Основные разделы физики. Что изучает физика

греч. ?? ?????? – наука о природе, от????? – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших области – структурную Ф., физику взаимодействий (Ф. поля) и Ф. д в и ж е н и я (механику). Науки, образующие структурную Ф., довольно четко различаются по изучаемым объектам, к-рыми могут быть как элементы структуры вещества (элементарные частицы, атомы, молекулы), так и более сложные образования (плазма, кристаллы, жидкости, звезды). По мере открытия новых уровней структуры и состояний вещества объектная область структурной Ф. расширяется. Сейчас она охватывает все известные уровни строения вещества – от элементарных частиц до галактик. Ф. взаимодействий, основанная на представлении о поле как материальном носителе взаимодействия, делится на четыре отдела, соответственно четырем известным видам взаимодействий (сильное, электромагнитное, слабое, гравитационное). Ф. движения (механика) включает в себя классическую (ньютонову) механику, релятивистскую (эйнштейновскую) механику, нерелятивистскую квантовую механику и релятивистскую квантовую механику. Особое место в совр. системе физич. наук занимает с т а т и с т и ч. Ф., представляющая собой теорию поведения ансамблей – совокупностей большого количества частиц (см. Статистические и динамические закономерности). Будучи основана на определ. предположениях о структуре ансамблей и характере взаимодействия и движения частиц ансамбля, статистич. Ф. сочетает в себе черты всех трех осн. областей Ф. Ее методы применяются во всех разделах Ф. При решении конкретных физич. задач вопросы, связанные с выяснением структуры, взаимодействия и движения, тесно переплетаются. Так, Ф. атома, будучи разделом структурной Ф., необходимо включает в себя конкретные представления о характере движения и взаимодействия образующих атом частиц – ядра и электронов, т.е. может рассматриваться с т. зр. и Ф. взаимодействий и Ф. движения. Тем не менее приведенное подразделение комплекса физич. наук имеет определ. смысл, ибо выявляет те осн. категории, к-рые играли роль общих методологич. средств построения физич. картины мира на всех этапах истории Ф. Изложенная т. зр. на предмет Ф. не является единственной. Часто Ф. определяют как науку о таких формах материи ("первичных", "элементарных"), к-рые входят в состав любых материальных систем, о структуре этих форм, их взаимодействии и движении. В этом случае структуру самой Ф. определяют, исходя из многообразия исследуемых в ней форм материи и характерных для них видов движения (Ф. атома, Ф. твердого тела, Ф. тяготения, Ф. колебаний и т.д.), и специально выделяют такие ее разделы, к-рые охватывают вое многообразие явлений, происходящих при нек-рых определ. условиях, – Ф. низких температур, Ф. сверхвысоких давлений и т.п. (подробнее о др. подходах к определению предмета Ф. – см. И. В. Кузнецов, К вопросу об определении предмета совр. Ф., в кн.: Нек-рые философские вопросы естествознания, М.. 1957; С. И. Вавилов, Физика, Собр. соч., т. 3, М., 1956, с. 148–64; А. Ф. Иоффе, Физика, БСЭ, 2 изд., т. 45, М., 1956; Физика, в кн.: Физический энциклопедический словарь, т. 5, М., 1966). Обладая наиболее развитыми математическими и экспериментальными средствами исследования, Ф. занимает ведущее место среди естеств. наук. Ее представления, результаты и методы используются всеми без исключения естеств. науками. Это приводит к образованию многочисленных "стыковых" дисциплин (геофизика, физич. химия, химич. Ф., астрофизика, биофизика и т.п.). Сама же Ф. вырабатывает свои средства с помощью философии (методологич. средства), математики (матем. аппарат физич. теорий) и техники (экспериментальные средства), оказывая обратное влияние на развитие этих областей знания. Уже в глубокой древности возникли зачатки знаний, впоследствии вошедшие в состав Ф. и связанные с простейшими представлениями о длине, тяжести, движении, равновесии и т.п. В недрах греч. натурфилософии сформировались зародыши всех трех частей Ф., однако сначала на первом плане стояла Ф. движения, понимаемого в самом широком смысле – как изменение вообще. Взаимодействие отд. вещей трактовалось наивно-антропоцентрически (напр., мнение об одушевленности магнита у Фалеса). Подробное рассмотрение проблем, связанных с анализом движения как перемещения в пространстве, впервые было осуществлено в знаменитых апориях Зенона Элейского. В связи с обсуждением структуры первоначал зарождаются и конкурируют концепции непрерывной делимости до бесконечности (Анаксагор) и дискретности, существования неделимых элементов (атомисты). В этих концепциях закладывается понятийный базис будущей структурной?. В связи с задачами анализа простейшей формы движения (изменения по месту) возникают попытки уточнения понятий "движение", "покой", "находиться в...", "место", "время", "движение", "пустота". Результаты, полученные на этом пути, образуют основу понятийного аппарата будущей Ф. движения – механики. При сохранении антропоморфных тенденций у атомистов четко намечается понимание взаимодействия как непосредств. столкновения осн. первоначал – атомов. Полученные умозрит. путем достижения греч. натурфилософии вплоть до 16 в. служили единств. средствами построения картины мира в науке. Матем. средства (в основном геометрические) служили при этом лишь для описания наблюдений и иллюстрации словесных рассуждений. Эксперимент существовал лишь в виде отд. зачатков (эмпирики). Превращение Ф. в самостоят. науку обычно связывается с именем Галилея. Осн. задачей Ф. он считал эмпирич. установление количеств, связей между характеристиками явлений и выражение этих связей в матем. форме с целью дальнейшего исследования их матем. средствами, в роли к-рых выступали геометрич. чертежи и арифметич. учение о пропорциях. Использование этих средств регулировалось сформулированными им осн. принципами и законами (принцип относительности, принцип независимости действия сил, закон равноускоренного движения и др.). Достижения Галилея и его современников в области Ф. движения (Кеплер, Декарт, Гюйгенс) подготовили почву для работ Ньютона, приступившего к оформлению целостного предмета механики в систему понятий. Продолжая методологич. ориентацию на принципы, а не на скрытые причины (hypothesis non fingo), Ньютон сформулировал три закона (аксиомы) движения и вывел из них ряд следствий, трактовавшихся прежде как самостоят. законы. Ньютоновские "Математические начала натуральной философии" подвели итоги работы по установлению смысла и количеств. характеристик осн. понятий механики – "пространство", "время", "масса", "количество движения", "сила". Для решения задач, связанных с движением, Ньютон (вместе с Лейбницем) создал дифференциальное и интегральное исчисления, одно из самых мощных матем. средств Ф. Начиная с Ньютона и вплоть до конца 19 в. механика трактуется как общее учение о движении (понимаемом как перемещение в пространстве) и становится магистральной линией развития Ф. С ее помощью строится Ф. взаимодействий, где конкурируют концепции близкодействия и дальнодействия. Потребности концепции близкодействия вызвали к новой жизни антич. представления об эфире (Декарт). Успехи небесной механики, основанные на ньютоновском законе всемирного тяготения, способствовали победе концепции дальнодействия (согласно к-рой гравитац. взаимодействие между частицами вещества осуществляется мгновенно и непосредственно через пустоту с помощью дальнодействующих сил). По образцу теории тяготения строилась и Ф. взаимодействий в области электричества и магнетизма (Кулон). Успехи гидродинамики (Бернулли, Эйлер) способствовали внедрению в Ф. идей непрерывности на основе представлений о невесомых жидкостях (флюидах). Как флюиды трактовались электричество, магнетизм и теплота. Юнг и Френель развивали теорию света как волн в непрерывном эфире, также рассматривавшемся как флюид. Начиная с Дальтона, введшего понятие атомного веса, атомистика отделяется от философии, а химия обретает статус фундаментальной науки. Представления об атомах и молекулах, перенесенные из химии в Ф., постепенно вытеснили невесомые флюиды. Юнг (1816) дал первую количеств. оценку размеров молекулы. Усилиями Бернулли, Клаузиуса, Максвелла была построена (в опоре на статистич. представления) кинетич. теория газов, дальнейшее развитие к-рой Больцманом и Гиббсом позволило объяснить тепловые явления без помощи теплорода. С Фарадея начинается интенсивное развитие Ф. электричества и магнетизма на основе идеи близкодействия. Переход от электростатики к электродинамике (Фарадей, Эрстед, Ампер) позволил объединить электрические и магнитные явления. Фарадеевские представления о поле как особом состоянии эфира были оформлены Максвеллом в строгую матем. теорию, к-рая с единой т. зр. трактовала электрические, магнитные и оптич. явления. К концу 19 в. Ф. представляла собой развитый комплекс дисциплин, объединенных идеей сохранения и превращения энергии (см. Сохранения принципы). Мн. ученым Ф. казалась принципиально завершенной наукой. Филос. фоном ее было механистич. мировоззрение, представлявшее собой синтез атомизма с доктриной лапласовского детерминизма. Вероятностные представления статистич. Ф. трактовались как всецело обусловленные незнанием точных значений начальных импульсов и координат частиц, составляющих ансамбль. Электромагнитные явления многими еще не считались автономными – усилия большинства ученых были направлены на сведение их к механич. явлениям путем построения хитроумных моделей эфира. Внутр. противоречия, возникшие при теоретич. объяснении результатов нек-рых опытов в рамках классич. картины мира, привели к возникновению новых, неклассич. направлений релятивистской и квантовой Ф. Релятивистская Ф., возникшая из необходимости объяснить отрицат. результат опыта Майкельсона (спец. относительности теория) и факта равенства инертной и тяжелой массы (общая теория относительности), стала Ф. быстрых движений и сильных гравитац. полей. Квантовая теория, появившаяся в связи с парадоксами объяснения наблюдаемого распределения энергии в спектре излучения абсолютно черного тела (Планк, 1900) явлениями фотоэффекта (Эйнштейн, 1905) и противоречиями планетарной модели атома (Бор, 1913), стала общей теорией взаимодействия и движения микрообъектов. В связи с этим претерпела радикальные изменения вся физич. картина мира. В Ф. движения спец. теория относительности (Эйнштейн, 1905) сделала ненужным представление об эфире как абс. системе отсчета. Это дало возможность и в Ф. взаимодействий отказаться от эфира и приписать полю самостоят. существование. Сначала теоретически, а затем экспериментально и промышленно (ядерная энергетика) установленные связь массы и энергии (Е=mс2), а также зависимость массы движущегося тела от скорости его движения покончили с резким противопоставлением материи и движения, характерным для классич. Ф. Постулат о постоянстве скорости света во всех инерциальных системах отсчета и распространение принципа относительности на электромагнитные явления показали относительность количеств, определенности пространственных и врем. промежутков. Это привело к понятию единого четырехмерного пространственно-врем. континуума и ликвидировало разобщенность понятий пространства и времени, свойственную классич. механике. Общая теория относительности (Эйнштейн, 1916), интерпретировавшая поле тяготения как искривление пространства-времени, обусловленное наличием материи, перекинула еще один мост от материи и движения к взаимодействию. Создание в 20-х гг. 20 в. квантовой механики, основанной на представлении о дискретной природе действия (существование миним. кванта действия?) (Бор, Борн, Гейзенберг, де Бройль, Шредингер, Паули и др.), привело к дальнейшему изменению представлений о движении и взаимодействии, сделав невозможным применение понятия траектории к анализу движения микрообъектов. Релятивистская квантовая механика (Дирак, Паули, Гейзенберг, В. А. Фок, Дайсон, Р. Фейнман, Ю. Швингер и др.), наряду с пространств.-врем. перемещением элементарных частиц, сохраняющим их тождественность и регулируемым законами сохранения энергии и импульса, стала рассматривать их взаимопревращения (см. Микрочастицы). Все эти, как и др. законы сохранения, являются в совр. Ф. следствиями общих свойств симметрии пространства-времени и взаимодействий. В области структурной Ф. квантовые представления привели к тому, что концепция абсолютно элементарных, неделимых единиц структуры – атомов, уступила место представлениям об относительности понятий элементарности и сложности, о чем в свое время говорил еще Ленин. Релятивистская квантовая теория поля, объединив в едином понятии квантованного поля понятия частицы и поля, преодолела резкое противопоставление пространств. дискретности вещества (взаимодействующих частиц) и пространств. непрерывности поля (переносчика взаимодействия), характерное для классич. Ф. и сохранившееся в нерелятивистской квантовой механике. Изменились и др. связи структурной Ф. с Ф. взаимодействий. В классич. Ф. (включая релятивистскую) результаты взаимодействия целиком определялись пространств.-врем. структурой взаимодействующих объектов (координатами и скоростями – для частиц, напряженностью или потенциалом в каждой точке пространства и законом изменения их во времени – для полей). Знание характеристик элементов структуры позволяло определить состояние системы в целом. Т.о., Ф. взаимодействий была логически вторичной по отношению к структурной Ф. В современной квантовой Ф. дело обстоит наоборот – на первый план выдвинулась Ф. взаимодействий и ответ на вопрос о строении микрообъектов определяется результатами взаимодействия данной микрочастицы с другими. В связи с этим существенно изменились требования к способу задания состояния микрообъектов в теории. Во-первых, волновая функция относится к системе в целом. Во-вторых, энергетически-импульсные характеристики микрообъектов (потенциальные характеристики их взаимодействия) в квантовой механике являются логически равноправными и, что особенно важно, независимыми по отношению к их пространств.-врем. характеристикам. Наиболее отчетливо логич. первичность взаимодействия по сравнению с пространств.-врем. структурой проявляется в Ф. элементарных частиц. Если в Ф. атома и атомного ядра характеристикам взаимодействия еще могут быть сопоставлены пространств.-врем. модели взаимодействующих объектов (типа боровских орбит, распределения плотности заряда в атомах, различных моделей ядра), дающие нек-рую пространств.-врем. картину механизма взаимодействия, то в Ф. элементарных частиц это можно сделать в гораздо меньшей степени. Элементы структуры атома (ядро и электроны) и атомного ядра (протоны и нейтроны) еще могут считаться существующими "в недрах" исходных частиц до взаимодействия, к-рое приводит лишь к перераспределению этих элементов. Элементарные частицы до взаимодействия могут рассматриваться состоящими из двух элементарных частиц лишь весьма условно. Это находит свое выражение в понятии "виртуальности" элементов структуры элементарных частиц: виртуальные частицы как элементы структуры реальных элементарных частиц характеризуют лишь возможные результаты порождения новых реальных элементарных частиц при взаимодействии исходных реальных частиц. Еще более виртуальными являются т.н. квазичастицы в Ф. полупроводников и Ф. твердого тела, позволяющие трактовать возбуждение состояния макротел как результат существования, движения и взаимодействия квазичастиц. Как и многие другие модельные представления, квазичастицы служат для теоретич. объяснения макроскопически наблюдаемых явлений в твердых и жидких телах. Т.о., совр. теория структуры элементарных частиц приобретает существенно динамич. характер. По сути дела, современная квантовая Ф., вскрыв ограниченность пространств.-врем. описания микромира на языке классич. понятий координаты и скорости, дала более глубокое его описание на языке?-функции и ограничила свои задачи описанием и предсказанием всех возможных макроскопически наблюдаемых результатов взаимодействия. Эта черта совр. Ф., считающаяся мн. учеными временной, наиболее ярко проявляется в формализме s-матрицы, представляющем собой физич. воплощение кибернетич. идей "черного ящика". Совр. Ф. взаимодействий значительно расширила свою объектную область, включив в рассмотрение, наряду с гравитационными и электромагнитными, сильные (ядерные) и слабые (?-распадные) взаимодействия, проявляющиеся только в микромире. Факт наличия четырех существенно различных видов взаимодействий постоянно поддерживает зародившиеся еще в классич. Ф., но пока безуспешные стремления построить общую теорию поля. В статистич. Ф., куда также проникли квантовые идеи о движении и взаимодействии, оформляется в самостоят. ветвь статистич. Ф. процессов (физич. кинетика). Достижения Ф. в 20 в. значительно повлияли на конкретные представления о смысле таких филос. категорий, как материя, движение, пространство и время. К числу фундаментальных достижений совр. Ф., имеющих общефилос. значение, относится также установление принципа относительности свойств материальных объектов. Это связано с последоват. учетом в понятийном аппарате теории роли материального окружения объекта (в первую очередь измерит, прибора и системы отсчета) в деле определения этих свойств. Классич. Ф. считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Уже теория относительности вскрыла количеств. относительность таких свойств объектов, как длина, время жизни, масса, зависящих, как оказалось, не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количеств, определенность свойств объекта должна быть отнесена не к нему "самому по себе", а к системе "объект+система отсчета", хотя носителем качеств. определенности свойств по-прежнему оставался сам объект. Квантовая теория пошла еще дальше в этом направлении, выдвинув идею дополнительности (см. Дополнительноcти принцип). Существование дополнит. свойств, не объяснимое с т. зр. принципа абсолютности свойств, получает естеств. объяснение с помощью принципа относительности свойств. С т. зр. последнего, термин "свойство объекта" следует рассматривать в плане "виртуальности" – как характеристику потенциальных возможностей объекта, к-рые реализуются только при наличии второго объекта, взаимодействующего с первым. С квантовой Ф. связано также гораздо более широкое понимание причинности, опирающееся на отказ от характерного для классич. Ф. предположения, что в основе статистич. закономерностей всегда лежат однозначно определенные динамич. закономерности. В концептуальных рамках релятивистской и квантовой теорий развитие Ф., для к-рого характерны все более последоват. отказ от применимости классич. представлений "в малом", все более абстрактная характеристика состояния, все меньшая наглядность, продолжается и в наст. время. Принципы и представления этих теорий служат фундаментом как для решения прикладных физико-технических и пром. задач (строительства ускорителей, реакторов, термоядерных установок и атомных электростанций), так и для формирования новых представлений о структуре, взаимодействии и движении при экстраполяции принципов на новые объектные области – в квантовой радиофизике, Ф. полупроводников, Ф. сверхпроводимости, Ф. плазмы, астрофизике и т.д. Задача синтеза релятивистских и квантовых принципов является одной из основных и до сих пор не решенных задач Ф. элементарных частиц, представляющей передний край современной теоретической и экспериментальной Ф. В области экспериментальной Ф. осн. проблемы состоят, с одной стороны, в осуществлении целенаправленных экспериментов по проверке гипотез о структуре, строении и взаимодействии элементарных частиц, выдвигаемых физиками-теоретиками. С др. стороны, ведется поиск технич. средств, к-рые позволили бы проверить справедливость квантовых и релятивистских принципов на новой объектной области, ранее не доступной экспериментальному изучению (эксперименты с частицами высоких энергий – встречные пучки, космич. лучи). В теоретич. Ф. осн. круг собственно физич. проблем связан с исследованием формальной структуры матем. аппарата, используемого в теории (попытки аксиоматизации теории поля, вопросы сходимости ряда в теории возмущений и т.п.). Осн. методами, используемыми в новейшей теоретич. Ф., являются теория поля, метод s-матрицы и теория групп. Они различаются как выбором матем. аппарата, так и предъявляемыми к нему требованиями. В теории поля, использующей для построения матем. моделей аппарат алгебры операторов в гильбертовом пространстве, упор делается на строгое матем. осмысливание теории, а не на детальное сравнение с опытом. В основе метода s-матрицы лежит матем. аппарат теории функций комплексного переменного. Оперирование матем. аппаратом производится без опоры на наглядные модельные представления, на основе аксиоматич. требований, предъявляемых к матем. характеристикам s-матрицы (аналитичность, унитарность и т.д.), связывающей состояния до и после взаимодействия. Этот метод в его совр. виде занимает промежуточное положение между случаем, когда создание строгой теории признается более важным (как в теории поля), нежели использование ограниченных и формальных методов (как в теории групп), и случаем, когда поиск ведется вне рамок к.-л. единой методич. концепции путем простого подбора тех или иных моделей с последующим отбрасыванием неудачных вариантов (как в ядерной Ф.). Методы теории групп, основанные на учете связи типа симметрии состояния физич. объектов с инвариантами групп преобразований, позволили построить ряд абстрактных теорий симметрии сильно взаимодействующих частиц (адронов) – теорию SU3-симметрии, SU6-симметрии и т.п. Эти теории не используют никаких модельных представлений и опираются только на отвлеченные свойства групп. Будучи основаны на глубоких матем. идеях, подобно теории поля, методы теории групп, в отличие от нее, покоятся на прочной экспериментальной основе. Однако, выделяя только те аспекты природы, к-рые удается понять в рамках абстрактной симметрии, эти методы не дают возможности осмыслить численные значения времени жизни частиц и характер их взаимодействий. Поэтому громадный объем экспериментальных фактов (в т.ч. все, относящиеся к легким частицам – лептонам) находится вне поля зрения этих методов. Все три упомянутых метода остаются слишком ограниченными, отрывочными и неопределенными и поэтому рассматриваются ведущими физиками как предварит. достижения на пути к более общей теории, способы построения к-рой пока не ясны. Методологич. проблемы новейшей Ф. так или иначе связаны с анализом роли матем. аппарата в построении физич. теорий. Это обусловлено существ, отличием характера использования математики в совр. Ф. В классич. Ф. теория обслуживала эксперимент, а матем. язык служил лишь рафинированным средством о п и с а н и я эмпирич. связей и о б ъ я с н е н и я их с помощью разного рода моделей (напр., как в случае отношения эмпирич. законов Бойля–Мариотта, Шарля и Гей-Люссака к распределению Максвелла, основанному на атомно-молекулярной модели строения вещества). Совр. Ф. отличается широким использованием математической гипотезы как метода исследования (хотя сам этот метод зародился уже в классич. Ф.), причем часто без опоры на модельные представления, руководствуясь почти исключительно матем. требованиями к характеру осн. уравнений. Это выдвигает теоретич. уровень исследования на первое место по сравнению с эмпирическим, за к-рым остаются только функции контроля – принципиальная проверка и количеств, уточнение результатов, полученных с помощью матем. гипотезы на теоретич. уровне. В случае успеха существование объектов или их характеристик, предположенное на теоретич. уровне, подтверждается эмпирически, что приводит к открытию новых частиц или эффектов. Именно таким путем были открыты в Ф. позитрон (первоначально предсказанный теоретически на основании интерпретации результатов решения уравнения Дирака), несохранение четности в слабых взаимодействиях (опыты By по проверке гипотезы Ли и Янга), ?–-мезон (на основании предсказания теории SU3-симметрии). Ряд объектов, возможность существования к-рых следует из нек-рых матем. гипотез, до сих пор экспериментально не обнаружены – гравитац. волны (их существование вытекает из интерпретации результатов определ. способа решения уравнений общей теории относительности), монополь Дирака (изолированный магнитный полюс, существующий согласно интерпретации одного из вариантов матем. оформления электродинамики), кварки (гипотетич. суперэлементарные частицы) и др. Методологич. тенденция, идущая от классич. Ф., предписывает искать для каждого матем. выражения, фигурирующего в теории, соответствующий ему фрагмент физич. реальности. Эта тенденция может быть названа онтологической, ибо в ней в качестве принципа интерпретации провозглашается своеобразный принцип параллелизма между матем. формой и физич. содержанием теории. Согласно этому принципу, матем. аппарат теории непосредственно отражает (изоморфно или гомоморфно) объекты, свойства и отношения реального мира как таковые, так что матем. символы являются знаками элементов реальности, а структура матем. выражений воспроизводит структуру реального мира физич. объектов и их взаимодействий. С этой методологич. тенденцией в совр. Ф. успешно конкурирует тенденция к эмпирич. интерпретации матем. аппарата физич. теории. Принцип такой интерпретации иногда называют "началом принципиальной наблюдаемости". При эмпирич. интерпретации матем. символы теории трактуются как обозначающие результаты реальных эмпирич. процедур, причем физич. смыслом обладают далеко не все из символов. Нек-рые из них, служащие промежуточным средством для вычислений, не получают никакой интерпретации и рассматриваются как вспомогательные. Последоват. приверженцы эмпирия, интерпретации единственно достаточным условием истинности физич. теории считают ее способность к предсказаниям, оправдывающимся на опыте, и не делают из факта успешности подобных предсказаний вывода о сходстве структуры матем. аппарата теории со структурой реальности. Наиболее последовательно принцип эмпирич. интерпретации осуществляется совр. Ф. в методе s-матрицы. Выражением борьбы тех же принципов интерпретации является полемика вокруг интерпретации квантовой механики (точнее, ее матем. аппарата). Так, ?-функция, задающая состояние микрообъектов, интерпретируется сторонниками онтологич. интерпретации (Д. Бом, Л. до Бройль, А. Яноши и др.) как отображение нек-рого объективно существующего волнового поля. Сторонники же эмпирич. интерпретации (копенгагенская школа и ее разновидности) считают?-функцию лишь промежуточным средством расчета результатов реальных экспериментов. С проблемой интерпретации в совр. Ф. тесно связана проблема реальности – проблема принципов построения картины мира. Обычно эту картину строят на базе принципов онтологич. интерпретации – путем онтологизации матем. аппарата теории (именно так появились в совр. Ф. представления о двойственной корпускулярно- волновой природе микрообъектов, о кварках и т.п.). При этом изменение вида используемого в теории матем. аппарата влечет за собой изменение онтологич. представлений. Иногда онтологизируются не матем. выражения, а модельные представления, управляющие оперированием с этими выражениями (как, напр., в ядерной Ф.). Полученная подобным способом физич. картина мира считается образом реальности, лежащей на ненаблюдаемом уровне. Сторонники эмпирич. интерпретации склоняются к тому, чтобы употреблять термин "реальность" и конкретизировать его смысл только на эмпирич. уровне исследования, принципиально отказываясь придавать онтологич. смысл гипотезам о характере непосредственно не наблюдаемых объектов. Промежуточной является позиция М. Борна, считающего образами реальности инварианты, фигурирующие в матем. аппарате теории. Поиск "сумасшедших идей", столь актуальный в совр. Ф., с т. зр. проблемы реальности представляет собой проблему существенно новых принципов построения физич. картины мира, к-рые позволили бы придать теории элементарных частиц логич. замкнутость и полноту. Большинство ученых считает, что принципов квантовой механики и теории относительности недостаточно для осуществления этой цели. Однако отсутствие ощутимых успехов в преодолении этой недостаточности вынуждает при решении конкретных задач до сих пор ограничиваться лишь незначит, модификациями квантово-релятивистского концептуального аппарата, не затрагивающими его принципиальных основ. Лит.: Дюгем П., Физич. теория, ее цель и строение, пер. с франц., СПБ, 1910; Планк М., Физич. очерки, пер. с нем., М., ; Гейзенберг В., Филос. проблемы атомной Ф., пер. [с англ.], М., 1953; его же, Ф. и философия, пер. с нем., М., 1963; Кудрявцев П. С, История Ф., , т. 1–2, М., 1956; Лауэ М., История Ф., пер. с нем., М., 1956; Нильс Бор и развитие физики. Сб. [ст.], М., 1958; Очерки развития осн. физич. идей. Сб. ст., М., 1959; Филос. вопросы совр. физики. Сб. ст., М., 1959; Бор Н., Атомная Ф. и человеч. познание, пер. с англ., М., 1961; Бройль Л. де, По тропам науки, пер. с франц., М., 1962; его же, Революция в Ф., пер. с франц., 2 изд., М., 1965; Теоретич. физика 20 века, М., 1962; Над чем думают физики, вып. 1–4, М., 1962–65; Развитие совр. Ф. Сб. ст., М., 1964; Борн?., ?. в жизни моего поколения. Сб. ст., М., 1963; Филос. проблемы Ф. элементарных частиц, М., 1963; Спасский Б. И., История Ф., ч. 1–2, М., 1963–64; Эйнштейн?., ?. и реальность. Сб. ст., пер. с нем. и англ., М., 1965; Ландау Л. Д., Лифшиц В. М., Теоретич. физика, 2 изд., т. 1–9, М., 1965; Фейнмановские лекции по Ф., [пер. с англ.], вып. 1–8, М., 1965–66; Кузнецов Б. Г., Развитие физич. идей от Галилея до Эйнштейна в свете совр. науки, 2 изд., М., 1966; Эйнштейн?., Инфельд Л., Эволюция Ф., пер. с англ., 4 изд., [М.], 1966; Campbell N. R., Physics. The elements, Camb., 1920; Lenzen V. Г., The nature of physical theory, N. Y., 1931; Bridgman P. W., The nature of physical theory, Princeton, 1936; Planck M., The philosophy of physics, N. Y., ; Stebbing L. S., Philosophy and the physicists, L., ; Frank Ph., Between physics and philosophy, Camb., 1941; Destouches J. L., Principes foundamentaux de physique th?orique, P., ; Lindsay R. В., Margenau H., Foundations of physics, , N. Y.–L., ; Eddington ?., The philosophy of physical science, Camb., 1949; Margenau H., The nature of physical reality, N.Y., 1950; Destouches-F?vrier P., La structure des th?ories physiques, P., 1951; Weizs?cker C.F. von, Zum Weltbild der Physik, 6 Aufl., Stuttg., 1954. И. Алексеев, Ю. Румер. Новосибирск.

Введение к теме проекта

Физика — это наука о природе, изучающая наиболее общие свойства окружающего нас мира. Она изучает материю (вещество и поля) и наиболее простые и вместе с тем наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

Главная цель науки - выявить и объяснить законы природы, которыми определяются все физические явления, для использования их в целях практической деятельности человека.
Мир познаваем, и процесс познания бесконечен. Изучение окружающего нас мира показало, что материя находится в постоянном движении. Под движением материи понимают любое изменение, явление. Следовательно, окружающий нас мир - это вечно движущаяся и развивающаяся материя.

Физика изучает наиболее общие формы движения материи и их взаимные превращения. Некоторые закономерности являются общими для всех материальных систем, например, сохранение энергии, — их называют физическими законами.

Тепловые явления в природе и технике


Оглянемся вокруг себя, и станет понятно, что физические явления окружают нас с детства, что мы многие физические знания о мире приобретаем наряду с обычным житейским опытом.

Физику иногда называют «фундаментальной наукой», поскольку другие естественные науки (биология, геология, химия и др.) описывают только некоторый класс материальных систем, подчиняющихся законам физики.

Например, химия изучает атомы, образованные из них вещества и превращения одного вещества в другое. Химические же свойства вещества однозначно определяются физическими свойствами атомов и молекул, описываемыми в таких разделах физики, как термодинамика, электромагнетизм и квантовая физика.

Электрические явления в живой природе и техн ике

Магнитные явления на Зе мле


Развитие науки идёт по следующему пути. В основе лежит наблюдение за явлениями природы, затем проведение экспериментов, создание гипотез, справедливость которых подтверждается опытами. Если гипотеза экспериментально обоснована, то на её основе создаётся теория, объясняющая данное явление не только с качественной, но и с количественной стороны.

Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы.

Физические теории почти всегда формулируются в виде математических выражений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физических теорий.

Предмет физики

Научный метод

Физика - естественная наука. В ее основе лежит экспериментальное исследование явлений природы, а ее задача - формулировка законов, которыми объясняются эти явления. Физика сосредоточивается на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д. В основе физических исследований лежат наблюдения. Обобщение наблюдений позволяет физикам формулировать гипотезы о совместных общих черт этих явлений, по которым велись наблюдения. Гипотезы проверяются с помощью продуманного эксперимента, в котором явление проявлялось бы в как можно более чистом виде и не осложнялось бы другими явлениями. Анализ данных совокупности экспериментов позволяет сформулировать закономерность. На первых этапах исследований закономерности носят преимущественно эмпирический, феноменологический характер, то есть явление описывается количественно с помощью определенных параметров, характерных для исследуемых тел и веществ. Анализируя закономерности и параметры, физики строят физические теории, которые позволяют объяснить изучаемые явления на основе представлений о строении тел и веществ и взаимодействие между их составными частями. Физические теории, в свою очередь, создают предпосылки для постановки точных экспериментов, в ходе которых в основном определяются рамки их применения. Общие физические теории позволяют формулировки физических законов, которые считаются общими истинами, пока накопления новых экспериментальных результатов не потребует их уточнения.

Сложилось окончательное разделение труда между физиками-теоретиками и физиками-экспериментаторами. Энрико Ферми был, пожалуй, последним выдающимся физиком, успешным как в теории, так и в экспериментальной работе.

Передний край физики переместился в область исследования фундаментальных законов, ставя перед собой цель создать теорию, которая объясняла бы Вселенную, объединив теории фундаментальных взаимодействий. На этом пути физика получила частичные успехи в виде теории электрослабого взаимодействия и теории кварков, обобщённой в так называемой стандартной модели. Однако, квантовая теория гравитации до сих пор не построена. Определенные надежды связываются с теорией струн.

Начиная с создания квантовой механики, быстрыми темпами развивается физика твердого тела, открытия которой привели к возникновению и развитию электроники, а с ней и информатики, которые внесли коренные изменения в культуру человеческого общества.

Теоретическая и экспериментальная физика

В основе своей физика - экспериментальная наука: все её законы и теории основываются и опираются на опытные данные. Однако зачастую именно новые теории являются причиной проведения экспериментов и, как результат, лежат в основе новых открытий. Поэтому принято различать экспериментальную и теоретическую физику.

Экспериментальная физика исследует явления природы в заранее подготовленных условиях. В её задачи входит обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Многие достижения в физике были сделаны благодаря экспериментальному обнаружению явлений, не описываемых существующими теориями. Например, экспериментальное изучение фотоэффекта послужило одной из посылок к созданию квантовой механики (хотя рождением квантовой механики считается появление гипотезы Планка , выдвинутой им для разрешения ультрафиолетовой катастрофы - парадокса классической теоретической физики излучения).

В задачи теоретической физики входит формулирование общих законов природы и объяснение на основе этих законов различных явлений, а также предсказание до сих пор неизвестных явлений. Верность любой физической теории проверяется экспериментально: если результаты эксперимента совпадают с предсказаниями теории, она считается адекватной (достаточно точно описывающей данное явление).

При изучении любого явления экспериментальные и теоретические аспекты одинаково важны.

Прикладная физика

От своего зарождения физика всегда имела большое прикладное значение и развивалась вместе с машинами и механизмами, которые человечество использовало для своих нужд. Физика широко используется в инженерных науках, немало физиков были одновременно изобретателями и, наоборот. Механика, как часть физики, тесно связана с теоретической механикой и сопротивлением материалов, как инженерными науками. Термодинамика связана с теплотехникой и конструированием тепловых двигателей. Электричество связано с электротехникой и электроникой, для становления и развития которой очень важны исследования в области физики твердого тела. Достижения ядерной физики обусловили появление ядерной энергетики, и тому подобное.

Физика также имеет широкие междисциплинарные связи. На границе физики, химии и инженерных наук возникла и быстро развивается такая отрасль науки как материаловедение. Методы и инструменты используются химией, что привело к становлению двух направлений исследований: физической химии и химической физики. Все мощнее становится биофизика - область исследований на границе между биологией и физикой, в которой биологические процессы изучаются исходя из атомарного структуры органических веществ. Геофизика изучает физическую природу геологических явлений. Медицина использует методы, такие как рентгеновские и ультразвуковые исследования, ядерный магнитный резонанс - для диагностики, лазеры - для лечения болезней глаз, ядерное облучение - в онкологии, и тому подобное.

Основные теории

Хотя физика имеет дело с разнообразными системами, некоторые физические теории применимы в больших областях физики. Такие теории считаются в целом верными при дополнительных ограничениях. Например, классическая механика верна, если размеры исследуемых объектов намного больше размеров атомов , скорости существенно меньше скорости света , и гравитационные силы малы. Эти теории всё ещё активно исследуются; например, такой аспект классической механики, как теория хаоса был открыт только в XX веке . Они составляют основу для всех физических исследований.

Теория Основные разделы Понятия
Классическая механика Законы Ньютона - Лагранжева механика - Гамильтонова механика - Теория хаоса - Гидродинамика - Механика сплошных сред Вещество - Пространство - Время - Энергия - Движение - Масса - Длина - Скорость - Сила - Мощность - Работа - Закон сохранения - Момент инерции - Угловой момент - Момент силы - Волна - Действие - Размерность
Электромагнетизм Электростатика - Электричество - Магнитостатика - Магнетизм - Уравнения Максвелла - Электродинамика Электрический заряд - Напряжение - Ток - Электрическое поле - Магнитное поле - Электромагнитное поле - Электромагнитное излучение
Термодинамика и Статистическая физика Тепловая машина - Молекулярно-кинетическая теория Температура - Постоянная Больцмана - Энтропия - Свободная энергия - Термодинамическое равновесие - Статистическая сумма - Микроканоническое распределение - Большое каноническое распределение
Квантовая механика Уравнение Шрёдингера - Интеграл Фейнмана - Квантовая теория поля Гамильтониан - Тождественные частицы - Постоянная Планка - Измерение - Квантовый осциллятор - Волновая функция - Нулевая энергия - Перенормировка
Теория относительности Специальная теория относительности - Общая теория относительности Принцип относительности - 4-вектор - Пространство-время - Скорость света - Тензор энергии-импульса - Кривизна пространства-времени - Чёрная дыра

Разделы физики

Макроскопическая физика

  • Механика твердого тела
  • Молекулярная оптика
  • Электродинамика
  • Микроскопическая физика

    • Статистическая физика
    • Физика конденсированных сред
      • Физика наноструктур

    Разделы физики на стыке наук

  • Медицинская физика
  • Техническая физика
  • Справка

    • Единицы измерения физических величин
    • Олимпиадные задачи по физике

    Важнейшие журналы

    Российские

    • Журнал экспериментальной и теоретической физики (ЖЭТФ)

    Зарубежные

    • Журналы Американского физического общества
      • Physics - короткие обзорные статьи по результатам, опубликованным в других журналах общества.
      • Reviews of Modern Physics (RMP) Публикует обзорные статьи по большим разделам физики
      • Physical Review Letters (PRL) Наиболее престижный (после Nature и Science) журнал: короткие статьи по новейшим исследованиям
      • Physical Review (A,B,C,D,E) Статьи разного формата, более подробные, но менее оперативно публикуемые, чем в Phys. Rev. Lett.
    • Журналы
    • Европейские журналы
      • Journal of Physics (A, B, C …)
      • Physica (A, B, C …)
      • Europhysics Letters
      • Zeitschrift für Physik Именно в этом журнале публиковались Эйнштейн, Гейзенберг, Планк…
      • Nuovo cimento (A, B, C …)
    • Научно-популярные журналы

    А также архив препринтов arXiv.org , на котором статьи появляются гораздо раньше их появления в журналах и доступны для свободного скачивания.

    См. также

    Ссылки

    Коды в системах классификации знаний

    • Государственный рубрикатор научно-технической информации (ГРНТИ) (по состоянию на 2001 год): 29 ФИЗИКА

    Примечания

    Литература

    • Иванов Б. Н. Законы физики. Изд.3, М.:URSS, 2010 г., 368 с

    Фи́зика (от др.-греч. φύσις «природа») - область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира.

    Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности - Аристотеля, жившего в IV веке до нашей эры. В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым, когда он издал первый в России учебник физики в переводе с немецкого языка. Первый отечественный учебник под названием «Краткое начертание физики» был написан первым русским академиком Страховым.

    Общенаучные основы физических методов разрабатываются в теории познания и методологии науки.

    Предмет физики

    Физика - это наука о природе в самом общем смысле (часть природоведения). Она изучает вещество (материю) и энергию, а также фундаментальные взаимодействия природы, управляющие движением материи.

    Некоторые закономерности являются общими для всех материальных систем, например, сохранение энергии, - такие свойства называют физическими законами. Физику иногда называют «фундаментальной наукой», поскольку другие естественные науки (биология, геология, химия и др.) описывают только некоторый класс материальных систем, подчиняющихся законам физики. Например, химия изучает атомы и образованные из них вещества. Химические же свойства вещества однозначно определяются физическими свойствами атомов и молекул, описываемыми в таких разделах физики, как термодинамика, электромагнетизм и квантовая физика.

    Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы. Физические теории почти всегда формулируются в виде математических выражений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физических теорий (см. математическая физика).

    Теоретическая и экспериментальная физика

    Главными ветвями физики являются экспериментальная физика и теоретическая физика. И хотя может показаться, что они разделены, поскольку большинство физиков являются или чистыми теоретиками, или чистыми экспериментаторами, на самом деле теоретическая и экспериментальная физика развиваются в постоянном контакте. Над одной и той же проблемой могут работать как теоретики, так и экспериментаторы. Первые описывают существующие экспериментальные данные и делают теоретические предсказания будущих результатов, вторые проводят эксперименты, проверяя существующие теории и получая новые результаты. Многие достижения в физике были вызваны экспериментальным наблюдением явлений, не описываемых существующими теориями (например, экспериментально обнаруженная абсолютность скорости света породила специальную теорию относительности), так же как и некоторым теориям удалось предсказать результаты, проверенные позже (например, открытие позитрона).

    Основные теории

    Хотя физика имеет дело с разнообразными системами, некоторые физические теории применимы в больших областях физики. Такие теории считаются в целом верными при дополнительных ограничениях. Например, классическая механика верна, если размеры исследуемых объектов намного больше размеров атомов, скорости существенно меньше скорости света, и гравитационные силы малы. Эти теории всё ещё активно исследуются; например, такой аспект классической механики, как теория хаоса был открыт только в XX веке. Они составляют основу для всех физических исследований.

    Слов "физика" имеет греческое происхождение, дословно переводится как "природа". На сегодняшний день это одна из самых древних наук естественно-научного цикла, упоминания о которой встречаются ещё у древнегреческого учёного Аристотеля (6 век до н. э.). Что такое физика? Сегодня под ней понимают науку об общих законах природы, материи, её движении и строении. Классические законы физики считаются основой всего современного естествознания.

    Предмет науки

    Физику можно назвать наукой о природе в самом общем смысле этого слова. Она изучает вещество или материю, энергию, общие виды взаимодействия сил природы. Физика считается фундаментальной наукой, так как другие естественнонаучные дисциплины изучают лишь классы материальных систем, которые подчиняются физическим законам. Физика тесно связана с математикой, так как все физические законы описываются с помощью методов математического аппарата. Помимо этого, развитие некоторых областей математики произошло исключительно благодаря достижениям физиков. Так, существует целый раздел - математическая физика.

    История физики

    Становление современной физики прошло множество этапов, каждый из которых вносил что-то новое в физическое знание, модернизировал фундаментальные .

    Древний период

    Основы современной физики зародились еще в 5-6 вв. до н. э. Считается, что сам термин «физика» впервые опубликовал в своих трудах древнегреческий философ Аристотель. Другие греческие философы Евклид и Птолемей создали основы механики, оптики и других разделов современной физики. Большой вклад внесли и индийские ученые. Так, астроном Ариабхата предложил эллиптические модели планетарных систем, а мыслители Дигнага и Дхармакирти положили начало физике элементарных частиц.

    Средневековье

    В середине XVI века в Европе началась научная революция в связи с изобретением научных методов исследования. Так, в течение следующих 100 лет учёными были разработаны и доказаны основы всей современной фундаментальной физики. Этот период времени начинается работой Николая Коперника, а заканчивается целой плеядой талантливых исследователей: Г. Галилей, И. Кеплер, Б. Паскаль и, конечно, И. Ньютон, который создал основные законы механики.

    Переломный момент

    В конце XIX - начале XX века вся классическая физика была перевёрнута с ног на голову исследованиями А. Эйнштейна, Э. Резерфорда, Н. Бора. Они сменили механическую парадигму в физике, изобретя теорию относительности и теорию атома.

    Современная физика

    На сегодняшний день физика по большей частью занимается исследованием фундаментальных законов. Кроме того, акцент сместился на развитие ядерной физики благодаря открытию радиоактивности веществ Анри Беккерелем. Создание квантовой физике дало толчок к активному развитию микроэлектроники и физики твёрдого тела, без которых не представляется существование целых отраслей современной промышленности.

    Направления физики как науки

    Главными ветвями физики как науки являются следующие направления: теоретическая, прикладная и экспериментальная физика.

    Теоретическая физика

    Главной задачей теоретической физики является формулирование и уточнение основных законов и явлений природы. Помимо этого, теоретики непосредственно изучают, что такое физика, закладывают основы для практических исследований.

    Экспериментальная физика

    Этот раздел считается базовым для естественной науки, ведь именно с помощью экспериментов доказывают или опровергают законы и теории, ищут опытные данные. Теоретическая и экспериментальная физика дополняют и подкрепляют друг друга. Кстати, многие открытия в физике появились в эксперименте, а не путем теоретического анализа.

    Прикладная физика

    С момента своего зарождения физика ищет ответ на вопрос: где можно применить теоретические основы науки. Именно прикладная физика позволяет на практике использовать научные открытия, так именно этот раздел лежит в основе инженерии, всех изобретений. К примеру, ядерная физика помогла создать ядерную энергетику, а применение электричества было бы невозможно без знаний физики твёрдого тела. Прикладная физика имеет множество связей с другими науками, такими как химия, биология и т. д.

    Основные физические теории

    На сегодняшний день существует множество разделов физики, которые охватывают практически все явления природы. Вот основные из них:

    • Классическая механика - раздел физики, который изучает изменения положения тела в пространстве, ищет причины, которые это вызывают. Механика основывается на теории И. Ньютона. Классическая механика делится на статику (изучает равновесие тел), кинематику (изучает геометрию движения тел) и динамику (изучает причины движения тел).
    • Термодинамика - раздел физики, который изучает свойства макроскопических систем, способы и пути трансформации энергии в этих системах. Вся термодинамика делится на равновесную (классическую) и неравновесную.
    • Теория электромагнетизма - изучает взаимодействия между частицами с электрическим зарядом. Сюда входят такие подразделы, как электростатика, электродинамика, магнитная гидродинамика и другие.
    • Квантовая механика - раздел теоретической физики, который описывает физические явления, действие которых сравнимо с очень маленькой величиной - постоянной Планка.
    • Молекулярная физика - раздел, изучающий свойства вещества на уровне молекул и атомов.
    • Теория относительности - это современная теория, которая изучает пространство и время в контексте физических процессов.
    • Ядерная физика - изучает физические свойства радиоактивных веществ.
    • Оптика — раздел физики, изучающий явления, которые связаны с распространением электромагнитных волн, в частности свет, рентген и другие.