосмысленная теория формулируется на языке специально разработанных математических формализмов. В одном из них, математическая функция (волновая функция) предоставляет информацию об амплитуде вероятности положения, импульса и других физических характеристиках частицы.

Важными областями применения квантовой теории являются: квантовая химия, сверхпроводящие магниты, светоизлучающие диоды, а также лазер, транзистор и полупроводниковые устройства, такие как микропроцессор, медицинские и исследовательские изображения, такие как магнитно-резонансная томография и электронная микроскопия, и объяснения многих биологических и физических явлений.

История квантовой механики

Научное исследование волновой природы света началось в XVII и XVIII веках, когда ученые Роберт Хук, Кристиан Гюйгенс и Леонард Эйлер предложили волновую теорию света, основанную на экспериментальных наблюдениях. В 1803 году Томас Янг, английский учёный широкого профиля, провел знаменитый эксперимент с двойной щелью, который он позже описал в работе, озаглавленной "Природа света и цветов". Этот эксперимент сыграл важную роль во всеобщем признании волновой теории света.

В 1838 году Майкл Фарадей открыл катодные лучи. За этими исследованиями последовала формулировка Густавом Кирхгофом проблемы излучения абсолютно черного тела в 1859 году, предположение Людвига Больцмана в 1877 году того, что энергетические состояния физической системы могут быть дискретными, и квантовая гипотеза Макса Планка в 1900 году. Гипотеза Планка о том, что энергия излучается и поглощается дискретным "квантом" (или энергетическими пакетами), точно соответствует наблюдаемым моделям излучения абсолютно черного тела.

В 1896 году Вильгельм Вин эмпирически определил закон распределения излучения абсолютно черного тела, названный в его честь, законом Вина. Людвиг Больцман самостоятельно пришел к этому результату, анализируя уравнения Максвелла. Однако закон действовал только на высоких частотах и занижал излучение на низких частотах. Позже Планк исправил эту модель с помощью статистической интерпретации термодинамики Больцмана и предложил то, что в настоящее время называется законом Планка, что привело к развитию квантовой механики.

После решения Максом Планком в 1900 году проблемы излучения черного тела (опубликовано 1859), Альберт Эйнштейн предложил квантовую теорию, чтобы объяснить фотоэлектрический эффект (1905, опубликовано 1887). В 1900-1910 годы атомная теория и корпускулярная теория света впервые стали широко признаваться в качестве научного факта. Соответственно, эти последние теории можно рассматривать как квантовые теории материи и электромагнитного излучения.

Среди первых изучавших квантовые явления в природе были Артур Комптон, Ч. В. Раман и Питер Зееман, в честь каждого из которых названы некоторые квантовые эффекты. Роберт Эндрюс Милликен исследовал фотоэффект экспериментально, а Альберт Эйнштейн разработал теорию для него. В то же время, Эрнест Резерфорд экспериментально обнаружил ядерную модель атома, по которой Нильс Бор разработал свою теорию строения атома, которая впоследствии была подтверждена опытами Генри Мозли. В 1913 году Петер Дебай расширил теорию Нильса Бора о строении атома, введя эллиптические орбиты, эту же концепцию также предложил и Арнольд Зоммерфельд. Этот этап развития физики известен под названием старая квантовая теория.

Согласно Планку, энергия (Е) кванта излучения пропорциональна частоте излучения (v):

где h - постоянная Планка.

Планк осторожно настаивал на том, что это просто математическое выражение процессов поглощения и испускания излучения и не имеет ничего общего с физической реальностью самого излучения. Фактически, он считал свою квантовую гипотезу математическим трюком, совершенным для того, чтобы получить правильный ответ, а не крупным фундаментальным открытием. Однако в 1905 году Альберт Эйнштейн дал квантовой гипотезе Планка физическую интерпретацию и использовал ее для объяснения фотоэлектрического эффекта, при котором освещение светом определенных веществ может вызывать испускание электронов из вещества. За эту работу Эйнштейн получил Нобелевскую премию по физике 1921 года.

Эйнштейн затем доработал эту идею, чтобы показать, что электромагнитная волна, какой и является свет, также может быть описана как частица (позже названная фотоном), с дискретной квантовой энергией, которая зависит от частоты волны.

На протяжении первой половины 20-го века Максом Планком, Нильсом Бором, Вернером Гейзенбергом, Луи де Бройлем, Артуром Комптоном, Альбертом Эйнштейном, Эрвином Шредингером, Максом Борном, Джоном фон Нейманом, Полем Дираком, Энрико Ферми, Вольфгангом Паули, Максом фон Лауэ, Фрименом Дайсоном, Давидом Гильбертом, Вильгельмом Вином, Шать­енд­ра­натом Бозе, Арнольдом Зоммерфельдом и другими закладывались основы квантовой механики. Копенгагенская интерпретация Нильса Бора получила всеобщее признание.

В середине 1920-х годов развитие квантовой механики привело к тому, что она стала стандартной формулировкой для атомной физики. Летом 1925 года Бор и Гейзенберг опубликовали результаты, которые закрыли старую квантовую теорию. Из уважения к их частицеподобному поведению в определенных процессах и измерениях, кванты света стали называть фотонами (1926). Из простого постулата Эйнштейна зародился шквал обсуждений, теоретических построений и экспериментов. Таким образом, появились целые области квантовой физики, что привело к её широкому признанию на пятом Сольвеевском конгрессе в 1927 году.

Было установлено, что субатомные частицы и электромагнитные волны не являются ни просто частицами, ни волнами, а имеют определенные свойства каждой из них. Так возникло понятие корпускулярно–волнового дуализма.

К 1930 году квантовая механика была дополнительно унифицирована и сформулирована в работах Дэвида Гильберта, Поля Дирака и Джона фон Неймана, в которых уделялось большое внимание измерению, статистическому характеру наших знаний о реальности и философским размышлениям о "наблюдателе". Впоследствии она проникла во многие дисциплины, включая квантовую химию, квантовую электронику, квантовую оптику и квантовую информационную науку. Её теоретические современные разработки включают теорию струн и теории квантовой гравитации. Она также предоставляет удовлетворяющее объяснение многих особенностей современной периодической таблицы элементов и описывает поведение атомов при химических реакциях и движение электронов в компьютерных полупроводниках, и поэтому играет решающую роль во многих современных технологиях.

Хотя квантовая механика была построена для описания микромира, она также необходима для объяснения некоторых макроскопических явлений, таких как сверхпроводимость и сверхтекучесть.

Что означает слово квант?

Слово квант происходит от латинского "quantum", что означает "насколько много" или "сколько". В квантовой механике квант означает дискретную единицу, закрепленную за определенными физическими величинами, такими как энергия атома в состоянии покоя. Открытие того, что частицы представляют собой дискретные пакеты энергии с волноподобными свойствами привело к созданию занимающегося атомными и субатомными системами раздела физики, который сегодня называют квантовой механикой. Она закладывает фундамент математической основы для многих областей физики и химии, в том числе физики конденсированных сред, физики твердого тела, атомной физики, молекулярной физики, вычислительной физики, вычислительной химии, квантовой химии, физики элементарных частиц, ядерной химии и ядерной физики. Некоторые фундаментальные аспекты теории до сих пор активно изучаются.

Значение квантовой механики

Квантовая механика имеет важное значение для понимания поведения систем в атомных и меньших масштабах расстояний. Если бы физическая природа атома описывалась исключительно классической механикой, то электроны не должны были вращаться вокруг ядра, так как орбитальные электроны должны испускать излучение (вследствие кругового движения) и в конечном итоге сталкиваться с ядром из-за потери энергии на излучение. Такая система не могла объяснить устойчивость атомов. Вместо этого электроны находятся в неопределенных, недетерминистических, размазанных, вероятностных корпускулярно-волновых орбиталях около ядра, вопреки традиционным представлениям классической механики и электромагнетизма.

Первоначально квантовая механика была разработана для лучшего объяснения и описания атома, особенно различий в спектрах света, излучаемых различными изотопами одного и того же химического элемента, а также описания субатомных частиц. Короче говоря, квантово-механическая модель атома оказалась поразительно успешной в той области, где классическая механика и электромагнетизм оказались беспомощны.

Квантовая механика включает в себя четыре класса явлений, которые классическая физика не может объяснить:

  • квантование отдельных физических свойств
  • квантовая запутанность
  • принцип неопределенности
  • корпускулярно-волновой дуализм

Математические основы квантовой механики

В математически строгой формулировке квантовой механики, разработанной Полем Дираком, Давидом Гильбертом, Джоном фон Нейманом и Германом Вейлем, возможные состояния квантово-механической системы символизируются единичными векторами (называемые векторы состояния). Формально они принадлежат комплексному сепарабельному гильбертову пространству - иначе, пространству состояний или связанному с ним гильбертову пространству системы, и определены с точностью до произведения на комплексное число с единичным модулем (фазовый множитель). Другими словами, возможные состояния являются точками в проективном пространстве гильбертова пространства, как правило, называемом комплексным проективным пространством. Точный характер этого гильбертова пространства зависит от системы - например, пространство состояний положения и импульса является пространством квадратно-интегрируемых функций, в то время как пространство состояний для спина одного протона является всего лишь прямым произведением двух комплексных плоскостей. Каждая физическая величина представлена ​​гипермаксимально эрмитовым (точнее: самосопряженным) линейным оператором, действующим на пространстве состояний. Каждое собственное состояние физической величины соответствует собственному вектору оператора, и связанное с ним собственное значение соответствует значению физической величины в этом собственном состоянии. Если спектр оператора является дискретным, физическая величина может принимать только дискретные собственные значения.

В формализме квантовой механики состояние системы в данный момент описывается сложной волновой функцией, также называемой вектором состояния в комплексном векторном пространстве. Данный абстрактный математический объект позволяет рассчитать вероятности исходов конкретных экспериментов. Например, позволяет вычислить вероятность нахождения электрона в определенной области вокруг ядра в определенное время. В отличие от классической механики, здесь никогда нельзя сделать одновременного предсказания с произвольной точностью для сопряженных переменных, таких как положение и импульс. Например, можно считать, что электроны (с некоторой вероятностью) находятся где-то в пределах заданной области пространства, но их точное местоположение неизвестно. Можно нарисовать вокруг ядра атома области постоянной вероятности, часто называемые «облаками», чтобы представлять, где электрон может находиться с наибольшей вероятностью. Принцип неопределенности Гейзенберга количественно оценивает неспособность точной локализации частицы с заданным импульсом, являющимся сопряженной к положению величиной.

Согласно одной из интерпретаций, в результате измерения волновая функция, содержащая информацию о вероятности состояния системы, распадается из заданного начального состояния до определенного собственного состояния. Возможными результатами измерения являются собственные значения оператора, представляющего физическую величину - что объясняет выбор эрмитового оператора, у которого все собственные значения являются действительными числами. Распределение вероятностей физической величины в данном состоянии, можно найти путем вычисления спектрального разложения соответствующего оператора. Принцип неопределенности Гейзенберга представляется формулой, в которой операторы, соответствующие определенным величинам не коммутируют.

Измерение в квантовой механике

Вероятностный характер квантовой механики, таким образом, вытекает из акта измерения. Это один из самых сложных для понимания аспектов квантовых систем, и он был центральной темой в знаменитых дебатах Бора с Эйнштейном, в ходе которых оба ученых попытались прояснить эти фундаментальные принципы посредством мысленных экспериментов. В течение десятилетий после формулирования квантовой механики широко изучался вопрос о том, что представляет собой "измерение". Новые интерпретации квантовой механики были сформулированы, чтобы покончить с понятием "коллапс волновой функции". Основная идея заключается в том, что когда квантовая система взаимодействует с измерительным аппаратом, их соответствующие волновые функции становятся запутанными, так что исходная квантовая система перестает существовать как самостоятельная сущность.

Вероятностный характер предсказаний квантовой механики

Как правило, квантовая механика не ставит в соответствие определенные значения. Вместо этого она делает предсказание, используя распределение вероятностей; то есть, она описывает вероятность получения возможных результатов от измерения физической величины. Часто эти результаты деформированы, как облака плотности вероятности, многими процессами. Облака плотности вероятности являются приближением (но лучшим, чем модель Бора), в котором расположение электрона задается функцией вероятности, волновыми функциями, соответствующими собственным значениям, таким образом, что вероятность является квадратом модуля комплексной амплитуды, или квантового состояния ядерного притяжения. Естественно, что эти вероятности будут зависеть от квантового состояния в "момент" измерения. Следовательно, неопределенность вносится в измеренное значение. Есть, однако, некоторые состояния, которые связаны с определенными значениями конкретной физической величины. Они называются собственными состояниями (eigenstates) физической величины ("eigen" можно перевести с немецкого как "присущий" или "свойственный").

Естественно и интуитивно понятно, что все в повседневной жизни (все физические величины) имеют собственные значения. Кажется, что всё имеет определенное положение, определенный момент, определенную энергию, и определенное время события. Однако квантовая механика не указывает точных значений положения и импульса частицы (поскольку это сопряженные пары) или ее энергии и времени (поскольку они тоже сопряженные пары); точнее, она предоставляет только диапазон вероятностей, с которыми эта частица может иметь заданный импульс и вероятность импульса. Поэтому целесообразно различать состояния, имеющие неопределенные значения, и состояния, имеющие определенные значения (собственные состояния). Как правило, мы не интересуемся системой, в которой частица не имеет собственного значения физической величины. Однако, при измерении физической величины, волновая функция мгновенно принимает собственное значение (или "обобщенное" собственное значение) этой величины. Этот процесс называют коллапсом волновой функции, спорный и много обсуждаемый процесс, в котором происходит расширение изучаемой системы добавлением в неё измерительного устройства. Если знать соответствующую волновую функцию непосредственно перед измерением, то можно вычислить вероятность того, что волновая функция перейдёт в каждое из возможных собственных состояний. Например, свободная частица в предыдущем примере, как правило, имеют волновую функцию, которая представляет собой волновой пакет, сосредоточенный вокруг некоторого среднего положения x0 (не имеющий собственных состояний положения и импульса). Когда происходит измерение положения частицы, то невозможно с уверенностью предсказать результат. Вполне вероятно, но не точно, что оно будет вблизи х0, где амплитуда волновой функции велика. После выполнения измерения, получив какой-то результат х, волновая функция коллапсирует в собственную функцию оператора положения с центром в х.

Уравнение Шредингера в квантовой механике

Временная эволюция квантового состояния описывается уравнением Шредингера, в котором гамильтониан (оператор, соответствующий полной энергии системы) порождает временную эволюцию. Временная эволюция волновых функций является детерминированной в том смысле, что - с учетом того, какой волновая функция была в начальный момент времени - можно сделать четкое предсказание того, какой будет волновая функция в любое время в дальнейшем.

С другой стороны, во время измерения, изменение исходной волновой функции в другую, более позднюю волновую функцию не будет являться детерминированным, а будет непредсказуемым (т. е. случайным). Эмуляцию временной эволюции можно увидеть здесь.

Волновые функции изменяются с течением времени. Уравнение Шредингера описывает изменение волновых функций во времени, и играет роль, аналогичную роли второго закона Ньютона в классической механике. Уравнение Шредингера, применяемое к вышеупомянутому примеру свободной частицы, предсказывает, что центр волнового пакета будет перемещаться по пространству с постоянной скоростью (как классическая частица в отсутствие сил, действующих на него). Тем не менее, волновой пакет также будет расплываться с течением времени, что означает, что позиция становится более неопределенной со временем. Это также имеет эффект превращения собственной функции положения (которую можно рассматривать как бесконечно острый пик волнового пакета) в расширенный волновой пакет, который больше не представляет (определенного) собственного значения положения.

Некоторые волновые функции порождают распределения вероятностей, которые являются постоянными или независимыми от времени - например, когда в стационарном состоянии с постоянной энергией время исчезает из модуля квадрата волновой функции. Многие системы, которые рассматриваются как динамические в классической механике, описываются в квантовой механике такими "статическими" волновыми функциями. Например, один электрон в невозбужденном атоме представляется классически как частица, движущаяся по круговой траектории вокруг атомного ядра, в то время как в квантовой механике он описывается статической, сферически симметричной волновой функцией, окружающей ядро ​​(рис. 1) (отметим, однако, что только самые низкие состояния орбитального момента импульса, обозначенные как s, являются сферически симметричными).

Уравнение Шредингера действует на всю амплитуду вероятности, а не только на ее абсолютное значение. В то время как в абсолютное значение амплитуды вероятности заложена информация о вероятностях, в ее фазу заложена информация о взаимовлиянии между квантовыми состояниями. Это порождает "волнообразное" поведение квантовых состояний. Как выясняется, аналитические решения уравнения Шредингера возможны только для очень небольшого числа гамильтонианов относительно простых моделей, таких как квантовый гармонический осциллятор, частица в ящике, ион молекулы водорода и атом водорода - это важнейшие представители таких моделей. Даже атом гелия, который содержит всего на один электрон больше, чем в атом водород, не поддался ни одной попытке чисто аналитического решения.

Однако существует несколько методов получения приближенных решений. В важном методе, известном как теория возмущений, используется аналитический результат, полученный для простой квантово-механической модели, и на его основе генерируется результат для более сложной модели, которая отличается от более простой модели (например) добавлением энергии слабого потенциального поля. Другим подходом является метод "квазиклассического приближения", который применяется к системам, для которых квантовая механика применяется только к слабым (малым) отклонениям от классического поведения. Затем эти отклонения можно вычислить на основе классического движения. Этот подход особенно важен при изучении квантового хаоса.

Математически эквивалентные формулировки квантовой механики

Существуют многочисленные математически эквивалентные формулировки квантовой механики. Одной из старейших и наиболее часто используемых формулировок является "теория преобразований", предложенная Полем Дираком, которая объединяет и обобщает две самые ранние формулировки квантовой механики - матричную механику (созданную Вернером Гейзенбергом) и волновую механику (созданную Эрвином Шредингером).

С учетом того, что Вернер Гейзенберг был удостоен Нобелевской премии по физике в 1932 году за создание квантовой механики, роль Макса Борна в развитии КМ была упущена из виду до вручения ему Нобелевской премии в 1954 году. Эта роль упоминается в биографии Борна 2005 года, в которой рассказывается о его роли в матричной формулировке квантовой механики, а также использовании амплитуд вероятности. В 1940 году сам Гейзенберг признает в юбилейном сборнике в честь Макса Планка, что узнал о матрицах от Борна. В матричной формулировке, мгновенное состояние квантовой системы определяет вероятности её измеримых свойств или физических величин. Примеры величин включают в себя энергию, положение, импульс и орбитальный момент. Физические величины могут быть либо непрерывными (например, положение частицы) или дискретными (например, энергия электрона, связанного с атомом водорода). Фейнмановские интегралы по траекториям - альтернативная формулировка квантовой механики, в которой квантовомеханическая амплитуда рассматривается как сумма по всем возможным классическим и неклассическим траекториям между начальным и конечным состояниями. Это квантово-механический аналог принципа наименьшего действия в классической механике.

Законы квантовой механики

Законы квантовой механики имеют основополагающее значение. Утверждается, что пространство состояний системы является гильбертовым, и физические величины этой системы являются эрмитовыми операторами, действующими в этом пространстве, хотя не говорится, какие именно эти гильбертовы пространства или какие именно эти операторы. Они могут быть выбраны соответствующим образом, чтобы получить количественную характеристику квантовой системы. Важным ориентиром для принятия этих решений является принцип соответствия, который гласит, что предсказания квантовой механики сводятся к классической механике, когда система переходит в область высоких энергий или, что то же самое, в область больших квантовых чисел, то есть в то время как отдельная частица обладает определенной степенью случайности, в системах, содержащих миллионы частиц, преобладают усредненные значения и, при устремлении к высокоэнергетическому пределу, статистическая вероятность случайного поведения стремится к нулю. Другими словами, классическая механика является просто квантовой механикой больших систем. Этот "высокоэнергетический" предел известен как классический или предел соответствия. Таким образом, решение можно даже начать с устоявшейся классической модели той или иной системы, и затем попытаться угадать базовую квантовую модель, которая породила бы такую классическую модель при переходу к пределу соответствия.

Когда квантовая механика была изначально сформулирована, она применялась к моделям, пределом соответствия которых была нерелятивистская классическая механика. Например, известная модель квантового гармонического осциллятора использует явно нерелятивистское выражение для кинетической энергии осциллятора и, таким образом, является квантовой версией классического гармонического осциллятора.

Взаимодействие с другими научными теориями

Ранние попытки объединить квантовую механику со специальной теорией относительности предусматривали замену уравнения Шредингера ковариантными уравнениеми, такими как уравнение Клейна-Гордона или уравнение Дирака. Хотя эти теории были успешными в объяснении многих экспериментальных результатов, они имели определенные неудовлетворительные качества, вытекающие из того, что в них не учитывалось релятивистское рождение и уничтожением частиц. Полностью релятивистская квантовая теория требовала развития квантовой теории поля, в которой применяется квантование поля (а не фиксированного набора частиц). Первая полноценная квантовая теория поля - квантовая электродинамика, обеспечивает полное квантовое описание электромагнитного взаимодействия. Полный аппарат квантовой теории поля часто не требуется для описания электродинамических систем. Более простой подход, применяемый с момента создания квантовой механики, заключается в том, чтобы рассматривать заряженные частицы как квантово-механические объекты, на которые действует классическое электромагнитное поле. Например, элементарная квантовая модель атома водорода описывает электрическое поле атома водорода, используя классическое выражение для кулоновского потенциала:

E2/(4πε0r)

Такой "квазиклассический" подход не работает, если квантовые флуктуации электромагнитного поля играют важную роль, например, при излучении фотонов заряженными частицами.

Также были разработаны квантовые теории поля для сильных и слабых ядерных сил. Квантовая теория поля для сильных ядерных взаимодействий называется квантовой хромодинамикой и описывает взаимодействие субядерных частиц, таких как кварки и глюоны. Слабые ядерные и электромагнитные силы были объединены в их квантованных формах в единую квантовую теорию поля (известная как теория электрослабого взаимодействия), физиками Абдусом Саламом, Шелдоном Глэшоу и Стивеном Вайнбергом. За эту работу все трое получили Нобелевскую премию по физике в 1979 году.

Трудно оказалось построить квантовые модели для четвертой оставшейся фундаментальной силы - гравитации. Выполнены полуклассические приближения, которые привели к предсказаниям, таким как излучение Хокинга. Тем не менее, формулировке полной теории квантовой гравитации мешают очевидные несовместимости между общей теорией относительности (которая является наиболее точной теорией гравитации, известной в настоящее время) и некоторыми из основных положений квантовой теории. Разрешение этих несовместимостей является направлением активных исследований и теорий, таких как теория струн - одна из возможных кандидатур на будущую теорию квантовой гравитации.

Классическая механика была также расширена в комплексную область, при этом комплексная классическая механика стала проявлять себя подобно квантовой механике.

Cвязь квантовой механики с классической механикой

Предсказания квантовой механики были подтверждены экспериментально с очень высокой степенью точности. Согласно принципу соответствия между классической и квантовой механиками, все объекты подчиняются законам квантовой механики, а классическая механика является лишь приближением для больших систем объектов (или статистической квантовой механикой для большого набора частиц). Таким образом, законы классической механики вытекают из законов квантовой механики как статистическое среднее при устремлении к очень большому предельному значению числа элементов системы или значений квантовых чисел. Однако в хаотических системах отсутствуют хорошие квантовые числа, и квантовый хаос изучает связь между классическим и квантовым описаниями этих систем.

Квантовая когерентность является существенным различием между классической и квантовой теориями, иллюстрируемая парадоксом Эйнштейна–Подольского–Розена (EPR) , она стала выпадом против известной философской интерпретации квантовой механики посредством обращения к локальному реализму. Квантовая интерференция предполагает сложение амплитуд вероятности, в то время как классические"волны" подразумевают сложение интенсивностей. Для микроскопических тел, протяженность системы значительно меньше, чем длина когерентности, что приводит к запутанности на далеких расстояниях и другим нелокальным явлениям, характерным для квантовых систем. Квантовая когерентность обычно не проявляется в макроскопических масштабах, хотя исключение из этого правила может возникать при крайне низких температурах (т. е. при приближении к абсолютному нулю), при которых квантовое поведение может проявляться в макроскопическом масштабе. Это находится в соответствии со следующими наблюдениями:

Многие макроскопические свойства классической системы являются прямым следствием квантового поведения его частей. Например, устойчивость основной части материи (состоящей из атомов и молекул, которые под действием одних лишь электрических сил быстро бы разрушались), жесткость твердых тел, а также механические, термические, химические, оптические и магнитные свойства материи являются результатом взаимодействия электрических зарядов в соответствии с правилами квантовой механики.

В то время как кажущееся "экзотическим" поведение материи, постулируемое квантовой механикой и теорией относительности, становится более очевидным при работе с частицами очень малого размера или при перемещении со скоростями, приближающимися к скорости света, законы классической, часто называемой "ньютоновской", физики остаются точными при прогнозировании поведения подавляющего числа "больших" объектов (порядка размера крупных молекул или ещё больших) и при скоростях гораздо меньших, чем скорость света.

В чем заключается отличие квантовой механики от классической?

Классическая и квантовая механика сильно отличаются тем, что они используют очень разные кинематические описания.

По устоявшемуся мнению Нильса Бора, для изучения квантово-механических явлений требуются эксперименты, с полным описанием всех устройств системы, подготовительного, промежуточного и конечного измерений. Описания представляются в макроскопических терминах, выраженных на обычном языке, дополненных понятиями классической механики. Начальные условия и конечное состояние системы соответственно описывается положением в конфигурационном пространстве, например, в пространстве кординат, или некотором эквивалентном пространстве, таком как импульсное пространстве. Квантовая механика не допускает полностью точного описания, как с точки зрения положения, так и импульса, точного детерминированного и причинно-следственного предсказания конечного состояния исходя из начальных условий или "состояния" (в классическом смысле этого слова). В этом смысле, пропагандируемом Бором в его зрелых трудах, квантовое явление - это процесс перехода от начального к конечному состоянию, а не мгновенное "состояние" в классическом смысле этого слова. Таким образом, существуют два вида процессов в квантовой механике: стационарные и переходные. Для стационарных процессов, начальное и конечное положение одинаковы. Для переходных - они различны. Очевидно по определению, что, если задано только начальное условие, то процесс не определен. Учитывая начальные условия, предсказание конечного состояния возможно, но только на вероятностном уровне, поскольку уравнение Шредингера детерминировано для эволюции волновой функции, а волновая функция описывает систему только в вероятностном смысле.

Во многих экспериментах можно принимать начальное и конечное состояние системы за частицу. В некоторых случаях оказывается, что существует потенциально несколько пространственно различимых путей или траекторий, по которым частица может переходить от начального к конечному состоянию. Важной особенностью квантового кинематического описания является то, что оно не позволяет однозначно определить, каким из этих путей производится переход между состояниями. Определены только начальные и конечные условия, и, как указано в предыдущем абзаце, они определены только с такой точностью, насколько это разрешает описание пространственной конфигурацией или её эквивалентом. В каждом случае, для которого необходимо квантовое кинематическое описание, всегда есть веская причина такого ограничения кинематической точности. Причина заключается в том, что для экспериментального нахождения частицы в определенном положении она должна быть неподвижной; для экспериментального нахождения частицы с определенным импульсом она должна находиться в свободном движении; эти два требования логически несовместимы.

Изначально классическая кинематика не требуют экспериментального описания её явлений. Это позволяет полностью точно описать мгновенное состояние системы положением (точкой) в фазовом пространстве - декартовом произведении конфигурационного и импульсного пространств. Это описание просто предполагает, или представляет себе состояние как физическую сущность, не беспокоясь о ее экспериментальной измеримости. Такое описание начального состояния вместе с законами движения Ньютона позволяет точно сделать детерминированное и причинно-следственное предсказание конечного состояния вместе с определенной траекторией эволюции системы. Для этого может быть использована гамильтоновская динамика. Классическая кинематика также позволяет описать процесс, аналогично описанию начального и конечного состояния, используемому квантовой механикой. Лагранжева механика позволяет это сделать. Для процессов, в которых необходимо учитывать величину действия порядка нескольких планковских констант, классическая кинематика не годится; здесь требуется использовать квантовую механику.

Общая теория относительности

Даже при том, что определяющие постулаты теории общей относительности и квантовой теории Эйнштейна безоговорочно подкрепляются строгими и повторяющимися эмпирическими доказательствами, и хотя они не противоречат друг другу теоретически (по крайней мере, в отношении своих первичных утверждений), их оказалось крайне трудно интегрировать в одну последовательную, единую модель.

Гравитацией можно пренебречь во многих областях физики элементарных частиц, так что объединение между общей теорией относительности и квантовой механикой не является насущным вопросом в этих частных приложениях. Однако, отсутствие правильной теории квантовой гравитации является важным вопросом в физической космологии и поиске физиками элегантной "Теории всего" (TВ). Следовательно, решение всех несоответствий между обеими теориями является одной из основных целей для физики 20 и 21 века. Многие видные физики, в том числе Стивен Хокинг, трудился на протяжении многих лет в попытке открыть теорию, лежащую в основе всего. Эта ТВ будет объединять не только разные модели субатомной физики, но и выводить четыре фундаментальные силы природы - сильное взаимодействие, электромагнетизм, слабое взаимодействие и гравитацию - из одной силы или явления. В то время как Стивен Хокинг изначально верил в ТВ, но после рассмотрения теорема Геделя о неполноте, он пришел к выводу, что создание такой теории неосуществимо, и заявил об этом публично в своей лекции "Гёдель и конец физики" (2002).

Основные теории квантовой механики

Стремление объединить фундаментальные силы с помощью квантовой механики все еще продолжается. Квантовая электродинамика (или "квантовый электромагнетизм"), которая в настоящее время (по крайней мере, в пертурбативном режиме) является наиболее точной проверенной физической теорией в соперничестве с общей теорией относительности, успешно объединяет слабые ядерные взаимодействия в электрослабое взаимодействие и в настоящее время ведется работа по объединению электрослабого и сильного взаимодействия в электросильное взаимодействие. Текущие прогнозы утверждают, что в районе 1014 ГэВ три вышеупомянутых силы сливаются в единое унифицированное поле. Помимо этой "грандиозной унификации", предполагается, что гравитацию можно объединить с другими тремя калибровочными симметриями, что, как ожидается, произойдёт на уровне примерно 1019 ГэВ. Однако - и в то время как специальная теория относительности бережно включена в квантовую электродинамику - расширенная общая теория относительности, в настоящее время лучшая теория, описывающая силы гравитации, не в полной мере включена в квантовую теорию. Один из тех, кто разрабатывает согласованную теорию всего, - Эдвард Виттен, - физик-теоретик, сформулировал М-теорию, которая представляет собой попытку изложить суперсимметрию на основе теории суперструн. М-теория предполагает, что наше видимое 4-мерное пространство - это на самом деле 11 - мерный пространственно-временной континуум, содержащий десять пространственных измерений и одно временное измерение, хотя 7 пространственных измерений при низких энергиях полностью "уплотнены" (или бесконечно изогнуты) и не легко поддаются измерению или исследованию.

Другая популярная теория петлевой квантовой гравитации (Loop quantum gravity (LQG)) - теория, впервые предложенная Карло Ровелли, которая описывает квантовые свойства гравитации. Она также является теорией квантового пространства и квантового времени, так как в общей теории относительности геометрические свойства пространства-времени являются проявлением гравитации. LQG - это попытка объединить и адаптировать стандартную квантовую механику и стандартную общую теорию относительности. Основным результатом теории является физическая картина, в которой пространство является зернистым. Зернистость является прямым следствием квантования. Она имеет тот же характер зернистости фотонов в квантовой теории электромагнетизме или дискретных уровней энергии атомов. Но здесь само пространство является дискретным. Точнее, пространство можно рассматривать как чрезвычайно тонкую ткань или сеть, "сотканную" из конечных петель. Эти петлевые сети называются спиновые сети. Эволюция спиновой сети во времени называется спиновой пеной. Прогнозируемый размер данной структуры является длиной Планка, что составляет приблизительно 1,616 × 10-35 м. Согласно теории, нет никакого смысла в более короткой длине, чем эта. Следовательно, LQG предсказывает, что не только материя, но и само пространство, имеет атомарную структуру.

Философские аспекты квантовой механики

С момента своего создания, многие парадоксальные аспекты и результаты квантовой механики вызвали бурные философские диспуты и множество интерпретаций. Даже фундаментальным вопросам, таким как основные правила Макса Борна относительно амплитуды вероятности и распределения вероятности, потребовались десятилетия, чтобы они могли быть оценены обществом и многими ведущими учеными. Ричард Фейнман однажды сказал: "Думаю, я могу смело утверждать, что никто не понимает квантовую механику. По словам Стивена Вайнберга, "сейчас, на мой взгляд, не существует абсолютно удовлетворительной интерпретации квантовой механики.

Копенгагенская интерпретация - во многом благодаря Нильсу Бору и Вернеру Гейзенбергу - на протяжении 75 лет после её провозглашения остается наиболее приемлемой среди физиков. Согласно этой интерпретации вероятностный характер квантовой механики не является временной особенностью, которая в конечном итоге будет заменена детерминированной теорией, а должна рассматриваться как окончательный отказ от классической идеи "причинно-следственной связи". Кроме того считается, что в ней любые четко определенные применения квантово-механического формализма всегда должны делать ссылку на схему эксперимента из-за сопряженного характера доказательств, полученных в различных экспериментальных ситуациях.

Альберт Эйнштейн, будучи одним из основателей квантовой теории, сам не принял некоторые из более философских или метафизических интерпретаций квантовой механики, таких как отказ от детерминизма и причинно-следственной связи. Его самый цитируемый знаменитый ответ на такой подход звучит так: "Бог не играет в кости". Он отверг концепцию о том, что состояние физической системы зависит от экспериментальной измерительной установки. Он считал, что явления природы происходят по своим законам, независимо от того, происходит ли за ними наблюдение и каким образом. В этой связи его поддерживает принятое в настоящее время определение квантового состояния, которое остается инвариантным при произвольном выборе конфигурационного пространства для его представления, то есть способа наблюдения. Он также счел, что в основе квантовой механики должна лежать теория, которая тщательно и непосредственно выражает правило, отвергающее принцип дальнодействия; другими словами, он настаивал на принципе локальности. Он рассматривал, но теоретически обоснованно отклонил частное представление о скрытых переменных, чтобы избежать неопределенности или отсутствия причинно-следственных связей в квантово-механических измерениях. Он считал, что квантовая механика была в то время действующей, но не окончательной и не незыблемой теорией квантовых явлений. Он считал, что её будущая замена потребует глубоких концептуальных достижений, и что это произойдет не так быстро и легко. Дискуссии Бора-Эйнштейна дают яркую критику копенгагенской интерпретации с гносеологической точки зрения.

Джон Белл показал, что этот парадокс "EPR" приводил к экспериментально проверяемым различиям между квантовой механикой и теориями, которые опираются на добавление скрытых переменных. Проведены эксперименты, подтверждающие точность квантовой механики, тем самым демонстрируя, что квантовая механика не может быть улучшена путем добавления скрытых переменных. Первоначальные эксперименты Алена Аспекта в 1982 году и многие последующие эксперименты с тех пор окончательно подтвердили квантовую запутанность.

Запутанность, как показали белловские эксперименты, не нарушает причинно-следственных связей, поскольку никакой передачи информации не происходит. Квантовая запутанность формирует основу квантовой криптографии, которая предлагается для использования в высокобезопасных коммерческих приложениях в банковской и государственной сферах.

Многомировая интерпретация Эверетта, сформулированная в 1956 году, полагает, что все возможности, описываемые квантовой теорией, одновременно возникают в мультиверсе, состоящем, главным образом, из независимых параллельных вселенных. Это не достигается введением некоторой "новой аксиомы" в квантовую механику, а наоборот, достигается удалением аксиомы распада волнового пакета. Все возможные последовательные состояния измеряемой системы и измерительного устройства (включая наблюдателя) присутствуют в реальной физической - а не только в формальной математической, как в других интерпретациях - квантовой суперпозиции. Такая суперпозиция последовательных комбинаций состояний различных систем называется запутанным состоянием. В то время как мультиверс является детерминированным, мы воспринимаем недетерминированное поведение, случайного характера, поскольку можем наблюдать только ту вселенную (т. е. вклад совместимого состояния в вышеупомянутую суперпозицию), в которой мы, как наблюдатели, обитаем. Интерпретация Эверетта идеально согласуется с экспериментами Джона Белла и делает их интуитивно понятными. Однако, согласно теории квантовой декогеренции, эти "параллельные вселенные" никогда не будут доступны нам. Недоступность можно понимать следующим образом: как только измерение будет сделано, измеряемая система запутывается как с физиком, измерявшим её, так и с огромным количеством других частиц, некоторые из которых являются фотонами, улетающими со скоростью света к другому концу вселенной. Чтобы доказать, что волновая функция не распалась, необходимо вернуть все эти частицы обратно и измерить их снова вместе с системой, которая изначально была измерена. Это не только совершенно непрактично, но даже если теоретически можно было бы это сделать, то пришлось бы уничтожить любые доказательства того, что первоначальное измерение имело место (в том числе и память физика). В свете этих белловских экспериментов Крамер в 1986 году сформулировал свою транзакционную интерпретацию. В конце 1990-х годов появилась реляционная квантовая механика как современная производная копенгагенской интерпретации.

Квантовая механика имела огромный успех в объяснении многих особенностей нашей Вселенной. Квантовая механика часто является единственным доступным инструментом, способным выявить индивидуальное поведение субатомных частиц, составляющих все формы материи (электроны, протоны, нейтроны, фотоны и др.). Квантовая механика сильно повлияла на теорию струн - претендента на теорию всего (а Theory of Everything).

Квантовая механика также критически важна для понимания того, как индивидуальные атомы создают ковалентные связи для формирования молекул. Применение квантовой механики в химии называется квантовой химией. Релятивистская квантовая механика может, в принципе, математически описать большую часть химии. Квантовая механика также может дать количественное представление о процессах ионного и ковалентного связывания, явным образом показывая, какие молекулы к другим молекулам энергетически подходят и при каких величинах энергии. Кроме того, большинство расчетов в современной вычислительной химии опираются на квантовую механику.

Во многих отраслях современные технологии работают в масштабах, где квантовые эффекты значительно проявляются.

Квантовая физика в электронике

Многие современные электронные устройства разработаны с использованием квантовой механики. Например, лазер, транзистор (и таким образом микрочип), электронный микроскоп и магнитно-резонансная томография (МРТ). Изучение полупроводников привело к изобретению диода и транзистора, которые являются незаменимыми компонентами современных электронных систем, компьютерных и телекоммуникационных устройств. Ещё одно приложение - это светоизлучающий диод, который представляет собой высокоэффективный источник света.

Многие электронные устройства работают под действием квантового туннелирования. Оно даже присутствует в простом выключателе. Переключатель не сработал бы, если бы электроны не могли квантово тунеллировать через слой окисла на металлических контактных поверхностях. Чипы флэш-памяти, основной детали USB-накопителей, используют квантовое туннелирование, чтобы стирать информацию в своих ячейках. Некоторые устройства с отрицательным дифференциальным сопротивлением, такие как резонансный туннельный диод, также используют квантовый туннельный эффект. В отличие от классических диодов, ток в нём протекает под действием резонансного туннелирования через два потенциальных барьера. Его режим работы с отрицательным сопротивлением может быть объяснён только квантовой механикой: при приближении энергии состояния связанных носителей к уровню Ферми, туннельный ток возрастает. При отдалении от уровня Ферми, ток уменьшается. Квантовая механика имеет жизненно важное значение для понимания и разработки таких типов электронных устройств.

Квантовая криптография

Исследователи в настоящее время ищут надежные методы непосредственного манипулирования квантовыми состояниями. Предпринимаются усилия по полноценному развитию квантовой криптографии, которая теоретически позволит гарантировать безопасную передачу информации.

Квантовые вычисления

Более отдаленной целью является разработка квантовых компьютеров, которые, как ожидается, будут выполнять определенные вычислительные задачи экспоненциально быстрее классических компьютеров. Вместо классических битов, квантовые компьютеры используют кубиты, которые могут находиться в суперпозиции состояний. Другой активной темой исследования является квантовая телепортация, которая имеет дело с методами передачи квантовой информации на произвольные расстояния.

Квантовые эффекты

В то время как квантовая механика в первую очередь применяется к атомным системам с меньшим количеством вещества и энергии, некоторые системы демонстрируют квантово-механические эффекты в больших масштабах. Сверхтекучесть - способность движения потока жидкости без трения при температуре вблизи абсолютного нуля, является одним известным примером таких эффектов. Тесным образом связанно с этим явлением и явление сверхпроводимости - поток электронного газа (электрический ток), движущийся без сопротивления в проводящем материале при достаточно низких температурах. Дробный квантовый эффект Холла является топологическим упорядоченным состоянием, которое соответствует моделям квантового запутывания, действующего на большие расстояния. Состояния с различным топологическим порядком (или различной конфигурацией дальнедиапазонного запутывания) не могут вносить изменения в состояния друг в друга без фазовых превращений.

Квантовая теория

Квантовая теория также содержит точные описания многих ранее необъяснимых явлений, таких как излучение абсолютно черного тела и стабильность орбитальных электронов в атомах. Она также дала представление о работе многих различных биологических систем, в том числе обонятельных рецепторов и белковых структур. Недавнее исследование фотосинтеза показало, что квантовые корреляции играют важную роль в этом фундаментальном процессе, протекающем в растениях и многих других организмах. Тем не менее, классическая физика часто может обеспечить хорошие приближения к результатам, полученным квантовой физикой, как правило, в условиях большого количества частиц или больших квантовых чисел. Поскольку классические формулы гораздо проще и легче вычислять, чем квантовые формулы, использование классических аппроксимаций предпочтительнее, когда система достаточно велика, чтобы сделать эффекты квантовой механики незначительными.

Движение свободной частицы

Для примера, рассмотрим свободную частицу. В квантовой механике наблюдается корпускулярно–волновой дуализм, так что свойства частицы могут быть описаны как свойства волны. Таким образом, квантовое состояние может быть представлено в виде волны произвольной формы и простирающейся в пространстве в виде волновой функции. Положение и импульс частицы являются физическими величинами. Принцип неопределенности утверждает, что положение и импульс не могут одновременно быть точно измерены. Тем не менее, можно измерить положение (без измерения импульса) движущейся свободной частицы, создав собственное состояние положения с волновой функцией (дельта-функция Дирака), которая имеет очень большое значение в определенном положении х, и ноль в остальных положениях. Если выполнить измерение положения при такой волновой функции, то в результате х будет получен с вероятностью 100% (то есть, с полной уверенностью, или с полной точностью). Это называется собственное значение (состояние) положения или, указанного в математических терминах, собственное значение обобщенной координаты (eigendistribution). Если частица находится в собственном состоянии положения, то ее импульс абсолютно не определяем. С другой стороны, если частица находится в собственном состоянии импульса, то её положение совершенно неизвестно. В собственном состоянии импульса, собственная функция которого имеет форму плоской волны, можно показать, что длина волны равна h/p, где h - постоянная Планка, а р - импульс собственного состояния.

Прямоугольный потенциальный барьер

Это модель квантового туннельного эффекта, который играет важную роль в производстве современных технологических устройств, таких как флэш-память и сканирующий туннельный микроскоп. Квантовое туннелирование является центральным физическим процессом, протекающим в сверхрешетках.

Частица в одномерном потенциальном ящике

Частица в одномерном потенциальном ящике является самым простым математическим примером, в котором пространственные ограничения приводят к квантованию уровней энергии. Ящик определяется как наличие нулевой потенциальной энергии везде внутри определенной области и бесконечной потенциальной энергии всюду за пределами этой области.

Конечная потенциальная яма

Конечная потенциальная яма является обобщением задачи бесконечной потенциальной ямы, имеющей конечную глубину.

Задача конечной потенциальной ямы является математически более сложной, чем задача частицы в бесконечном потенциальном ящике, так как волновая функция не обращается в нуль на стенках ямы. Вместо этого, волновая функция должна удовлетворять более сложным математическим граничным условиям, так как она отлична от нуля в области за пределами потенциальной ямы.

Формирование квантовой механики как последовательной теории с конкретными физическими основами во многом связано с работой В.Гейзенберга, в которой было сформулировано соотношение (принцип) неопределенностей . Это фундаментальное положение квантовой механики раскрывает физический смысл ее уравнений, а также определяет ее связь с классической механикой.

Принцип неопределенности постулирует:объект микромира не может находиться в состояниях, в которых координаты его центра инерции и импульс одновременно принимают вполне определенные, точные значения .

Количественно этот принцип формулируется следующим образом. Если ∆x – неопределенность значения координатыx , а∆p - неопределенность импульса, то произведение этих неопределенностей по порядку величины не может быть меньше постоянной Планка:

x p h.

Из принципа неопределенности следует, что, чем точнее определена одна из входящих в неравенство величин, тем с меньшей точностью определено значение другой. Никаким экспериментом невозможно одновременно точно измерить эти динамические переменные, причем это связано не с воздействием измерительных приборов или их несовершенством. Соотношение неопределенностей отражает объективные свойства микромира, проистекая из его корпускулярно-волнового дуализма.

То обстоятельство, что один и тот же объект проявляет себя и как частица, и как волна разрушает традиционные представления, лишает описание процессов привычной наглядности. Понятие частицы подразумевает объект, заключенный в малую область пространства, волна же распространяется в его протяженных областях. Представить себе объект, обладающий одновременно этими качествами невозможно, да и не следует пытаться. Невозможно построить наглядную для человеческого мышления модель, которая была бы адекватна микромиру. Уравнения квантовой механики, впрочем, и не ставят такой цели. Их смысл состоит в математически адекватном описании свойств объектов микромира и происходящих с ними процессов.

Если говорить о связи квантовой механики с механикой классической, то соотношение неопределенностей является квантовым ограничением применимости классической механики к объектам микромира . Строго говоря, соотношение неопределенностей распространяется на любую физическую систему, однако, поскольку волновая природа макрообъектов практически не проявляется, координаты и импульс таких объектов можно одновременно измерить с достаточно высокой точностью. Это означает, что для описания их движения вполне достаточно использовать законы классической механики. Вспомним, что аналогичным образом обстоит дело в релятивистской механике (специальной теории относительности): при скоростях движения, значительно меньших скорости света, релятивистские поправки становятся несущественными и преобразования Лоренца переходят в преобразования Галилея.

Итак, соотношение неопределенностей для координат и импульса отражает корпускулярно-волновой дуализм микромира и не связано с воздействием измерительных приборов . Несколько другой смысл имеет аналогичное соотношение неопределенностей дляэнергии Е ивремени t :

E t h.

Из него следует, что энергию системы можно измерить лишь с точностью, не превышающей h /∆ t, где t – длительность измерения.Причина такой неопределенности состоит уже в самом процессе взаимодей ствия системы (микрообъекта) с измерительным прибором . Для стационарной ситуации приведенное неравенство означает, что энергия взаимодействия между измерительным прибором и системой может быть учтена только с точностью доh /∆t . В предельном же случае мгновенного измерения происходящий обмен энергией оказывается полностью неопределенным.

Если под Е понимается неопределенность значения энергии нестационарного состояния, то тогдаt есть характерное время, в течение которого значения физических величин в системе изменяются существенным образом. Отсюда, в частности, следует важный вывод относительно возбужденных состояний атомов и других микросистем: энергия возбужденного уровня не может быть строго определена, что говорит о наличииестественной ширины этого уровня.

Объективные свойства квантовых систем отражает еще одно принципиальное положение квантовой механики – принцип дополнительности Бора , согласно которомуполучение любым экспериментальным путем информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым .

Взаимно дополнительными являются, в частности, координата частицы и ее импульс (см. выше – принцип неопределенности), кинетическая и потенциальная энергия, напряженность электрического поля и количество фотонов.

Рассмотренные фундаментальные принципы квантовой механики свидетельствуют о том, что, в силу корпускулярно-волнового дуализма изучаемого ею микромира, ей чужд детерминизм классической физики. Полный уход от наглядного моделирования процессов придает особый интерес вопросу о том, какова же физическая природа волн де Бройля. В ответе на этот вопрос принято «отталкиваться» от поведения фотонов. Известно, что при пропускании светового пучка через полупрозрачную пластину S часть света проходит сквозь нее, а часть отражается (рис. 4).

Рис. 4

Что же при этом происходит с отдельными фотонами? Эксперименты со световыми пучками очень малой интенсивности с использованием современной техники (А – детектор фотонов), позволяющей следить за поведением каждого фотона (так называемый режим счета фотонов), показывают, что о расщеплении отдельного фотона не может быть и речи (иначе свет изменял бы свою частоту). Достоверно установлено, что некоторые фотоны проходят сквозь пластину, а некоторые отражаются от нее. Это означает, чтоодинаковые частицы в одинаковых условиях могут вести себя по-разному ,т. е. поведение отдельного фотона при встрече с поверхностью пластины не может быть предсказано однозначно .

Отражение фотона от пластины или прохождение сквозь нее суть случайные события. А количественные закономерности таких событий описываются с помощью теории вероятностей. Фотон может с вероятностью w 1 пройти сквозь пластину и с вероятностьюw 2 отразиться от нее. Вероятность того, что с фотоном произойдет одно из этих двух альтернативных событий, равна сумме вероятностей:w 1 + w 2 = 1.

Аналогичные эксперименты с пучком электронов или других микрочастиц также показывают вероятностный характер поведения отдельных частиц. Таким образом, задачу квантовой механики можно сформулировать как предсказание вероятности процессов в микромире , в отличие от задачи классической механики– предсказывать достоверность событий в макромире .

Известно, однако, что вероятностное описание применяется и в классической статистической физике. Так в чем же принципиальная разница? Для ответа на этот вопрос усложним опыт по отражению света. С помощью зеркала S 2 развернем отраженный пучок, поместив детекторA , регистрирующий фотоны в зоне его пресечения с прошедшим пучком, т. е. обеспечим условия интерференционного эксперимента (рис. 5).

Рис. 5

В результате интерференции интенсивность света в зависимости от расположения зеркала и детектора будет периодически меняться по поперечному сечению области перекрытия пучков в широких пределах (в том числе обращаться в ноль). Как же ведут себя отдельные фотоны в этом опыте? Оказывается, что в этом случае два оптических пути к детектору уже не являются альтернативными (взаимоисключающими) и поэтому нельзя сказать, каким путем прошел фотон от источника к детектору. Приходится допускать, что он мог попасть в детектор одновременно двумя путями, образуя в итоге интерференционную картину. Опыт с другими микрочастицами дает аналогичный результат: последовательно проходящие частицы создают такую же картину, как и поток фотонов.

Вот это уже кардинальное отличие от классических представлений: ведь невозможно представить себе движение частицы одновременно по двум разным путям. Впрочем, такой задачи квантовая механика и не ставит. Она предсказывает результат, состоящий в том, что светлым полосам соответствует высокая вероятность появления фотона.

Волновая оптика легко объясняет результат интерференционного опыта с помощью принципа суперпозиции, в соответствии с которым световые волны складываются с учетом соотношения их фаз. Иными словами, волны вначале складываются по амплитуде с учетом разности фаз, образуется периодическое распределение амплитуды, а затем уже детектор регистрирует соответствующую интенсивность (что соответствует математической операции возведения в квадрат по модулю, т. е. происходит потеря информации о распределении фазы). При этом распределение интенсивности носит периодический характер:

I = I 1 + I 2 + 2 A 1 A 2 cos (φ 1 – φ 2 ),

где А , φ , I = | A | 2 амплитуда ,фаза иинтенсивность волн соответственно, а индексы 1, 2 указывают на их принадлежность к первой или второй из этих волн. Ясно, что приА 1 = А 2 иcos (φ 1 φ 2 ) = – 1 значение интенсивностиI = 0 , что соответствует взаимному гашению световых волн (при их суперпозиции и взаимодействии по амплитуде).

Для интерпретации волновых явлений с корпускулярной точки зрения принцип суперпозиции переносится в квантовую механику, т. е. вводится понятие амплитуды вероятности – по аналогии с оптическими волнами:Ψ = А exp ( ). При этом имеется в виду, что вероятность есть квадрат этой величины (по модулю) т. е.W = |Ψ| 2 .Амплитуда вероятности называется в квантовой механикеволновой функцией . Это понятие ввел в 1926 г. немецкий физик М. Борн, дав тем самымвероятностную интерпретацию волн де Бройля. Удовлетворение принципу суперпозиции означает, что еслиΨ 1 и Ψ 2 – амплитуды вероятности прохождения частицы первым и вторым путями, то амплитуда вероятности при прохождении обоих путей должна быть:Ψ = Ψ 1 + Ψ 2 . Тогда формально утверждение о том, что «частица прошла двумя путями», приобретает волновой смысл, а вероятностьW = |Ψ 1 + Ψ 2 | 2 проявляет свойствоинтерференционного распределения .

Таким образом, величиной, описывающей состояние физической системы в квантовой механике, является волновая функция системы в предположении о справедливости принципа суперпозиции . Относительно волновой функции и записано основное уравнение волновой механики – уравнение Шрёдингера. Поэтому одна из основных задач квантовой механики состоит в нахождении волновой функции, отвечающей данному состоянию исследуемой системы.

Существенно, что описание состояния частицы с помощью волновой функции носит вероятностный характер, поскольку квадрат модуля волновой функции определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме . Этим квантовая теория фундаментально отличается от классической физики с ее детерминизмом.

В свое время именно высокой точности предсказания поведения макрообъектов была обязана своим триумфальным шествием классическая механика. Естественно, в среде ученых долгое время бытовало мнение, что прогресс физики и науки вообще будет неотъемлемо связан с возрастанием точности и достоверности такого рода предсказаний. Принцип неопределенности и вероятностный характер описания микросистем в квантовой механике коренным образом изменили эту точку зрения.

Тогда стали появляться другие крайности. Поскольку из принципа неопределенности следует невозможность одновременного определения координаты и импульса , можно сделать вывод о том, что состояние системы в начальный момент времени точно не определено и, следовательно, не могут быть предсказаны последующие состояния, т. е. нарушаетсяпринцип причинности .

Однако подобное утверждение возможно только при классическом взгляде на неклассическую реальность. В квантовой механике состояние частицы полностью определяется волновой функцией. Ее значение, заданное для определенного момента времени, определяет последующие ее значения. Поскольку причинность выступает как одно из проявлений детерминизма, целесообразно в случае квантовой механики говорить о вероятностном детерминизме, опирающемся на статистические законы, т. е. обеспечивающем тем более высокую точность, чем больше зафиксировано однотипных событий. Поэтому современная концепция детерминизма предполагает органическое сочетание, диалектическое единство необходимости ислучайности .

Развитие квантовой механики оказало, таким образом, заметное влияние на прогресс философской мысли. С гносеологической точки зрения особый интерес представляет уже упоминавшийся принцип соответствия , сформулированный Н. Бором в 1923 г., согласно которомувсякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применимости и переходя в нее в определенных предельных случаях .

Нетрудно убедиться, что принцип соответствия прекрасно иллюстрирует взаимоотношение классической механики и электродинамики с теорией относительности и квантовой механикой.