Основное логарифмическое тождество произведение степеней. Что такое логарифм? Решение логарифмов

Понятие логарифма и основного логарифмичесгого тождества

Понятие логарифма и основного логарифмическое тождества состоят в тесной зависимости, т.к. определение логарифма в математической записи и является .

Основное логарифмическое тождество вытекает из определения логарифма:

Определение 1

Логарифмом называют показатель степени $n$, при возведении в которую числа $а$ получают число $b$.

Замечание 1

Показательное уравнение $a^n=b$ при $a > 0$, $a \ne 1$ не имеет решений при неположительном $b$ и имеет единственный корень при положительном $b$. Этот корень называется логарифмом числа $b$ по основанию $а$ и записывают:

$a^{\log_{a} b}=b$.

Определение 2

Выражение

$a^{\log_{a} b}=b$

называют основным логарифмическим тождеством при условии, что $a,b > 0$, $a \ne 1$.

Пример 1

$17^{\log_{17} 6}=6$;

$e^{\ln⁡13} =13$;

$10^{\lg23}=23$.

Основное логарифмическое тождество

Основным логарифмическое тождество называется, т.к. оно используется практически всегда при работе с логарифмами. К тому же с его помощью обосновываются основные свойства логарифмов.

Пример 2

$7^5=16 807$, следовательно $\log_{7}16 807=5$.

$3^{-5}=\frac{1}{243}$, следовательно $\log_{3}\frac{1}{243}=-5$.

$11^0=1$, следовательно $\log_{11}⁡1=0$.

Рассмотрим следствие основного логарифмического тождества :

Определение 3

Если два логарифма с одинаковыми основаниями равны, значит равны и логарифмируемые выражения:

если $\log_{a}⁡b=\log_{a}⁡c$, то $b=c$.

Рассмотрим ограничения , которые применяются для логарифмического тождества:

    Т.к. при возведении в любую степень единицы всегда получим единицу, а равенство $x=\log_{a}⁡b$ существует только при $b=1$, то при этом $\log_{1}⁡1$ будет любое действительное число . Чтобы не допустить эту неоднозначность принимают $a \ne 1$.

    Логарифм для $a=0$ согласно определению может существовать лишь при $b=0$. Т.к. при возведении в любую степень нуля всегда получим нуль, то $\log_{0}⁡0$ может быть любое действительное число. Чтобы не допустить эту неоднозначность принимают $a \ne 0$. При $a рациональных и иррациональных значений логарифма, т.к. степень с рациональным и иррациональным показателем может вычисляться только для положительных оснований. Чтобы не допустить такую ситуацию принимают $a > 0$.

    $b > 0$ следует из условия $a > 0$, т.к. $x=\log_{a}⁡b$, а значение степени положительного числа a всегда будет положительным.

Основным логарифмическим тождеством зачастую пользуются для упрощения логарифмических выражений.

Пример 3

Вычислить $81^{\log_{9} 7}$.

Решение .

Для того, чтобы можно было использовать основное логарифмическое тождество необходимо, чтобы основание логарифма и степени были одинаковыми. Запишем основание степени в виде:

Теперь можем записать:

$81^{\log_{9}7}=(9^2)^{\log_{9}7}=$

воспользуемся свойством степени:

$=9^{2 \cdot \log_{9}7}=9^{\log_{9}7} \cdot 9^{\log_{9}7}=$

к каждому множителю теперь можно применить основное логарифмическое тождество:

$=7 \cdot 7=49$.

Замечание 2

Для применения основного логарифмического тождества также можно прибегнуть к замене основания логарифма на выражение, которое стоит под знаком логарифма, и наоборот.

Пример 4

Вычислить $7^{\frac{1}{\log_{11} 7}}$.

Решение .

$7^{\frac{1}{\log_{11} 7}}=7^{\log_{7} 11}=11$.

Ответ : $11$.

Пример 5

Вычислить $7^{\frac{3}{\log_{11} 7}}$.

Логарифмические выражения, решение примеров. В этой статье мы рассмотрим задачи связанные с решением логарифмов. В заданиях ставится вопрос о нахождении значения выражения. Нужно отметить, что понятие логарифма используется во многих заданиях и понимать его смысл крайне важно. Что касается ЕГЭ, то логарифм используется при решении уравнений, в прикладных задачах, также в заданиях связанных с исследованием функций.

Приведём примеры для понимания самого смысла логарифма:


Основное логарифмическое тождество:

Свойства логарифмов, которые необходимо всегда помнить:

*Логарифм произведения равен сумме логарифмов сомножителей.

* * *

*Логарифм частного (дроби) равен разности логарифмов сомножителей.

* * *

*Логарифм степени равен произведению показателя степени на логарифм ее основания.

* * *

*Переход к новому основанию

* * *

Ещё свойства:

* * *

Вычисление логарифмов тесно связано с использованием свойств показателей степени.

Перечислим некоторые из них:

Суть данного свойства заключается в том, что при переносе числителя в знаменатель и наоборот, знак показателя степени меняется на противоположный. Например:

Следствие из данного свойства:

* * *

При возведении степени в степень основание остаётся прежним, а показатели перемножаются.

* * *

Как вы убедились само понятие логарифма несложное. Главное то, что необходима хорошая практика, которая даёт определённый навык. Разумеется знание формул обязательно. Если навык в преобразовании элементарных логарифмов не сформирован, то при решении простых заданий можно легко допустить ошибку.

Практикуйтесь, решайте сначала простейшие примеры из курса математики, затем переходите к более сложным. В будущем обязательно покажу, как решаются «страшненькие» логарифмы, таких на ЕГЭ не будет, но они представляют интерес, не пропустите!

На этом всё! Успеха Вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Вытекают из его определения. И так логарифм числа b по основанию а определяется как показатель степени, в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки следует, что вычисление x=log a b , равнозначно решению уравнения a x =b. Например, log 2 8 = 3 потому, что 8 = 2 3 . Формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

С логарифмами, как и с любыми числами, можно выполнять операции сложения , вычитания и всячески трансформировать. Но ввиду того, что логарифмы - это не совсем ординарные числа, здесь применимы свои особенные правила, которые называются основными свойствами .

Сложение и вычитание логарифмов.

Возьмем два логарифма с одинаковыми основаниями: log a x и log a y . Тогда сними возможно выполнять операции сложения и вычитания:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

log a (x 1 . x 2 . x 3 ... x k ) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k .

Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что log a 1= 0, следовательно,

log a 1 / b = log a 1 - log a b = - log a b .

А значит имеет место равенство:

log a 1 / b = - log a b.

Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

Инструкция

Запишите заданное логарифмическое выражение. Если в выражении используется логарифм 10, то его запись укорачивается и выглядит так: lg b - это десятичный логарифм. Если же логарифм имеет в виде основания число е, то записывают выражение: ln b – натуральный логарифм. Подразумевается, что результатом любого является степень, в которую надо возвести число основания, чтобы получилось число b.

При нахождении от суммы двух функций, необходимо просто их по очереди продифференцировать, а результаты сложить: (u+v)" = u"+v";

При нахождении производной от произведения двух функций, необходимо производную от первой функции умножить на вторую и прибавить производную второй функции, умноженную на первую функцию: (u*v)" = u"*v+v"*u;

Для того, чтобы найти производную от частного двух функций необходимо, из произведения производной делимого, умноженной на функцию делителя, вычесть произведение производной делителя, умноженной на функцию делимого, и все это разделить на функцию делителя возведенную в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Если дана сложная функция, то необходимо перемножить производную от внутренней функции и производную от внешней. Пусть y=u(v(x)), тогда y"(x)=y"(u)*v"(x).

Используя полученные выше , можно продифференцировать практически любую функцию. Итак, рассмотрим несколько примеров:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2*x));
Также встречаются задачи на вычисление производной в точке. Пусть задана функция y=e^(x^2+6x+5), нужно найти значение функции в точке х=1.
1) Найдите производную функции: y"=e^(x^2-6x+5)*(2*x +6).

2) Вычислите значение функции в заданной точке y"(1)=8*e^0=8

Видео по теме

Полезный совет

Выучите таблицу элементарных производных. Это заметно сэкономит время.

Источники:

  • производная константы

Итак, чем же отличается иррациональное уравнение от рационального? Если неизвестная переменная находиться под знаком квадратного корня, то уравнение считается иррациональным.

Инструкция

Основной метод решения таких уравнений - метод возведения обоих частей уравнения в квадрат. Впрочем. это естественно, первым делом необходимо избавиться от знака . Технически этот метод не сложен, но иногда это может привести к неприятностям. Например, уравнение v(2х-5)=v(4х-7). Возведя обе его стороны в квадрат, вы получите 2х-5=4х-7. Такое уравнение решить не составит труда; х=1. Но число 1 не будет являться данного уравнения . Почему? Подставьте единицу в уравнение вместо значения х.И в правой и в левой части будут содержаться выражения, не имеющие смысла, то есть . Такое значение не допустимо для квадратного корня. Поэтому 1 - посторонний корень, и следовательно данное уравнение не имеет корней.

Итак, иррациональное уравнение решается с помощью метода возведения в квадрат обоих его частей. И решив уравнение, необходимо обязательно , чтобы отсечь посторонние корни. Для этого подставьте найденные корни в оригинальное уравнение.

Рассмотрите еще один .
2х+vх-3=0
Конечно же, это уравнение можно решить по той же , что и предыдущее. Перенести составные уравнения , не имеющие квадратного корня, в правую часть и далее использовать метод возведения в квадрат. решить полученное рациональное уравнение и корни. Но и другой , более изящный. Введите новую переменную; vх=y. Соответственно, вы получите уравнение вида 2y2+y-3=0. То есть обычное квадратное уравнение. Найдите его корни; y1=1 и y2=-3/2. Далее решите два уравнения vх=1; vх=-3/2. Второе уравнение корней не имеет, из первого находим, что х=1. Не забудьте, о необходимости проверки корней.

Решать тождества достаточно просто. Для этого требуется совершать тождественные преобразования, пока поставленная цель не будет достигнута. Таким образом, при помощи простейших арифметических действий поставленная задача будет решена.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Простейший таких преобразований – алгебраические сокращенного умножения (такие как квадрат суммы (разности), разность квадратов, сумма (разность) , куб суммы (разности)). Кроме того существует множество и тригонометрических формул, которые по своей сути теми же тождествами.

Действительно, квадрат суммы двух слагаемых равен квадрату первого плюс удвоенное произведение первого на второе и плюс квадрат второго, то есть (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^2=a^2+2ab+b^2.

Упростите обеих

Общие принципы решения

Повторите по учебнику по математическому анализу или высшей математике, что собой представляет определённый интеграл. Как известно, решение определенного интеграла есть функция, производная которой даст подынтегральное выражение. Данная функция называется первообразной. По данному принципу и строится основных интегралов.
Определите по виду подынтегральной функции, какой из табличных интегралов подходит в данном случае. Не всегда удается это определить сразу же. Зачастую, табличный вид становится заметен только после нескольких преобразований по упрощению подынтегральной функции.

Метод замены переменных

Если подынтегральной функцией является тригонометрическая функция, в аргументе которой некоторый многочлен, то попробуйте использовать метод замены переменных. Для того чтобы это сделать, замените многочлен, стоящий в аргументе подынтегральной функции, на некоторую новую переменную. По соотношению между новой и старой переменной определите новые пределы интегрирования. Дифференцированием данного выражения найдите новый дифференциал в . Таким образом, вы получите новый вид прежнего интеграла, близкий или даже соответствующий какому-либо табличному.

Решение интегралов второго рода

Если интеграл является интегралом второго рода, векторный вид подынтегральной функции, то вам будет необходимо пользоваться правилами перехода от данных интегралов к скалярным. Одним из таких правил является соотношение Остроградского-Гаусса. Данный закон позволяет перейти от потока ротора некоторой векторной функции к тройному интегралу по дивергенции данного векторного поля.

Подстановка пределов интегрирования

После нахождения первообразной необходимо подставить пределы интегрирования. Сначала подставьте значение верхнего предела в выражение для первообразной. Вы получите некоторое число. Далее вычтите из полученного числа другое число, полученное нижнего предела в первообразную. Если один из пределов интегрирования является бесконечностью, то при подстановке ее в первообразную функцию необходимо перейти к пределу и найти, к чему стремится выражение.
Если интеграл является двумерным или трехмерным, то вам придется изображать геометрически пределы интегрирования, чтобы понимать, как рассчитывать интеграл. Ведь в случае, скажем, трехмерного интеграла пределами интегрирования могут быть целые плоскости, ограничивающие интегрируемый объем.

И логарифм тесно взаимосвязаны. И по сути, является математической записью определения логарифма . Разберем подробно, что такое логарифм, откуда он произошел.

Рассмотрим алгебраическое действие - вычисление показателя х по заданным определенным значениям степени b и основанию а . Это задание в принципе заключается в решении уравнения a x = b , где а и b — некоторые заданные величины, x - неизвестная величина. Обратим внимание, что у данной задачи решения существуют не всегда.

Когда, к примеру, в уравнении a x = b число а положительно, а число b отрицательно , то у такого уравнения корней нет. Но если только а и b положительны и а ≠ 1, то оно непременно имеет исключительно один единственный корень . Достаточно известный факт, что график показательной функции у = а х непременно пересекается с прямой у = b и притом исключительно в одной точке. Абсцисса точки пересечения и будут корнем уравнения .

Для обозначения корня уравнения a x = b принято употреблять log a b (произносим: логарифм числа b по основанию а).

Логарифм числа b по основанию а это показатель степени , в которую нужно возвести число а , чтобы получить число b причем a > 0, a ≠ 1, b > 0.

Исходя из определения, получаем основное логарифмическое тождество :

Примеры :

Следствием основного логарифмического тождества является нижеследующее правило .

Из равенства двух вещественных логарифмов получаем равенство логарифмируемых выражений.

Действительно, когда log a b = log a с, то , откуда, b = c .

Рассмотрим, почему для логарифмического тождества взяты ограничения a > 0, a ≠ 1, b > 0 .

Первое условие a ≠ 1 .

Общеизвестно, что единица в любой степени будет единица, и равенство x = log a b может существовать лишь при b = 1 , но при этом log 1 1 будет любым действительным числом . Для недопущения этой неоднозначности и принимается a ≠ 1 .

Обоснуем необходимость условия a > 0 .

При a = 0 по определению логарифма может существовать только при b = 0 . И следовательно тогда log 0 0 может быть любым отличным от нуля действительным числом , так как нуль в любой отличной от нуля степени есть нуль. Не допустить эту неоднозначность дает условие a ≠ 0 . А при a < 0 нам бы пришлось отказаться от разбора рациональных и иррациональных значений логарифма , поскольку степень с рациональным и иррациональным показателем определена лишь для положительных оснований. Именно по этой причине и оговорено условие a > 0 .

И заключительное условие b > 0 является следствием из неравенства a > 0 , так как x = log a b, а значение степени с положительным основанием a всегда положительно.