Основная характеристика электромагнитного спектра. Электромагнитный спектр

Электромагнитный спектр условно делится на диапазоны. В результате их рассмотрения необходимо знать следующее.

  • Название диапазонов электромагнитных волн.
  • Порядок их следования.
  • Границы диапазонов в длинах волн или частотах.
  • Чем обусловлено поглощение или излучение волн того или иного диапазона.
  • Использование каждого типа электромагнитных волн.
  • Источники излучения различных электромагнитных волн (естественные и искусственные).
  • Опасность каждого вида волн.
  • Примеры объектов, имеющих размеры, сравнимые с длиной волны соответствующего диапазона.
  • Понятие об излучении абсолютно черного тела.
  • Солнечное излучение и окна прозрачности атмосферы.

Диапазоны электромагнитных волн

Микроволновый диапазон

Микроволновое излучение используется для подогрева еды в микроволновых печах, мобильной связи, радарах (радиолокаторах), до 300 ГГц легко проходит атмосферу, поэтому пригодно для спутниковой связи. В этом диапазоне работают радиометры для дистанционного зондирования и определения температуры разных слоев атмосферы, а также радио телескопы. Этот диапазон является одним из ключевых для спектроскопии ЭПР и вращательных спектров молекул. Длительное воздействие на глаза вызывает катаракту. Мобильные телефоны отрицательно влияют на головной мозг.

Характерной особенностью микроволновых волн является то, что их длина волны сравнима с размерами аппаратуры. Поэтому в этом диапазоне приборы конструируются на основе распределенных элементов. Для передачи энергии используются волноводы и полосковые линии, а в качестве резонансных элементов – объемные резонаторы или резонансные линии. Рукотворными источниками МВ волн являются клистроны, магнетроны, лампы бегущей волны (ЛБВ), диоды Ганна, лавинно-пролетные диоды (ЛПД). Кроме того существуют мазеры, аналоги лазеров в длинноволновых диапазонах.

Микроволновые волны излучаются звездами.

В микроволновом диапазоне находится так называемое космическое фоновое микроволновое излучение (реликтовое излучение), которое по своим спектральным характеристикам полностью соответствует излучению абсолютно черного тела с температурой 2,72К. Максимум его интенсивности приходится на частоту 160 ГГц (1,9мм) (см. рис. ниже). Наличие этого излучения и его параметры являются одним из аргументов в пользу теории Большого Взрыва, которая в настоящее время является основой современной космологии. Последний, согласно, в частности, этим измерениям и наблюдениям, произошел 13,6 миллиардов лет назад.

Выше 300 ГГц (короче 1 мм) электромагнитные волны очень сильно поглощаются атмосферой Земли. Атмосфера начинает быть прозрачной в ИК и видимом диапазонах.

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380-440 680-790 2,82-3,26
Синий 440-485 620-680 2,56-2,82
Голубой 485-500 600-620 2,48-2,56
Зелёный 500-565 530-600 2,19-2,48
Жёлтый 565-590 510-530 2,10-2,19
Оранжевый 590-625 480-510 1,98-2,10
Красный 625-740 400-480 1,68-1,98

Среди лазеров и источников с их применением, излучающих в видимом диапазоне, можно назвать следующие: первый запущенный лазер, - рубиновый, с длиной волны 694,3 нм, диодные лазеры, к примеру на основе GaInP и AlGaInP для красного диапазона, и на основе GaN для синего диапазона, титан-сапфировый лазер, He-Ne лазер, лазеры на ионах аргона и криптона, лазер на парах меди, лазеры на красителях, лазеры с удвоением или суммированием частоты в нелинейных средах, рамановские лаэеры. (https://www.rp-photonics.com/visible_lasers.html?s=ak).

Долгое время существовала проблема в создании компактных лазеров в сине-зеленой части спектра. Имелись газовые лазеры, такие как аргоновый ионный лазер (с 1964 года), у которого две основные линии генерации лежат в синей и зеленой части спектра (488 и 514 нм) или гелий кадмиевый лазер. Однако для многих приложений они не годились из-за своей громоздкости и ограниченного количества линий генерации. Создать полупроводниковые лазеры с широкой запрещенной зоной не удавалось из-за огромных технологических трудностей. Однако в конечном итоге были разработаны эффективные методы удвоения и утроения частоты твердотельных лазеров ИК и оптического диапазона в нелинейных кристаллах, полупроводниковые лазеры на основе двойных соединений GaN и лазеров с повышением частоты накачки (upconversion lasers).

Источники света в сине зеленой области позволяют увеличить плотность записи на CD-ROM, качество репрографии, необходимы для создания полноцветных проекторов, для осуществления связи с подводными лодками, для снятия рельефа морского дна, для лазерного охлаждения отдельных атомов и ионов, для контроля за осаждением из газа (vapor deposition), в проточной цитометрии. (взято из “Compact blue-green lasers” by W. P. Risk et al).

Литература:

Ультрафиолетовый диапазон

Считается, что ультрафиолетовый диапазон занимает область от 10 до 380 нм. Хотя границы его четко не определены, особенно в коротковолновой области. Он делится на поддиапазоны и это деление также не является однозначным, так как в разных источниках привязано к различным физическим и биологическим процессам.

Так на сайте "Health Physics Society" ультрафиолетовый диапазон определен в границах 40 - 400 нм и делится на пять поддиапазонов: вакуумный УФ (40-190 нм), дальний УФ (190-220 нм), UVC (220-290 нм), UVB (290-320 нм), и UVA (320-400 нм) (черный свет). В англоязычной версии статьи об ультрафиолете в Википедии "Ultraviolet" под ультрафиолетовое излучение выделяется диапазон 40 - 400 нм, однако в таблице в тексте представляется его деление на кучу перекрывающихся поддиапазонов, начиная с 10 нм. В русскоязычной версии Википедии "Ультрафиолетовое излучение" с самого начала границы УФ диапазона устанавливаются в пределах 10 - 400нм. Кроме того в Википедии для диапазонов UVC, UVB и UVA указаны области 100 – 280, 280 – 315, 315 – 400 нм.

Ультрафиолетовое излучение несмотря на свое благотворное влияние в небольших количествах на биологические объекты является одновременно самым опасным из всех других естественных широкораспространенных излучений других диапазонов.

Основным естественным источником УФ излучения является Солнце. Однако не все излучение достигает Земли, так как поглощается озоновым слоем стратосферы и в области короче 200 нм очень сильно атмосферным кислородом.

UVC практически полностью поглощается атмосферой и не достигает земной поверхности. Этот диапазон используется бактерицидными лампами. Чрезмерная экспозиция приводит к повреждению роговицы и снежной слепоте, а также к тяжелым ожогам лица.

UVB наиболее разрушительная часть УФ излучения, так как она имеет достаточно энергии для повреждения ДНК. Она не полностью поглощается атмосферой (проходит около 2%). Это излучение необходимо для выработки (синтеза) витамина D, однако вредное влияние могут повлечь ожоги, катаракту и рак кожи. Эта часть излучения поглощается озоном атмосферы, снижение концентрации которого вызывает беспокойство.

UVA практически полностью достигает Земли (99%). Оно ответственно за загар, но чрезмерность приводит к ожогам. Как и UVB оно необходимо для синтеза витамина D. Облучение сверх меры приводит к подавлению иммунной системы, жесткости кожи и образованию катаракты. Излучение в этом диапазоне называют еще черным светом. Насекомые и птицы способны видеть этот свет.

На рисунке ниже для примера показана зависимость концентрации озона по высоте на северных широтах (желтая кривая) и уровень блокирования озоном солнечного ультрафиолета. UVC полностью поглощается до высот в 35 км. В то же время UVA почти полностью достигает поверхности Земли, однако это излучение практически не представляет какой-либо опасности. Озон задерживает большую часть UVB, однако некоторая его часть достигает Земли. В случае истощения озонового слоя большая часть будет облучать поверхность и приводить к генетическому повреждению живых существ.

Краткий список использования электромагнитных волн УФ диапазона.

  • Фотолитография высокого качеста для изготовления электронных устройств таких, как микропроцессоры и микросхем памяти.
  • При изготовлении оптоволоконных элементов, в частности брэгговских решеток.
  • Обеззараживание от микробов продуктов, воды, воздуха, предметов (UVC).
  • Черный свет (UVA) в криминалистике, в экспертизе произведений искусства, в установлении подлинности банкнот (явление флуоресценции).
  • Искусственный загар.
  • Лазерная гравировка.
  • Дерматология.
  • Стоматология (фотополимеризация пломб).

Рукотворными источниками ультрафиолетового излучения являются:

Немонохроматические: Ртутные газоразрядные лампы различных давлений и конструкций.

Монохроматические:

  1. Лазерные диоды, в основном на базе GaN, (небольшой мощности), генерирующие в ближнем ультрафиолетовом диапазоне;
  2. Эксимерные лазеры являются очень мощными источниками ультрафиолетового излучения. Они излучают наносекундные (пикосекундные и микросекундные) импульсы со средней мощностью от нескольких ватт до сотен ватт. Типичные длины волн лежат между 157 нм (F2) до 351 нм (XeF);
  3. Некоторые твердотельные лазеры, легированные церием, такие как Ce3+:LiCAF или Ce3+:LiLuF4, которые работают в импульсном режиме с наносекундными импульсами;
  4. Некоторые оптоволоконные лазеры, к примеру, легированные неодимом;
  5. Некоторые лазеры на красителях способны излучать ультрафиолет;
  6. Ионный аргоновый лазер, который, несмотря на то, что основные линии лежат в оптическом диапазоне, может генерировать непрерывное излучение с длинами волн 334 и 351 нм, но с меньшей мощностью;
  7. Азотный лазер, излучающий на длине волны 337 нм. Очень простой и дешевый лазер, работает в импульсном режиме с наносекундной длительностью импульсов и с пиковой мощностью несколько мегаватт;
  8. Утроенние частоты Nd:YAG лазера в нелинейных кристаллах;

Литература:

  1. Википедиа "Ultraviolet" .

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать ее поверхностной плотностью (в г / см?). Зеркал и линз для γ-лучей не существует.

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).


2.2. Рентгеновское излучение

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжелых атомов на низшие орбиты. Вакансии на низких орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое рентгеновское излучение) это позволяет, в частности, исследовать состав веществ (рентгенофлуоресцентного анализа). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решетках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решеток. На этом основан метод рентгенодифракционную анализа .


2.3. Ультрафиолетовое излучение

Диапазон: от 400 нм (3,10 эВ) до 10 нм (124 эВ)

Название Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 - 300 3,10 - 4,13 эВ
Средний MUV 300 - 200 4,13 - 6,20 эВ
Дальний FUV 200 - 122 6,20 - 10,2 эВ
Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
Вакуумный VUV 200 - 10 6,20 - 124 эВ
Ультрафиолет А, длинноволновой диапазон, Черный свет UVA 400 - 315 3,10 - 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидний диапазон UVC 280 - 100 4,43 - 12,4 эВ

2.4. Оптическое излучение

Излучение оптического диапазона (видимый свет и близкое инфракрасное излучение) свободно проходит сквозь атмосферу, может быть легко отражено и преломляется в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

В отличие от оптического диапазона, исследование спектра в радиодиапазоне проводится не по физическим разделением волн, а по методам обработки сигналов.


Приведена в отдельной статье;

  • Энергию фотона (кванта электромагнитного поля).
  • Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики .

    Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

    Рентгеновское излучение

    • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
    • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

    Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

    В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа.

    Ультрафиолетовое излучение

    Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

    Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
    Ближний NUV 400 - 300 3,10 - 4,13 эВ
    Средний MUV 300 - 200 4,13 - 6,20 эВ
    Дальний FUV 200 - 122 6,20 - 10,2 эВ
    Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
    Вакуумный VUV 200 - 10 6,20 - 124 эВ
    Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
    Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
    Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

    Оптическое излучение

    Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ ]) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

    Цвета видимого излучения, соответствующие монохроматическому излучению , называются спектральными . Спектр и спектральные цвета можно увидеть при прохождении узкого светового луча через призму или какую-либо другую преломляющую среду. Традиционно, видимый спектр делится, в свою очередь, на диапазоны цветов:

    Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
    Фиолетовый 380-440 790-680 2,82-3,26
    Синий 440-485 680-620 2,56-2,82
    Голубой 485-500 620-600 2,48-2,56
    Зелёный 500-565 600-530 2,19-2,48
    Жёлтый 565-590 530-510 2,10-2,19
    Оранжевый 590-625 510-480 1,98-2,10
    Красный 625-740 480-405 1,68-1,98

    Ближнее инфракрасное излучение занимает диапазон от 207 ТГц (0,857 эВ) до 405 ТГц (1,68 эВ). Верхняя граница определяется способностью человеческого глаза к восприятию красного цвета, различной у разных людей. Как правило, прозрачность в ближнем инфракрасном излучении соответствует прозрачности в видимом свете.

    Инфракрасное излучение

    Инфракрасное излучение расположено между видимым светом и терагерцовым излучением. Диапазон: от 2000 мкм (150 ГГц) до 740 нм (405 ТГц).

    Материал из Википедии - свободной энциклопедии

    К:Википедия:Страницы на КУЛ (тип: не указан)

    Длина волны - частота - энергия фотона

    В качестве спектральной характеристики электромагнитного излучения используют следующие величины :

    • Частоту колебаний - шкала частот приведена в отдельной статье;
    • Энергию фотона (кванта электромагнитного поля).

    Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики .

    Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

    Рентгеновское излучение

    • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
    • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

    Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

    В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа .

    Ультрафиолетовое излучение

    Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

    Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
    Ближний NUV 400 - 300 3,10 - 4,13 эВ
    Средний MUV 300 - 200 4,13 - 6,20 эВ
    Дальний FUV 200 - 122 6,20 - 10,2 эВ
    Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
    Вакуумный VUV 200 - 10 6,20 - 124 эВ
    Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
    Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
    Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

    Оптическое излучение

    Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ ]) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

    • от 30 ГГц до 300 ГГц - микроволны .
    • от 3 ГГц до 30 ГГц - сантиметровые волны (СВЧ) .
    • от 300 МГц до 3 ГГц - дециметровые волны .
    • от 30 МГц до 300 МГц - метровые волны .
    • от 3 МГц до 30 МГц - короткие волны .
    • от 300 кГц до 3 МГц - средние волны .
    • от 30 кГц до 300 кГц - длинные волны .
    • от 3 кГц до 30 кГц - сверхдлинные (мириаметровые) волны .

    См. также

    Напишите отзыв о статье "Электромагнитный спектр"

    Примечания

    Отрывок, характеризующий Электромагнитный спектр

    – Однако Михаил Иларионович, я думаю, вышел, – сказал князь Андрей. – Желаю счастия и успеха, господа, – прибавил он и вышел, пожав руки Долгорукову и Бибилину.
    Возвращаясь домой, князь Андрей не мог удержаться, чтобы не спросить молчаливо сидевшего подле него Кутузова, о том, что он думает о завтрашнем сражении?
    Кутузов строго посмотрел на своего адъютанта и, помолчав, ответил:
    – Я думаю, что сражение будет проиграно, и я так сказал графу Толстому и просил его передать это государю. Что же, ты думаешь, он мне ответил? Eh, mon cher general, je me mele de riz et des et cotelettes, melez vous des affaires de la guerre. [И, любезный генерал! Я занят рисом и котлетами, а вы занимайтесь военными делами.] Да… Вот что мне отвечали!

    В 10 м часу вечера Вейротер с своими планами переехал на квартиру Кутузова, где и был назначен военный совет. Все начальники колонн были потребованы к главнокомандующему, и, за исключением князя Багратиона, который отказался приехать, все явились к назначенному часу.
    Вейротер, бывший полным распорядителем предполагаемого сражения, представлял своею оживленностью и торопливостью резкую противоположность с недовольным и сонным Кутузовым, неохотно игравшим роль председателя и руководителя военного совета. Вейротер, очевидно, чувствовал себя во главе.движения, которое стало уже неудержимо. Он был, как запряженная лошадь, разбежавшаяся с возом под гору. Он ли вез, или его гнало, он не знал; но он несся во всю возможную быстроту, не имея времени уже обсуждать того, к чему поведет это движение. Вейротер в этот вечер был два раза для личного осмотра в цепи неприятеля и два раза у государей, русского и австрийского, для доклада и объяснений, и в своей канцелярии, где он диктовал немецкую диспозицию. Он, измученный, приехал теперь к Кутузову.
    Он, видимо, так был занят, что забывал даже быть почтительным с главнокомандующим: он перебивал его, говорил быстро, неясно, не глядя в лицо собеседника, не отвечая на деланные ему вопросы, был испачкан грязью и имел вид жалкий, измученный, растерянный и вместе с тем самонадеянный и гордый.
    Кутузов занимал небольшой дворянский замок около Остралиц. В большой гостиной, сделавшейся кабинетом главнокомандующего, собрались: сам Кутузов, Вейротер и члены военного совета. Они пили чай. Ожидали только князя Багратиона, чтобы приступить к военному совету. В 8 м часу приехал ординарец Багратиона с известием, что князь быть не может. Князь Андрей пришел доложить о том главнокомандующему и, пользуясь прежде данным ему Кутузовым позволением присутствовать при совете, остался в комнате.
    – Так как князь Багратион не будет, то мы можем начинать, – сказал Вейротер, поспешно вставая с своего места и приближаясь к столу, на котором была разложена огромная карта окрестностей Брюнна.
    Кутузов в расстегнутом мундире, из которого, как бы освободившись, выплыла на воротник его жирная шея, сидел в вольтеровском кресле, положив симметрично пухлые старческие руки на подлокотники, и почти спал. На звук голоса Вейротера он с усилием открыл единственный глаз.
    – Да, да, пожалуйста, а то поздно, – проговорил он и, кивнув головой, опустил ее и опять закрыл глаза.
    Ежели первое время члены совета думали, что Кутузов притворялся спящим, то звуки, которые он издавал носом во время последующего чтения, доказывали, что в эту минуту для главнокомандующего дело шло о гораздо важнейшем, чем о желании выказать свое презрение к диспозиции или к чему бы то ни было: дело шло для него о неудержимом удовлетворении человеческой потребности – .сна. Он действительно спал. Вейротер с движением человека, слишком занятого для того, чтобы терять хоть одну минуту времени, взглянул на Кутузова и, убедившись, что он спит, взял бумагу и громким однообразным тоном начал читать диспозицию будущего сражения под заглавием, которое он тоже прочел:
    «Диспозиция к атаке неприятельской позиции позади Кобельница и Сокольница, 20 ноября 1805 года».
    Диспозиция была очень сложная и трудная. В оригинальной диспозиции значилось:
    Da der Feind mit seinerien linken Fluegel an die mit Wald bedeckten Berge lehnt und sich mit seinerien rechten Fluegel laengs Kobeinitz und Sokolienitz hinter die dort befindIichen Teiche zieht, wir im Gegentheil mit unserem linken Fluegel seinen rechten sehr debordiren, so ist es vortheilhaft letzteren Fluegel des Feindes zu attakiren, besondere wenn wir die Doerfer Sokolienitz und Kobelienitz im Besitze haben, wodurch wir dem Feind zugleich in die Flanke fallen und ihn auf der Flaeche zwischen Schlapanitz und dem Thuerassa Walde verfolgen koennen, indem wir dem Defileen von Schlapanitz und Bellowitz ausweichen, welche die feindliche Front decken. Zu dieserien Endzwecke ist es noethig… Die erste Kolonne Marieschirt… die zweite Kolonne Marieschirt… die dritte Kolonne Marieschirt… [Так как неприятель опирается левым крылом своим на покрытые лесом горы, а правым крылом тянется вдоль Кобельница и Сокольница позади находящихся там прудов, а мы, напротив, превосходим нашим левым крылом его правое, то выгодно нам атаковать сие последнее неприятельское крыло, особливо если мы займем деревни Сокольниц и Кобельниц, будучи поставлены в возможность нападать на фланг неприятеля и преследовать его в равнине между Шлапаницем и лесом Тюрасским, избегая вместе с тем дефилеи между Шлапаницем и Беловицем, которою прикрыт неприятельский фронт. Для этой цели необходимо… Первая колонна марширует… вторая колонна марширует… третья колонна марширует…] и т. д., читал Вейротер. Генералы, казалось, неохотно слушали трудную диспозицию. Белокурый высокий генерал Буксгевден стоял, прислонившись спиною к стене, и, остановив свои глаза на горевшей свече, казалось, не слушал и даже не хотел, чтобы думали, что он слушает. Прямо против Вейротера, устремив на него свои блестящие открытые глаза, в воинственной позе, оперев руки с вытянутыми наружу локтями на колени, сидел румяный Милорадович с приподнятыми усами и плечами. Он упорно молчал, глядя в лицо Вейротера, и спускал с него глаза только в то время, когда австрийский начальник штаба замолкал. В это время Милорадович значительно оглядывался на других генералов. Но по значению этого значительного взгляда нельзя было понять, был ли он согласен или несогласен, доволен или недоволен диспозицией. Ближе всех к Вейротеру сидел граф Ланжерон и с тонкой улыбкой южного французского лица, не покидавшей его во всё время чтения, глядел на свои тонкие пальцы, быстро перевертывавшие за углы золотую табакерку с портретом. В середине одного из длиннейших периодов он остановил вращательное движение табакерки, поднял голову и с неприятною учтивостью на самых концах тонких губ перебил Вейротера и хотел сказать что то; но австрийский генерал, не прерывая чтения, сердито нахмурился и замахал локтями, как бы говоря: потом, потом вы мне скажете свои мысли, теперь извольте смотреть на карту и слушать. Ланжерон поднял глаза кверху с выражением недоумения, оглянулся на Милорадовича, как бы ища объяснения, но, встретив значительный, ничего не значущий взгляд Милорадовича, грустно опустил глаза и опять принялся вертеть табакерку.
    – Une lecon de geographie, [Урок из географии,] – проговорил он как бы про себя, но довольно громко, чтобы его слышали.
    Пржебышевский с почтительной, но достойной учтивостью пригнул рукой ухо к Вейротеру, имея вид человека, поглощенного вниманием. Маленький ростом Дохтуров сидел прямо против Вейротера с старательным и скромным видом и, нагнувшись над разложенною картой, добросовестно изучал диспозиции и неизвестную ему местность. Он несколько раз просил Вейротера повторять нехорошо расслышанные им слова и трудные наименования деревень. Вейротер исполнял его желание, и Дохтуров записывал.
    Когда чтение, продолжавшееся более часу, было кончено, Ланжерон, опять остановив табакерку и не глядя на Вейротера и ни на кого особенно, начал говорить о том, как трудно было исполнить такую диспозицию, где положение неприятеля предполагается известным, тогда как положение это может быть нам неизвестно, так как неприятель находится в движении. Возражения Ланжерона были основательны, но было очевидно, что цель этих возражений состояла преимущественно в желании дать почувствовать генералу Вейротеру, столь самоуверенно, как школьникам ученикам, читавшему свою диспозицию, что он имел дело не с одними дураками, а с людьми, которые могли и его поучить в военном деле. Когда замолк однообразный звук голоса Вейротера, Кутузов открыл глава, как мельник, который просыпается при перерыве усыпительного звука мельничных колес, прислушался к тому, что говорил Ланжерон, и, как будто говоря: «а вы всё еще про эти глупости!» поспешно закрыл глаза и еще ниже опустил голову.
    Стараясь как можно язвительнее оскорбить Вейротера в его авторском военном самолюбии, Ланжерон доказывал, что Бонапарте легко может атаковать, вместо того, чтобы быть атакованным, и вследствие того сделать всю эту диспозицию совершенно бесполезною. Вейротер на все возражения отвечал твердой презрительной улыбкой, очевидно вперед приготовленной для всякого возражения, независимо от того, что бы ему ни говорили.

    Стало ясно, что они предсказывают существование неизвестного науке природного явления — поперечных электромагнитных волн , представляющих собой распространяющиеся в пространстве со скоростью света колебания взаимосвязанных электрического и магнитного поля. Сам Джеймс Кларк Максвелл первым и указал научному сообществу на это следствие из выведенной им системы уравнений. В этом преломлении скорость распространения электромагнитных волн в вакууме оказалась столь важной и фундаментальной вселенской константой, что ее обозначили отдельной буквой с в отличие от всех прочих скоростей, которые принято обозначать буквой v.

    Сделав это открытие, Максвелл сразу же определил, что видимый свет является «всего лишь» разновидностью электромагнитных волн. К тому времени были известны длины световых волн видимой части спектра — от 400 нм (фиолетовые лучи) до 800 нм (красные лучи). (Нанометр — единица длины, равная одной миллиардной метра, которая в основном используется в атомной физике и физике лучей; 1 нм = 10 -9 м. ) Всем цветам радуги соответствуют различные длины волн, лежащие в этих весьма узких пределах. Однако в уравнениях Максвелла не содержалось никаких ограничений на возможный диапазон длин электромагнитных волн. Когда стало ясно, что должны существовать электромагнитные волны самой разной длины, фактически сразу же было выдвинуто сравнение по поводу того, что человеческий глаз различает столь узкую полосу их длин и частот: человека уподобили слушателю симфонического концерта, слух которого способен улавливать только скрипичную партию, не различая всех остальных звуков.

    Вскоре после предсказания Максвеллом существования электромагнитных волн других диапазонов спектра последовала серия открытий, подтвердивших его правоту. Первыми в 1888 году были открыты радиоволны — сделал это немецкий физик Генрих Герц (Heinrich Hertz, 1857-1894). Единственная разница между радиоволнами и светом состоит в том, что длина радиоволн может колебаться в диапазоне от нескольких дециметров до тысяч километров. Согласно теории Максвелла, причиной возникновения электромагнитных волн является ускоренное движение электрических зарядов. Колебания электронов под воздействием переменного электрического напряжения в антенне радиопередатчика создают электромагнитные волны, распространяющиеся в земной атмосфере. Все другие типы электромагнитных волн также возникают в результате различных видов ускоренного движения электрических зарядов.

    Подобно световым волнам, радиоволны могут практически без потерь распространяться на большие расстояния в земной атмосфере, и это делает их полезнейшими носителями закодированной информации. Уже в начале 1894 года — всего через пять с небольшим лет после открытия радиоволн — итальянский инженер-физик Гульельмо Маркони (Guglielmo Marconi, 1874-1937) сконструировал первый работающий беспроволочный телеграф — прообраз современного радио, — за что в 1909 году был удостоен Нобелевской премии.

    После того как было впервые экспериментально подтверждено предсказываемое уравнениями Максвелла существование электромагнитных волн за пределами видимого спектра, остальные ниши спектра заполнились весьма быстро. Сегодня открыты электромагнитные волны всех без исключения диапазонов, и практически все они находят широкое и полезное применение в науке и технике. Частоты волн и энергии соответствующих им квантов электромагнитного излучения (см. Постоянная Планка) возрастают с уменьшением длины волны. Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения . Он подразделяется на следующие диапазоны (в порядке увеличения частоты и уменьшения длины волн):

    Радиоволны

    Как уже отмечалось, радиоволны могут значительно различаться по длине — от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом Земного шара (около 6400 км). Волны всех радиодиапазонов широко используются в технике — дециметровые и ультракороткие метровые волны применяются для телевещания и радиовещания в диапазоне ультракоротких волн с частотной модуляцией (УКВ/FM), обеспечивая высокое качество приема сигнала в пределах зоны прямого распространения волн. Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи. Волны дециметрового диапазона не могут огибать земной горизонт подобно метровым волнам, что ограничивает зону приема областью прямого распространения, которая, в зависимости от высоты антенны и мощности передатчика, составляет от нескольких до нескольких десятков километров. И тут на помощь приходят спутниковые ретрансляторы, берущие на себя ту роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера.

    Микроволны

    Микроволны и радиоволны диапазона сверхвысоких частот (СВЧ) имеют длину от 300 мм до 1 мм. Сантиметровые волны, подобно дециметровым и метровым радиоволнам, практически не поглощаются атмосферой и поэтому широко используются в спутниковой и сотовой связи и других телекоммуникационных системах. Размер типовой спутниковой тарелки как раз равен нескольким длинам таких волн.

    Более короткие СВЧ-волны также находят множество применений в промышленности и в быту. Достаточно упомянуть про микроволновые печи, которыми сегодня оснащены и промышленные хлебопекарни, и домашние кухни. Действие микроволновой печи основано на быстром вращении электронов в устройстве, которое называется клистрон . В результате электроны излучают электромагнитные СВЧ-волны определенной частоты, при которой они легко поглощаются молекулами воды. Когда вы помещаете еду в микроволновую печь, молекулы воды, содержащиеся в еде, поглощают энергию микроволн, движутся быстрее и таким образом разогревают еду. Иными словами, в отличие от обычной духовки или печи, где еда разогревается снаружи, микроволновая печь разогревает ее изнутри .

    Инфракрасные лучи

    Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей — как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.

    Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Инфракрасные окуляры приборов ночного видения позволяют людям «видеть в темноте», и с их помощью можно обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.

    Видимый свет

    Как уже говорилось, длины электромагнитных волн видимого светового диапазона колеблются в пределах от восьми до четырех тысяч атомных диаметров (800-400 нм). Человеческий глаз представляет собой идеальный инструмент для регистрации и анализа электромагнитных волн этого диапазона. Это обусловлено двумя причинами. Во-первых, как отмечалось, волны видимой части спектра практически беспрепятственно распространяются в прозрачной для них атмосфере. Во-вторых, температура поверхности Солнца (около 5000°С) такова, что пик энергии солнечных лучей приходится именно на видимую часть спектра. Таким образом, наш главный источник энергии излучает огромное количество энергии именно в видимом световом диапазоне, а окружающая нас среда в значительной мере прозрачна для этого излучения. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.

    Хочу еще раз подчеркнуть, что ничего особенного с физической точки зрения в диапазоне видимых электромагнитных лучей нет. Он представляет собой всего лишь узкую полоску в широком спектре излучаемых волн (см. рисунок). Для нас он столь важен лишь постольку, поскольку человеческий мозг оснащен инструментом для выявления и анализа электромагнитных волн именно этой части спектра.

    Ультрафиолетовые лучи

    К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400-10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных — тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется, в частности, в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

    Всё живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим бо льшую часть жестких ультрафиолетовых лучей в спектре солнечной радиации (см. Озоновая дыра). Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана. Однако, несмотря на защитный озоновый слой, какая-то часть жестких ультрафиолетовых лучей достигает поверхности Земли и способна вызвать рак кожи, особенно у людей, от рождения склонных к бледности и плохо загорающих на солнце.

    Рентгеновские лучи

    Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике. Как и в случае с радиоволнами временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы. (Интересно отметить, что парижские газеты того времени настолько увлеклись идеей, что рентгеновские лучи могут проникать сквозь одежду, что практически ничего не сообщали об уникальных возможностях их применения в медицине.)

    Гамма-лучи

    Самые короткие по длине волны и самые высокие по частоте и энергии лучи в электромагнитном спектре — это γ-лучи (гамма-лучи). Они состоят из фотонов сверхвысоких энергий и используются сегодня в онкологии для лечения раковых опухолей (а точнее, для умерщвления раковых клеток). Однако их влияние на живые клетки столь губительно, что при этом приходится соблюдать крайнюю осторожность, чтобы не причинить вреда окружающим здоровым тканям и органам.

    В заключение важно еще раз подчеркнуть, что, хотя все описанные типы электромагнитного излучения проявляют себя внешне по-разному, по своей сути они являются близнецами. Все электромагнитные волны в любой части спектра представляют собой распространяющиеся в вакууме или среде поперечные колебания электрического и магнитного полей, все они распространяются в вакууме со скоростью света с и отличаются друг от друга лишь длиной волны и, как следствие, энергией, которую они переносят. Остается только добавить, что названные мною границы диапазонов носят достаточно условный характер (и в других книгах вам, вполне вероятно, попадутся несколько иные значения граничных длин волн). В частности, микроволновые излучения с большими длинами волн нередко и справедливо относятся к сверхвысокочастотному диапазону радиоволн. Отсутствуют четкие границы и между жестким ультрафиолетовым и мягким рентгеновским, а также между жестким рентгеновским и мягким гамма-излучением.