Основные отличия ферментов от неорганических катализаторов. Разница между ферментами и неорганическими катализаторами

Сходство

1. Катализируют только энергетически возможные реакции. 2. Не изменяют направления реакции. 3. Ускоряют наступление равновесия реакции, но не сдвигают его. 4. Не расходуются в процессе реакции.

1. Скорость ферментативной реакции намного выше. 2. Высокая специфичность. 3. Мягкие условия работы (внутриклеточные). 4. Возможность регулирования скорости реакции. 5. Скорость ферментативной реакции пропорциональна количеству фермента.

Ферментативный катализ имеет свои особенности

Этапы катализа

В ферментативной реакции можно выделить следующие этапы:

1. Присоединение субстрата (S) к ферменту (E) с образованием фермент-субстратного комплекса (E-S).

2. Преобразование фермент-субстратного комплекса в один или несколько переходных комплексов (E-X) за одну или несколько стадий.

3. Превращение переходного комплекса в комплекс фермент-продукт (E-P).

4. Отделение конечных продуктов от фермента.

Механизмы катализа

Доноры

Акцепторы

СООН -NH 3 + -SH

СОО- -NH 2 -S-

1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков, которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций.

2. Ковалентный катализ – ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции.

Типы ферментативных реакций

1. Тип "пинг-понг" – фермент сначала взаимодействует с субстратом А, отбирая у него какие либо химические группы и превращая в соответствующий продукт. Затем к ферменту присоединяется субстрат В, получающий эти химические группы. Примером являются реакции переноса аминогрупп от аминокислот на кетокислоты - трансаминирование.

Ферментативная реакция по типу "пинг-понг"

2. Тип последовательных реакций – к ферменту последовательно присоединяются субстраты А и В, образуя "тройной комплекс", после чего осуществляется катализ. Продукты реакции также последовательно отщепляются от фермента.

Ферментативная реакция по типу "последовательных реакций"

3. Тип случайных взаимодействий – субстраты А и В присоединяются к ферменту в любом порядке, неупорядоченно, и после катализа так же отщепляются.

Ферментативная реакция по типу "случайных взаимодействий"

Ферменты имеют белковую природу

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот –апофермент , и небелковую часть – кофактор . Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

Как многие белки, ферменты могут быть мономерами , т.е. состоят из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Ферменты - это специализированные белки, образуются в клетках и способны ускорять биохимические процессы, т.е. это биологические катализаторы.

Многие ферменты для проявления каталитической активности нуждаются в присутствии некоторых веществ небелковой природы - кофакторов. Различают 2 группы кофакторов - ионы металлов (а также некоторые неорганические соединения) и коферменты, которые представляют собой органические вещества. В числе коферментов есть такие, которые содержат металлы (железо в геме, кобальт в кобаламиде).

Сходства ферментов и неорганических катализаторов:

  • 1. катализируют только энергетически возможные реакции;
  • 2. не изменяют равновесия в обратимых реакциях;
  • 3. не изменяют направление реакции;
  • 4. не расходуются в результате реакции.

Отличия между ферментами и неорганическими катализаторами (общие свойства ферментов):

  • 1. сложность строения;
  • 2. высокая мощность действия. За единицу фермента принимают такое его количество, которое катализирует превращение 1мкМ вещества за 1 минуту;
  • 3. специфичность;
  • 4. это вещества с регулируемой активностью;

действуют в мягких условиях организма.

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот - например, пепсин, трипсин, лизоцим.

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот - апофермент, и небелковую часть - кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC -- Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

  • 1. Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа
  • 2. Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.
  • 3. Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза
  • 4. Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  • 5. Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.
  • 6. Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза

Сходство ферментов и

Отличие ферментов от

неорганических катализаторов

1. Ускоряют только термодинамически возможные реакции

1. Для ферментов характерна высокая специфичность:

субстратная специфичность :

▪ абсолютная (1 фермент - 1 субстрат),

▪ групповая (1 фермент – несколько похожих субстратов)

▪ стереоспецифичность (ферменты работают с субстратами только определенного стереоряда L или D).

каталитическая специфичность (ферменты катализируют реакции преимущественно одного из типов химических реакций – гидролиза, окисления-восстановления и др)

2. Не изменяют состояние равновесия реакций, а только ускоряют его достижение.

2. Высокая эффективность действия: ферменты ускоряют реакции в10 8 -10 14 раз.

3. В реакциях не расходуются

3. Ферменты действуют только в мягких условиях (t = 36-37ºС, рН ~ 7,4, атмосферное давление), т.к. они обладают конформационной лабильностью – способностью к изменению конформации молекулы под действием денатурирующих агентов (рН, Т, химические вещества).

4. Действуют в малых количествах

4. В организме действие ферментов регулируется специфически (катализаторы только неспецифически)

5. Чувствительны к активаторам и ингибиторам

5. Широкий диапазон действия (большинство процессов в организме катализируют ферменты).

В настоящее время учение о ферментах является центральным в биохимии и выделено в самостоятельную науку – энзимологию . Достижения энзимологии используются в медицине для диагностики и лечения, для изучения механизмов патологии, а, кроме того, и в других областях, например, в сельском хозяйстве, пищевой промышленности, химической, фармацевтической и др.

Строение ферментов

Метаболит - вещество, которое участвует в метаболических процессах.

Субстрат вещество, которое вступает в химическую реакцию.

Продукт вещество, которое образуется в ходе химической реакции.

Ферменты характеризуются наличием специфических центров катализа.

Активный центр (Ац) – это часть молекулы фермента, которая специфически взаимодействует с субстратом и принимает непосредственное участие в катализе. Ац, как правило, находиться в нише (кармане). В Ац можно выделить два участка: участок связывания субстрата – субстратный участок (контактная площадка) и собственно каталитический центр .

Большинство субстратов образует, по меньшей мере, три связи с ферментом, благодаря чему молекула субстрата присоединяется к активному центру единственно возможным способом, что обеспечивает субстратную специфичность фермента. Каталитический центр обеспечивает выбор пути химического превращения и каталитическую специфичность фермента.

У группы регуляторных ферментов есть аллостерические центры , которые находятся за пределами активного центра. К аллостерическому центру могут присоединяться “+” или “–“ модуляторы, регулирующие активность ферментов.

Различают ферменты простые, состоят только из аминокислот, и сложные, включают также низкомолекулярные органические соединения небелковой природы (коферменты) и (или) ионы металлов (кофакторы).

Коферменты – это органические вещества небелковой природы, принимающие участие в катализе в составе каталитического участка активного центра. В этом случае белковую составляющую называют апоферментом , а каталитически активную форму сложного белка – холоферментом . Таким образом: холофермент = апофермент + кофермент.

В качестве коферментов функционируют:

    нуклеотиды,

    коэнзим Q,

    Глутатион

    производные водорастворимых витаминов:

Кофермент, который присоединен к белковой части ковалентными связями называется простетической группой . Это, например, FAD, FMN, биотин, липоевая кислота. Простетическая группа не отделяется от белковой части. Кофермент, который присоединен к белковой части нековалентными связями называется косубстрат . Это, например, НАД + , НАДФ + . Косубстрат присоединяется к ферменту в момент реакции.

Кофакторы ферментов – это ионы металлов, необходимые для проявления каталитической активности многих ферментов. В качестве кофакторов выступают ионы калия, магния, кальция, цинка, меди, железа и т.д. Их роль разнообразна, они стабилизируют молекулы субстрата, активный центр фермента, его третичную и четвертичную структуру, обеспечивают связывание субстрата и катализ. Например, АТФ присоединяется к киназам только вместе с Mg 2+ .

Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам (сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности, разной чувствительности к ингибиторам и активаторам, оптимуму рН и термостабильности). Изоферменты имеют четвертичную структуру, которая образована четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.

В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ), фермент, который катализирует обратимую реакцию:

НАДН 2 НАД +

пируват ← ЛДГ → лактат

ЛДГ существует в виде 5 изоформ, каждая из которых состоит из 4-х протомеров (субъединиц) 2 типов М (muscle) и Н (heart). Синтез протомеров М и Н типа кодируется двумя разными генетическими локусами. Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ 1 (НННН), ЛДГ 2 (НННМ), ЛДГ 3 (ННММ), ЛДГ 4 (НМММ), ЛДГ 5 (ММММ).

Полипептидные цепи Н и М типа имеют одинаковую молекулярную массу, но в составе первых преобладают карбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.

Кислородный обмен в тканях влияет на изоферментный состав ЛДГ. Где доминирует аэробный обмен, там преобладают ЛДГ 1 , ЛДГ 2 (миокард, надпочечники), где анаэробный обмен - ЛДГ 4 , ЛДГ 5 (скелетная мускулатура, печень). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ 4 , ЛДГ 5 . После рождения в некоторых тканях происходит увеличение содержания ЛДГ 1 , ЛДГ 2 .

Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям. По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.

Локализация и компартментализация ферментов в клетке и тканях .

Ферменты по локализации делят на 3 группы:

I – общие ферменты (универсальные)

II - органоспецифические

III - органеллоспецифические

Общие ферменты обнаруживаются практически во всех клетках, обеспечивают жизнедеятельность клетки, катализируя реакции биосинтеза белка и нуклеиновых кислот, образование биомембран и основных клеточных органелл, энергообмен. Общие ферменты разных тканей и органов, тем не менее, отличаются по активности.

Органоспецифичные ферменты свойственны только определенному органу или ткани. Например: Для печени – аргиназа. Для почек и костной ткани – щелочная фосфатаза. Для предстательной железы – КФ (кислая фосфатаза). Для поджелудочной железы – α-амилаза, липаза. Для миокарда – КФК (креатинфосфокиназа), ЛДГ, АсТ и т.д.

Внутри клеток ферменты также распределены неравномерно. Одни ферменты находятся в коллоидно-растворенном состоянии в цитозоле, другие вмонтированы в клеточных органеллах (структурированное состояние).

Органеллоспецифические ферменты . Разным органеллам присущ специфический набор ферментов, который определяет их функции.

Органеллоспецифические ферменты это маркеры внутриклеточных образований, органелл:

    Клеточная мембрана: ЩФ (щелочная фосфатаза), АЦ (аденилатциклаза), К-Nа-АТФаза

    Цитоплазма: ферменты гликолиза, пентозного цикла.

    ЭПР: ферменты обеспечивающие гидроксилирование (микросомальное окисление).

    Рибосомы: ферменты обеспечивающие синтез белка.

    Митохондрии: ферменты окислительного фосфорилирования, ЦТК (цитохромоксидаза, сукцинатдегидрогеназа), β-окисления жирных кислот.

    Ядро клетки: ферменты обеспечивающие синтез РНК, ДНК (РНК-полимераза, НАД-синтетаза).

    Ядрышко: ДНК-зависимая-РНК-полимераза

В результате в клетке образуются отсеки (компартменты), которые отличаются набором ферментов и метаболизмом (компартментализация метаболизма).

Среди ферментов выделяется немногочисленная группа р егуляторных ферментов, которые способны отвечать на специфические регуляторные воздействия изменением активности. Эти ферменты имеются во всех органах и тканях и локализуются в начале или в местах разветвления метаболических путей.

Строгая локализация всех ферментов закодирована в генах.

Определение в плазме или сыворотке крови активности органо- органеллоспецифических ферментов широко используется в клинической диагностике.

Классификация и номенклатура ферментов

Номенклатура – названия индивидуальных соединений, их групп, классов, а также правила составления этих названий. Номенклатура ферментов бывает тривиальной (короткое рабочее название) и систематической. По систематической номенклатуре, принята в 1961г Международным союзом биохимии, можно точно идентифицировать фермент и его катализируемую реакцию.

Классификация – разделение чего либо по выбранным признакам.

    Классификация ферментов основана на типе катализируемой химической реакции;

    На основании 6 типов химических реакций ферменты, которые их катализируют, подразделяют на 6 классов, в каждом из которых несколько подклассов и поподклассов (4-13);

    Каждый фермент имеет свой шифр КФ 1.1.1.1. Первая цифра обозначает класс, вторая - подкласс, третья - подподкласс, четвертая - порядковый номер фермента в его подподклассе (в порядке открытия).

    Название фермента состоит из 2 частей: 1 часть – название субстрата (субстратов), 2 часть – тип катализируемой реакции. Окончание – АЗА;

    Дополнительная информация, если необходима, пишется в конце и заключается в скобки: L-малат + НАДФ+ ↔ ПВК + СО 2 + НАДН 2 L-малат: НАДФ+ - оксидоредуктаза (декарбоксилирующая);

В правилах названия ферментов нет единого подхода.

Ферменты и их значение в процессах жизнедеятельности

Из курса химии вам известно, что такое катализатор. Это вещество, которое ускоряет реакцию, оставаясь в конце реакции неизменным (не расходуясь). Биологические катализаторы называются ферментами (от лат. fermentum – брожение, закваска), или энзимами .

Почти все ферменты – это белки (но не все белки – ферменты!). В последние годы стало известно, что и некоторые молекулы РНК имеют свойства ферментов.

Впервые высокоочищенный кристаллический фермент был выделен в 1926 г. американским биохимиком Дж.Самнером. Этим ферментом была уреаза , которая катализирует расщепление мочевины. К настоящему времени известно более 2 тыс. ферментов, и их количество продолжает расти. Многие из них выделены из живых клеток и получены в чистом виде.

В клетке постоянно идут тысячи реакций. Если смешать в пробирке органические и неорганические вещества точно в тех же соотношениях, что и в живой клетке, но без ферментов, то почти никаких реакций с заметной скоростью идти не будет. Именно благодаря ферментам реализуется генетическая информация и осуществляется весь обмен веществ.

Для названия большинства ферментов характерен суффикс -аза, который чаще всего прибавляется к названию субстрата – вещества, с которым взаимодействует фермент.

Строение ферментов

По сравнению с молекулярной массой субстрата ферменты имеют гораздо большую массу. Такое несоответствие наводит на мысль, что не вся молекула фермента участвует в катализе. Чтобы разобраться в этом вопросе, необходимо познакомиться со строением ферментов.

По строению ферменты могут быть простыми и сложными белками. Во втором случае в составе фермента кроме белковой части (апофермент ) имеется добавочная группа небелковой природы – активатор (кофактор , или кофермент ), вследствие чего образуется активный голофермент . Активаторами ферментов выступают:

1) неорганические ионы (например, для активации фермента амилазы, находящегося в слюне, необходимы ионы хлора (Сl–);

2) простетические группы (ФАД, биотин), прочно связанные с субстратом;

3) коферменты (НАД, НАДФ, кофермент А), непрочно связанные с субстратом.

Белковая часть и небелковый компонент в отдельности лишены ферментативной активности, но, соединившись вместе, приобретают характерные свойства фермента.

В белковой части ферментов содержатся уникальные по своей структуре активные центры, представляющие собой сочетание определенных аминокислотных остатков, строго ориентированных по отношению друг к другу (в настоящее время структура активных центров ряда ферментов расшифрована). Активный центр взаимодействует с молекулой субстрата с образованием «фермент-субстратного комплекса». Затем «фермент-субстратный комплекс» распадается на фермент и продукт или продукты реакции.

Согласно гипотезе, выдвинутой в 1890 г. Э.Фишером, субстрат подходит к ферменту, как ключ к замку , т.е. пространственные конфигурации активного центра фермента и субстрата точно соответствуют (комплементарны ) друг другу. Субстрат сравнивается с «ключом», который подходит к «замку» – ферменту. Так, активный центр лизоцима (фермента слюны) имеет вид щели и по форме точно соответствует фрагменту молекулы сложного углевода бактериальной палочки, которая расщепляется под действием этого фермента.

В 1959 г. Д. Кошланд выдвинул гипотезу, по которой пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу назвали гипотезой «руки и перчатки» (гипотеза индуцированного взаимодействия). Этот процесс «динамического узнавания» – на сегодня наиболее распространенная гипотеза.

Отличия ферментов от небиологических катализаторов

Ферменты во многом отличаются от небиологических катализаторов.

1. Ферменты значительно эффективнее (в 10 4 –10 9 раз). Так, единственная молекула фермента каталазы может расщепить за одну секунду 10 тыс. молекул токсичной для клетки перекиси водорода:

2Н 2 О 2 ––> 2H 2 O + O 2 ­,

которая возникает при окислении в организме различных соединений. Или еще один пример, подтверждающий высокую эффективность действия ферментов: при комнатной температуре одна молекула уреазы способна за за одну секунду расщепить до 30 тыс. молекул мочевины:

H 2 N–CO–NH 2 + Н 2 О ––> СО 2 ­ + 2NН 3 ­.

Не будь катализатора, на это потребовалось бы около 3 млн лет.

2. Высокая специфичность действия ферментов. Большинство ферментов действуют лишь на один или очень небольшое число «своих» природных соединений (субстратов). Специфичность ферментов отражает формула «один фермент – один субстрат» . Благодаря этому в живых организмах множество реакций катализируется независимо.

3. Ферменты доступны тонкой и точной регуляции. Активность фермента может увеличиваться или уменьшаться при незначительном изменении условий, в которых он «работает».

4. Небиологические катализаторы в большинстве случаев хорошо работают лишь при высокой температуре. Ферменты же, присутствуя в клетках в малых количествах, работают при обычной температуре и давлении (хотя рамки действия ферментов ограничены, так как высокая температура вызывает денатурацию). Поскольку большинство ферментов являются белками, их активность наиболее высока при физиологически нормальных условиях: t=35–45 °C; слабощелочная среда (хотя для каждого фермента существует свое оптимальное значение рН).

5. Ферменты образуют комплексы – так называемые биологические конвейеры. Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет своего рода биохимический конвейер.

6. Ферменты способны регулироваться, т.е. «включаться» и «выключаться» (правда, это относится не ко всем ферментам, например, не регулируется амилаза слюны и ряд других пищеварительных ферментов). В большинстве молекул апоферментов есть участки, которые узнают еще и конечный продукт, «сходящий» с полиферментного конвейера. Если такого продукта слишком много, то активность самого начального фермента тормозится им, и наоборот, если продукта мало, то фермент активизируется. Так регулируется множество биохимических процессов.

Таким образом, ферменты обладают целым рядом преимуществ по сравнению с небиологическими катализаторами.

| следующая лекция ==>
Аналіз останніх досліджень і публікацій. Проблеми фінансування регіонів Європейського Союзу і України розглядали такі науковці як: Возняк Г.В., Григор’єва О.Н., Бєліченко А.Ф. |

Неорганические катализаторы практически не зависят от реакции среды.  

Неорганические катализаторы, как показывает опыт, могут отлично работать и при более высоких температурах - до нескольких сот градусов.  

От неорганических катализаторов ферменты отличаются рядом характерных особенностей. Прежде всего ферменты чрезвычайно эффективны и проявляют в миллионы и миллиарды раз более высокую каталитическую активность в условиях умеренной температуры (температура тела), нормального давления и в области близких к нейтральным значениям рН среды.  

Как и неорганические катализаторы, ферменты ускоряют только те реакции, которые протекают самопроизвольно, но с очень малыми скоростями.  


В отличие от неорганических катализаторов ферменты проявляют свою активность в строго определенном диапазоне значений рН среды. В табл. 43 приведены значения рН, при которых различные ферменты проявляют свою максимальную активность.  

В отличие от неорганических катализаторов ферменты проявляют свою активность в строго определенном диапазоне значений рН среды. В табл. 20 приведены значения рН, при которых различные ферменты проявляют свою максимальную активность.  

Ферменты отличаются от неорганических катализаторов колоссальной активностью, которая вместе с химической специфичностью составляет главную особенность ферментативного катализа. Абсолютная активность ферментов достигает огромных величин, которые на несколько порядков превышают даже самые производительные неорганические катализаторы.  

Ферменты значительно эффективнее обычных неорганических катализаторов. При ферментативном катализе реакции часто идут в 100 000 - 1 000 000 раз быстрее, чем при обычном катализе. Если бы реакции протекали медленнее, то жизнь была бы невозможна. Известно, например, что одна из основных реакций в нервной системе проходит всего за миллионные доли секунды.  

Если сравнить влияние органических и неорганических катализаторов, то первые при горении тротила были более эффективны в области низких давлений, а при горении нитрогуанидина - в области высоких. При горении ВВ с металлооргапическими солями в том случае, когда данный металл не является катализатором, преобладает ингибирующее действие органической части молекулы добавки, являющейся восстановителем.  

По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса: однокомпонентные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров.  

По сравнению с неорганическими катализаторами строение ферментов значительно более сложное.  

По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса: однокомпонент-ные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров.