Основные формулы дифференцирования таблица. Формулы и правила дифференцирования (нахождения производной)

Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке х o называется предел

= .

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке x o ; при этом она оказывается обязательно и непрерывной в этой точке.

Если же рассматриваемый предел равен  (или - ), то при условии, что функция в точке х o непрерывна, будем говорить, что функция f(x) имеет в точке х o бесконечную производную .

Производная обозначается символами

y , f (x o), , .

Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том,что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке х o ; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t o .

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) " = 0, (cu) " = cu";

2) (u+v)" = u"+v";

3) (uv)" = u"v+v"u;

4) (u/v)" = (u"v-v"u)/v 2;

5) если y = f(u), u = (x), т.е. y = f((x)) - сложная функция, или суперпозиция , составленная из дифференцируемых функций  и f, то , или

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем  0, то .

На основе определения производной и правил дифференцирования можно составить список табличных производных основных элементарных функций.

1. (u )" =  u  1 u" (  R ).

2. (a u)" = a u lna u".

3. (e u)" = e u u".

4. (log a u)" = u"/(u ln a).

5. (ln u)" = u"/u.

6. (sin u)" = cos u u".

7. (cos u)" = - sin u u".

8. (tg u)" = 1/ cos 2 u u".

9. (ctg u)" = - u" / sin 2 u.

10. (arcsin u)" = u" / .

11. (arccos u)" = - u" / .

12. (arctg u)" = u"/(1 + u 2).

13. (arcctg u)" = - u"/(1 + u 2).

Вычислим производную степенно-показательного выражения y=u v , (u>0), где u и v суть функции от х , имеющие в данной точке производные u" , v" .

Прологарифмировав равенство y=u v , получим ln y = v ln u.

Приравнивая производные по х от обеих частей полученного равенства с помощью правил 3, 5 и формулы для производной логарифмической функции, будем иметь:

y"/y = vu"/u +v" ln u, откуда y" = y (vu"/u +v" ln u).

(u v)"=u v (vu"/u+v" ln u), u > 0.

Например, если y = x sin x , то y" = x sin x (sin x/x + cos x ln x).

Если функция y = f(x) дифференцируема в точке x , т.е. имеет в этой точке конечную производную y" , то = y"+, где 0 при х 0; отсюда  y = y" х +  x.

Главная часть приращения функции, линейная относительно х, называется дифференциалом функции и обозначается dy: dy = y" х. Если положить в этой формуле y=x, то получим dx = x"х = 1х =х, поэтому dy=y"dx, т. е. символ для обозначения производной можно рассматривать как дробь.

Приращение функции  y есть приращение ординаты кривой, а дифференциал dy есть приращение ординаты касательной.

Пусть мы нашли для функции y=f(x) ее производную y = f (x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается .

Аналогично определяются и обозначаются:

производная третьего порядка - ,

производная четвертого порядка -

и вообще производная n-го порядка - .

Пример 3 .15. Вычислить производную функции y=(3x 3 -2x+1)sin x.

Решение. По правилу 3, y"=(3x 3 -2x+1)"sin x + (3x 3 -2x+1)(sin x)" = = (9x 2 -2)sin x + (3x 3 -2x+1)cos x.

Пример 3.16 . Найти y", y = tg x + .

Решение. Используя правила дифференцирования суммы и частного, получим: y"=(tgx + )" = (tgx)" + ()" = + = .

Пример 3 .17. Найти производную сложной функции y= , u=x 4 +1.

Решение. По правилу дифференцирования сложной функции, получим: y" x =y " u u" x =()" u (x 4 +1)" x =(2u + . Так как u=x 4 +1,то (2 x 4 +2+ .


Дифференцирование – это вычисление производной.

1. Формулы дифференцирования.

Основные формулы дифференцирования – в таблице. Их необязательно зазубривать. Поняв некоторые закономерности, вы сможете из одних формул самостоятельно выводить другие.

1) Начнем с формулы (kx + m)′ = k.
Ее частными случаями являются формулы x ′ = 1 и C′ = 0.

В любой функции вида у = kx + m производная равна угловому коэффициенту k.

Например, дана функция у = 2х + 4. Ее производная в любой точке будет равна 2:

(2 х + 4)′ = 2 .

Производная функции у = 9 х + 5 в любой точке равна 9 . И т.д.

А давайте найдем производную функции у = 5х . Для этого представим 5х в виде (5х + 0). Мы получили выражение, похожее на предыдущее. Значит:

(5х )′ = (5х + 0)′ = 5.

Наконец, выясним, чему равна x ′.
Применим прием из предыдущего примера: представим х в виде 1х + 0. Тогда получим:

x ′ = (1х + 0)′ = 1.

Таким образом, мы самостоятельно вывели формулу из таблицы:

(0 · x + m)′ = 0.

Но тогда получается, что m′ тоже равна 0. Пусть m = C, где C – произвольная постоянная. Тогда мы приходим к еще одной истине: производная постоянной равна нулю. То есть получаем еще одну формулу из таблицы.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Во всех приведенных ниже формулах буквами u и v обозначены дифференцируемые функции независимой переменной x : , , а буквами a , c, n - постоянные:

1.

3.

4.

6.

Остальные формулы записаны как для функций независимой переменной, так и для сложных функций:

7.

8.

10.

11.

12.

13.

15.

17.

7а.

10а.

12а.

13а.

14а.

15а.

16а.

17а.

При решении приведенных ниже примеров сделаны подробные записи. Однако следует научиться дифференцировать без промежуточных записей.

Пример 1. Найти производную функции .

Решение. Данная функция есть алгебраическая сумма функций. Дифференцируем ее, используя формулы 3, 5, 7 и 8:

Пример 2. Найти производную функции

Решение. Применяя формулы 6, 3, 7 и 1, получим

Пример 3. Найти производную функции и вычислить ее значение при

Решение. Это сложная функция с промежуточным аргументом . Используя формулы 7а и 10, имеем

Вычислим значение производной при :

.

Пример 4. Найти производную функции .

Решение. Это сложная функция с промежуточным аргументом . Применяя формулы 3, 5, 7а, 11, 16а, получим

Пример 5. Найти производную функции .

Решение. Дифференцируем данную функцию по формулам 6, 12, 3 и 1:

Пример 6.

Решение. Сначала преобразуем функцию, используя свойства логарифмов :

Теперь дифференцируем по формулам 3, 16а, 7 и 1:

.

Вычислим значение производной при .

Пример 7. Найти производную функции и вычислить ее значение при .

Решение. Используем формулы 6, 3, 14а, 9а, 5 и 1:

.

Вычислим значение производной при :

.

Геометрический смысл производной.

Производная функции имеет простую и важную геометрическую интерпретацию .

Если функция дифференцируема в точке х , то график этой функции имеет в соответствующей точке касательную, причем угловой коэффициент касательной равен значению производной в рассматриваемой точке.

Угловой коэффициент касательной, проведенной к графику функции в точке (х 0 , у 0), равен значению производной функции при х = х 0 , т.е. .

Уравнение этой касательной имеет вид

Пример 8 . Составить уравнение касательной к графику функции в точке А (3,6).

Решение. Для нахождения углового коэффициента касательной найдем производную данной функции:

.

х = 3:

Уравнение касательной имеет вид

Или , т.е.

Пример 9. Составить уравнение касательной, проведенной к графику функции в точке с абсциссой х=2 .

Решение. Сначала найдем ординату точки касания . Так как точка А лежит на кривой, то ее координаты удовлетворяют уравнению кривой, т.е.


; .

Уравнение касательной, проведенной к кривой в точке , имеет вид . Для нахождения углового коэффициента касательной найдем производную:

.

Угловой коэффициент касательной равен значению производной функции при х = 2:

Уравнение касательной таково:

, , т.е.

Физический смысл производной. Если тело движется по прямой по закону s=s(t ), то за промежуток времени (от момента t до момента ) оно пройдет некоторый путь . Тогда есть средняя скорость движения за промежуток времени .

Скоростью движения тела в данный момент времени t называется предел отношения пути к приращению времени , когда приращение времени стремиться к нулю:

.

Следовательно, производная пути s по времени t равна скорости прямолинейного движения тела в данный момент времени:

.

Скорость протекания физических, химических и других процессов также выражается с помощью производной.

Производная функции равна скорости изменения этой функции при данном значении аргумента х :

Пример 10. Закон движения точки по прямой задан формулой (s - в метрах, t - в секундах). Найти скорость движения точки в конце первой секунды.

Решение. Скорость движения точки в данный момент времени равна производной пути s по времени t :

,

Итак, скорость движения точки в конце первой секунды равна 9 м/с.

Пример 11. Тело, брошенное вертикально вверх, движется по закону , где v 0 - начальная скорость, g - ускорение свободного падения тела. Найти скорость этого движения для любого момента времени t . Сколько времени будет подниматься тело и на какую высоту оно поднимется, если v 0 = 40 м/с?

Решение. Скорость движения точки в данный момент времени t равна производной пути s по времени t:

.

В высшей точке подъема скорость тела равна нулю:

, , , , с.

За 40/g секунд тело поднимается на высоту

, м.

Вторая производная.

Производная функции в общем случае является функцией от х . Если от этой функции вычислить производную, то получим производную второго порядка или вторую производную функции .

Второй производной функции называется производная от ее первой производной .

Вторая производная функции обозначается одним из символов - , , . Таким образом, .

Аналогично определяются и обозначаются производные любого порядка. Например, производная третьего порядка:

или ,

Пример 12. .

Решение. Сначала найдем первую производную

Пример 13. Найти вторую производную функции и вычислить ее значение при х=2 .

Решение. Сначала найдем первую производную:

Дифференцируя еще раз, найдем вторую производную:

Вычислим значение второй производной при х=2 ; имеем

Физический смысл второй производной.

Если тело движется прямолинейно по закону s = s(t) , то вторая производная пути s по времени t равна ускорению движения тела в данный момент времени t:

Таким образом, первая производная характеризует скорость некоторого процесса, а вторая производная - ускорение того же процесса.

Пример 14. Точка движется по прямой по закону . Найти скорость и ускорение движения .

Решение. Скорость движения тела в данный момент времени равна производной пути s по времени t, а ускорение - второй производной пути s по времени t . Находим:

; тогда ;

; тогда

Пример 15. Скорость прямолинейного движения пропорциональна квадратному корню из пройденного пути (как, например, при свободном падении). Доказать, что это движение происходит под действием постоянной силы.

Решение. По закону Ньютона , сила F, вызывающая движение, пропорциональна ускорению, т.е.

Или

Согласно условию, . Дифференцируя это равенство, найдем

Следовательно, действующая сила .

Приложения производной к исследованию функции .

1) Условие возрастания функции : Дифференцируемая функция y = f(x) монотонно возрастает на промежутке Х тогда и только тогда, когда её производная больше ноля, т. е. y = f(x) f’(x) > 0 . Это условие геометрически означает, чтокасательная к графику данной функции образует острый угол с положительным направлением к оси оХ.

2) Условие убывания функции : Дифференцируемая функция y = f(x) монотонно убывает на промежутке Х тогда и только тогда, когда её производная меньше ноля, т. е.

y = f(x)↓ f’(x)Это условие геометрически означает, чтокасательная к графику данной функции образует тупой угол с положительным направлением оси оХ)

3) Условие постоянства функции: Дифференцируемая функция y = f(x) постоянна на промежутке Х тогда и только тогда, когда её производная равна нулю, т. е. y = f(x) - постоянна f’(x) = 0 . Это условие геометрически означает, чтокасательная к графику данной функции параллельна оси оХ, т. е. α = 0)

Экстремумы функции.

Определение 1 : Точку х = х 0 называют точкой минимума функции y = f(x), если у этой точки существует окрестность, для всех точек которой (кроме самой точки) выполняется неравенство f(x)> f(x 0)

Определение 2: Точку х = х 0 называют точкой максимума функции y = f(x), если у этой точки существует окрестность, для всех точек которой (кроме самой точки) выполняется неравенство f(x) < f(x 0).

Определение 3: Точку минимума или максимума функции называют точкой экстремума . Значение функции в этой точке называют экстремальным.

Замечания : 1. Максимум (минимум) не является обязательно наибольшим (наименьшим) значением функции;

2. Функция может иметь несколько максимумов или минимумо;

3. Функция, определённая на отрезке, может достигать экстремума только во внутренних точках этого отрезка.

5) Необходимое условие экстремума: Если функция y = f(x) имеет экстремум в точке х = х 0 , то в этой точке производная равна нулю или не существует. Эти точки называются критическими точками 1 рода .

6) Достаточные условия существования экстремума функции: Пусть функция y = f(x) непрерывна на промежутке Х и имеет внутри этого промежуткак ритическую точку 1 рода х = х 0 , то:

а) если у этой точки существует такая окрестность, в которой при х < х 0 f’(x) < 0, а при x> x 0 f’(x) > 0, то х = х 0 является точкой минимума функции y = f(x);

б) если у этой точки существует такая окрестность, в которой при х < х 0 f’(x) > 0, а при x> x 0

f’(x) < 0, то х = х 0 является точкой максимума функции y = f(x);

в) если у этой точки существует такая окрестность, что в ней и справа и слева от точки х 0 знаки производной одинаковы, то в точке х 0 экстремума нет.

Промежутки убывания или возрастания функции называются промежутками монотонности.

Определение1: Кривая у = f(x) называется выпуклой вниз на промежутке а < х <в, если она лежит выше касательной в любой точке этого промежутка и кривая у = f(x) называется выпуклой вверх на промежутке а < х <в, если она лежит ниже касательной в любой точке этого промежутка.

Определение 2: Промежутки, в которых график функции обращён выпуклостью вверх или вниз, называются промежутками выпуклости графика функции.

Достаточное условие выпуклости кривой. График дифференцируемой функции Y = f(x) является выпуклым вверх на промежутке а < х <в, если f”(x) < 0 и выпуклым вниз , если f”(x) > 0.

Определение 1: Точки, в которых вторая производная равна нулю или не существует, называются критическими точками II рода .

Определение 2: Точка графика функцииY = f(x), разделяющая промежутки выпуклости противоположенных направлений этого графика, называется точкой перегиб.

точка перегиба

Пример : Дана функция у = х 3 - 2х 2 + 6х - 4.Исследовать функцию на промежутки монотонности и точки экстремума. Определить направление выпуклости и точки перегиба.

Решение: 1. Найдем область определения функции: D(y) = ;

2. Найдем первую производную: y’ = 3x 2 - 4x+ 6;

3. Решим уравнение: y’ = 0, 3x 2 - 4x+ 6 = 0, D 0, то данное уравнение не имеет решения, следовательно точек экстремуму нет. y’ , то функция возрастает на всей области определения.

4. Найдем вторую производную:y” = 6x - 4;

5. Решим уравнение: y” = 0, 6x - 4 = 0, х =

Ответ: ( ; - ) - точка перегиба, функция выпукла вверх при х и выпукла вверх при х

Асимптоты.

1. Определение : Асимптотой кривой называется прямая, к которой неограниченно приближается график данной функции.

2. Виды асимптот :

1) Вертикальные асимптоты . График функции y = f(x) имеет вертикальную асимптоту, если . Уравнение вертикальной асимптоты имеет вид х = а

2) Горизонтальные асимптоты . График функции y = f(x) имеет горизонтальную асимптоту, если . Уравнение горизонтальной асимптоты имеет вид у = b.

Пример 1 : Для функция y = найдите асимптоты.

3) Наклонные асимптоты. Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x), если . Значения k и b вычисляются по формулам: k = ; b = .

Решение: , то y = 0 - горизонтальная асимптота;

(т. к. х - 3 ≠ 0, х ≠3), то х = 3 - вертикальная асимптота. ,т. е. k = 0, то кривая наклонной асимптоты не имеет.

Пример 2 : Для функции y = найдите асимптоты.

Решение: x 2 - 25 ≠ 0 при x ≠ ± 5, то х = 5 и х = - 5 являются горизонтальными асимптотами;

y = , то кривая не имеет вертикальной асимптоты;

k = ; b = , т. е. y = 5x - наклонная асимптота.

Примеры построения графиков функций .

Пример 1 .

Исследовать функцию и построить график функции у = х 3 - 6х 2 + 9х - 3

1. Найдём область определения функции: D(y) = R

у(- х) = (- х) 3 - 6·(- х) 2 + 9·(-х) - 3 = - х 3 - 6х 2 - 9х - 3 = - (х 3 + 6х 2 + 9х + 3), т. е.

(у = х 5 - х 3 - нечетная, у = х 4 + х 2 - четная)

3. Не является периодической.

4. Найдем точки пересечения с осями координат: если х = 0, то у = - 3 (0; - 3)

если У = 0, х найти затруднительно.

5. Найдем асимптоты графика функции: Вертикальных асимптот нет, т.к. нет значений х, при которых функция неопределенна; у = , т. е. горизонтальных асимптот нет;

k = , т. е. наклонных асимптот нет.

6. Исследуем функцию на промежутки монотонности и её экстремумы: y’ = 3x 2 - 12x + 9,

y’= 0, 3x 2 - 12x + 9 = 0 x 1 = 1; x 2 = 3 - критические точки 1 рода.

Определим знаки производной: y’(0) = 9 > 0; y’(2) = - 3 < 0; y’(4) = 9 > 0

y max = y(1) = 1, (1;1) - точка максимума; y min = y(3) = - 3, (3; - 3) - точка минимума, функция у при х и у .

7. Исследуем функцию на промежутки выпуклости и точки перегиба:

y” = (y’)’ = (3x 2 - 12x + 9)’ = 6x - 12, y” = 0, 6x - 12 = 0 x = 2 - критическая точка 1 рода.

Определим знаки второй производной: y”(0) = - 12 < 0; y”(3) = 6 > 0

Y(2) = - 1 (2; - 1) - точка перегиба, функция выпукла вверх при х и выпукла вниз при х .

8. Дополнительные точки:

х - 1
у - 19

9. Построим график функции:

Исследовать функцию и построить график функции у =

1. Найдём область определения функции: 1 - х ≠ 0, х ≠ 1, D(y) = .

2. Выясним, является ли данная функция чётной или нечетной: ,

у(- х) ≠ у(х) - не является чётной и у(- х) ≠ - у(х) - не является нечётной

3. Не является периодической.

4. Найдем точки пересечения с осями координат: х = 0, то у = - 2; у = 0, , то , т. е. (0; - 2); ().

5. Найдем асимптоты графика функции: т.к. х ≠ 1,то прямая х = 1 - вертикальная асимптота;