Организмы клетки не содержат ядра называются. Строение и функции ядра

Особенности строения:

  1. Форма клеток разнообразная, размеры колеблются в пределах от 5 до 100 мкм.
  2. Клетки имеют сходный химический состав и обмен веществ.
  3. Клетки разделены системой мембран на компартменты.
  4. Генетический материал сосредоточен преимущественно в хромосомах, которые имеют сложное строение и образованы нитями ДНК и гистоновыми белковыми молекулами.
  5. В цитоплазме находятся мембранные органоиды, центриоли.
  6. Деление клеток митотическое.

Ядро – обязательный структурный компонент каждой эукариотической клетки, содержащий генетический материал. В животных клетках наследственная информация хранится в ядре и митохондриях . В растительных клетках - в ядре , митохондриях и пластидах. Ядро состоит из:

1. Ядерная оболочка;

2. Кариоплазма;

3. Хроматин;

4. Ядрышко.

Форма ядра зависит от формы самой клетки и от функций, которые она выполняет.

Размеры ядра, также в основном, зависят от размеров клетки.

Ядерно-цитоплазматический индекс – соотношение объемов ядра и цитоплазмы. Изменение этого соотношения есть одной из причин клеточного деления или нарушения обмена веществ.

Ядерная оболочка интерфазного ядра состоит из двух элементарных мембран (наружной и внутренней); между ними находится перинуклеарное пространство, которое через каналы эндоплазматического ретикулума связано с разными участками цитоплазмы. Обе ядерные мембраны пронизаны порами , через которые осуществляется избирательный обмен веществ между ядром и цитоплазмой. Изнутри ядерная оболочка покрыта белковой сеткой – ядерной ламиной, что обуславливает форму и объем ядра. К ядерной ламине теломерными участками присоединяются нити хроматина . Микрофилименты образуют внутреннюю основу ядра. Внутренний «скелет» ядра имеет большое значение для обеспечения упорядоченного течения основных процессов транскрипции, репликации, процессинга. Снаружи ядро также покрыто микрофиламентами , которые являются элементами цитоскелета клетки . Наружная ядерная мембрана имеет на своей поверхности рибосомы и связана с мембранами эндоплазматического ретикулума . Ядерная оболочка обладает избирательной проницаемостью . Потоки веществ регулируются специфическими особенностями белков мембран и ядерных пор (от 1000 до 10000).

Основные функции ядерной оболочки.

1. Образование компартмента клетки, где сосредоточен генетически материал и созданы условия для его сохранения и удвоения.

2. Отделение содержимого ядра от цитоплазмы.

3. Поддержание формы и объема ядра.

4. Регуляция потоков веществ (из ядра через поры в цитоплазму поступают различные виды РНК и субъединицы рибосом, а в середину ядра переносятся необходимые белки, вода, ионы).

Кариоплазма – однородная бесструктурная масса, заполняющая пространство между хроматином и ядрышками. Она содержит воду/ 75-80%/, белки, нуклеотиды, аминокислоты, АТФ, различные виды РНК, субчастицы рибосом, промежуточные продукты обмена веществ и осуществляет взаимосвязь структур ядра и цитоплазмы.

Хроматин

Генетический материал в интерфазном ядре находится в виде

переплетающихся хроматиновых нитей. Это – комплекс ДНК и белков (дезоксирибонуклеопротеид- ДНП) . В процессе митоза, спирализуясь, хроматин образует хорошо видимые интенсивно окрашивающиеся структуры – ХРОМОСОМЫ.

Ядрышки (одно или несколько) – гранулярные, округлые, сильно окрашиваемые структуры, не имеющие мембраны. Ядрышки состоят из белков, РНК, липидов и ферментов. Содержание ДНК не более 15% и находится преимущественно в центре его.

Ядрышки фрагментируются в начале деления клетки и восстанавливаются после его окончания. В ядрышках выделяют 3 участка :

1. Фибриллярный;

2. Гранулярный;

3. Слабоокрашенный .

- Фибриллярный участок ядрышка состоит из нитей РНК. Это место активного синтеза рибосомной РНК на рРНК – генах вдоль молекулы ДНК деконденсированного хроматина.

- Гранулярный участок состоит из частиц РНК, сходных с рибосомами цитоплазмы. Это место объединения РНК и рибосомальных белков и образования зрелых малых и больших субъединиц рибосом.

- Слабоокрашенный участок ядрышка содержит ДНК (не активную), которая не транскрибируется.

Образование ядрышек связано со вторичными перетяжками метафазных хромосом (ядрышковые организаторы), в области которых локализованы гены, кодирующие синтез р-РНК. В клетках человека эти функции выполняют хромосомы №13, 14, 15, 21, 22 которые имеют сателлиты или спутники.

Основные функции ядрышек :

  1. Синтез рибосомной РНК.
  2. Образование субъединиц рибосом.

ФУНКЦИИ ЯДРА:

1. Хранение и передача наследственной информации;

2. Регуляция всех процессов жизнедеятельности клетки;

3. Репарация ДНК;

4. Синтез всех видов РНК;

5. Образование рибосом;

6. Реализация наследственной информации путем регуляции синтеза белков.

ХРОМОСОМЫ.

Хромосомы – нитевидные структуры, хорошо видимые в световой микроскоп только в процессе деления клеток, образуются из хроматина в процессе его конденсации. В зависимости от степени конденсации хроматин подразделяется на:

1. Гетерохроматин – сильно спирализованный и генетическинеактивный, выявляется в виде сильно окрашенных темных участков ядра.

2. Эухроматин – малоконденсированный , генетически активный,выявляется в виде светлых участков ядра.

Химический состав хромосом :

1. ДНК – 40%

2. Основные или гистоновые белки – 40%

3. Негистоновые (кислые или нейтральные) – 20%

4. Следы РНК, липидов, полисахаридов, ионы металлов.

a) прокариоты, b) эукариоты; c) нуклеиоды; d) митохондрии; e) ядерные

На сколько групп делятся все организмы, имеющие клеточное строение?

a) 1, b) 2, c) 3, d) 4, e) 5.

В какой клетке нет организованного ядра, в ней содержится только одна хромосома?

a) ядерной; b) эукариотической; c) нуклеиодной; d) митохондрии; e) прокариотической

Клетки прокариот, так же как и эукариотические клетки, покрыты чем?

a) митохондрией; b) нуклеотидами; c) плазматической мембраной; d) хромосомой; e) клеточной оболочкой

Структура, состоящая из ДНК, белков и РНК

a) эукариот; b) аналог ядра; c) прокариот; d) митохондрии; e) нуклеиод

Доядерные организмы у которых клетки не имеют окруженного мембраной ядра

a) прокариоты; b) эукориоты; c) мембрана; d) плазмолиз; e) нуклеоиды

Элементарная единица строения и жизнедеятельности всех организмов, кроме вирусов

a) нуклеоид; b) кокки; c) эукариот; d) гольджи; e) клетка

Пигмент фотосинтеза

a) прохлоро; b) хлорофилл; c) н бактериородопсин; d) муреин; e) плазмолиз

Найдите предложение с причастным оборотом

a) «Молоко – это изумительная пища, приготовленная самой природой», – писал академик И. П. Павлов.

b) Сливки отличаются от молока повышенным содержанием молочного жира.

c)

d) Среднее содержание молочного жира в молоке составляет 3,9%.

Найдите предложение с деепричастным оборотом

a) Указанные показатели безопасности являются общими для молочных товаров.

b) Из однородной массы делают шарики величиной с грецкий орех и раскладывают, накрыв марлей, на солнце.

c) Сливки получают путем сепарирования молока.

d) По виду тепловой обработки молоко классифицируют на пастеризованное и стерилизованное.

e) Каймак кисломолочное изделие, подобное сметане.

ТЕМА№4

Классификация (систематика) микроорганизмов.

Синтаксис научного стиля речи. Синтаксические особенности научного стиля: сложные предложения, причастные и деепричастные обороты. Вводные слова и словосочетания как средства связи частей текста

Глоссарий

Бактерии – прокариотические, преимущественно одноклеточные микроорганизмы, которые могут также образовывать ассоциации (группы) сходных клеток, характеризующиеся клеточными, но не организменными сходствами.

Культура – видимая глазом совокупность бактерий на питательных средах. Культуры могут быть чистыми (совокупность бактерий одного вида) и смешанными (совокупность бактерий двух или более видов).

Клон – совокупность бактерий, являющихся потомством одной клетки.

Систематика – раздел биол., задачей которого является описание и обозначение всех существующих и вымерших организмов, а также их классификация по таксонам (группировкам) различного ранга

Практические задания

Задание 1 . Прочитайте текст, выполните послетекстовые задания.

Классификация (систематика) микроорганизмов

Основной задачей классификации и систематики микроорганизмов является их распределение на основании сходства определенных признаков по группам, которые называются таксонами, а также установление родственных связей между ними. Присвоение этим группам научных названий и есть номенклатура микроорганизмов.

Все микроорганизмы подразделяются на клеточные и неклеточные. К неклеточным микроорганизмам относят вирусы, вироиды и прионы .

Клеточные формы микроорганизмов подразделяются на эукариот и прокариот. Эукариоты подразделяются на микрогибы и простейшие . К прокариотам относят бактерии, которые делятся на две группы: эубактерии и архебактерии.

Эубактерии в свою очередь делятся на грамположительные (толстостенные), грамотрицательные (тонкостенные) и бактерии без клеточной стенки (микоплазмы).

К тонкостенным бактериям относятся кокки, палочки, извитые (спириллы и спирохеты), риккетсии и хламидии. К толстостенным относят кокки, палочковидные и актиномицеты

Микробы включают в царство Procariotae, которое подразделяется на отделы, отделы – на классы, классы – на порядки, семейства, роды, виды. Высший таксон – царство, а низший – вид микроорганизма.

В микробиологии широко применяются термины «штамм» и «клон».

Штамм – более узкое понятие, чем вид. Штаммами называют различные микробные культуры одного и того же вида, выделенные из разных источников или даже из одного и того же источника, но в разное время.

Клон – культура микроорганизмов, полученная из одной клетки.

1.1. Выпишите из текста термины, дайте им толкование.

1.2. Сделайте синтаксический разбор выделенных предложений.

1.3. Выпишите из текста простые осложненные предложения, трансформируйте в СПП.

1.4. Составьте кластер текста, подготовьте краткий пересказ.

Задание 2 . Прочитайте данную информацию, ответьте на вопросы.

Запомните! Синтаксические особенности научного стиля.

Специфической особенностью научной речи является завершенность, полнота и логическая последовательность изложения, тесная связь отдельных предложений и отрезков текста.

Основной структурой научного текста является повествовательное предложение с правильным порядком слов и с союзной связью между частями предложения. Информативная насыщенность таких текстов требует сложных синтаксических построений. Поэтому в научном тексте широко употребляются сложные предложения; предложения с обособленными членами, выраженными причастными и деепричастными оборотами; предложения с однородными членами с характером перечисления.

Работа с научным текстом (написание доклада, реферата, аннотации, рецензии и т.д.) предполагает видоизменение, трансформирование предложений. Синонимика простых и сложных предложений многообразна. Одну и ту же мысль можно выразить по-разному. При этом могут использоваться параллельные синтаксические конструкции.

Параллельные синтаксические конструкции – это конструкции, близкие по значению, но выраженные различными синтаксическими единицами. Обычно параллельные синтаксические конструкции образуются придаточными предложениями и членами простого предложения .

В научных текстах распространены разные типы сложных предложений , в частности с использованием составных подчинительных союзов , что вообще характерно для книжной речи: вследствие того что служат; ввиду того что, в то время каки пр. Средствами связи частей текста вводные слова и сочетания: во-первых, наконец, с другой стороны, указывающие на последовательность изложения. Для объединения частей текста, в частности абзацев, имеющих тесную логическую связь друг с другом, используются указывающие на эту связь слова и словосочетания, указательные и личные местоимения: таким образом, в заключение , этот, он и пр. Предложения в научном стиле однообразны по цели высказывания - они почти всегда повествовательные. Вопросительные предложения не типичны, но возможны для привлечения внимания к излагаемому.

Чаще всего предложения осложнены причастными , деепричастными оборотами и обособленными определениями.

Обобщенно-абстрактный характер научной речи, вневременной план изложения материала обусловливают употребление определенных типов синтаксических конструкций: неопределенно-личных, обобщенно-личных и безличных предложений. Действующее лицо в них отсутствует или мыслится обобщенно, неопределенно, все внимание сосредоточено на действии, на его обстоятельствах. Неопределенно-личные и обобщенно-личные предложения используются при введении терминов, выведении формул, при объяснении материала в примерах: скорость изображают направленным отрезком; рассмотрим следующий пример; сравним предложения.

Задание 3. Прочитайте текст, выполните послетекстовые задания.

Систематика микроорганизмов

Естественная (филогенетическая) систематика микроорганизмов. Базовая категория любой биологической классификации, отражающая определённую стадию эволюции отдельной популяции организмов – вид – совокупность особей с одинаковым фенотипом, дающих плодовитое потомство и обитающих в определённом ареале. Для правильного понимания значения этого термина в классификации микроорганизмов необходимо знать различия видообразования между бактериями и высшими растениями и животными с обязательным половым размножением. Для видов последних характерно наличие популяций с относительно однородным набором генов, образовавшимся в результате перекрёстного скрещивания. Если отдельные части популяции изолировать друг от друга (например, географически), то вполне возможна их дивергентная эволюция. По происшествии определённого времени на географическую изоляцию накладывается физиологическая изоляция, приводящая к развитию отдельных частей популяции по собственному пути и образованию нового вида. В отличие от высших растений и животных, большая часть микроорганизмов не способна размножаться половым путём. Иными словами, у них отсутствуют механизмы, способные приводить к «прерывистому» видообразованию. Таким образом, определение понятия вид, как его применяют для организмов с половым размножением, нельзя полностью применять в отношении микроорганизмов. В связи с этим понятие вид для них трактуется произвольно.

До настоящего времени отсутствуют единые принципы и подходы к объединению (или разделению) их в различные таксономические единицы, хотя для них пытаются использовать сходство геномов как общепринятый критерий. Очень многие микроорганизмы имеют одинаковые морфологические признаки, но различаются по строению геномов, родственные связи между ними часто бывают неясными, а эволюция многих просто неизвестна. Кроме того, микроорганизмы значительно различаются по своей архитектуре, системам биосинтезов, организации генетического аппарата. Их разделяют на группы для демонстрации степени сходства и предполагаемой эволюционной взаимосвязи. Базовый признак, используемый для классификации микроорганизмов – тип клеточной организации.

Микроорганизмы – это организмы, невидимые невооруженным глазом из-за их незначительных размеров. Этот критерий – единственный, который их объединяет. В остальном мир микроорганизмов еще более разнообразен, чем мир макроорганизмов.

Согласно современной систематике, микроорганизмы относятся к трем царствам: Vira – к ним относятся вирусы; Eucariotae – к ним относятся простейшие и грибы; Procariotae – к ним относятся истинные бактерии, риккетсии, хламидии, микоплазмы, спирохеты, актиномицеты.

3.1. Составьте развернутый вопросный план.

3.2. Назовите синтаксические особенности текста.

3.3. Перечислите средства связи частей текста.

Биология изучает все живое на планете Земля, начиная с глобальной экосистемы Земли - биосферы - и заканчивая самыми мельчайшими живыми частицами - клетками. Раздел биологии о клетках называется "цитология". Она изучает все живые клетки, которые бывают ядерными и безъядерными.

Значение ядра для клетки

Как видно из названия, безъядерные клетки не имеют ядра. Они характерны для прокариотов, которые сами по себе являются такими клетками. Сторонники теории эволюции считают, что эукариотические клетки произошли от прокариотических. Основным отличием эукариотов в процессе развития жизни стало именно клеточное ядро. Дело в том, что в ядрах содержится вся наследственная информация - ДНК. Потому для эукариотических клеток отсутствие ядра обычно отклонение от нормы. Однако бывают исключения.

Прокариотические организмы

Безъядерными клетками являются прокариотические организмы. Прокариоты - древнейшие существа, состоящие из одной клетки или колонии клеток, к ним относятся бактерии и археи. Их клетки называют доядерными.

Главной особенностью биологии клеток прокариотов является, как уже было упомянуто, отсутствие ядра. По этой причине их наследственная информация хранится оригинальным способом - вместо эукариотических хромосом ДНК прокариота «упакована» в нуклеоид - кольцевую область в цитоплазме. Наряду с отсутствием оформленного ядра нет мембранных органоидов - митохондрий, аппарата Гольджи, пластид, эндоплазматической сети. Вместо них необходимые функции выполняются мезосомами. Рибосомы прокариотов гораздо меньше эукариотических по размеру, а их количество меньше.

Безъядерные клетки растений

У растений есть ткани, состоящие из одних безъядерных клеток. Например, луб или флоэма. Он находится под покровной тканью и представляет собой систему из разных тканей: основной, опорной и проводящей. Основным элементом луба, относящимся к проводящей ткани, являются ситовидные трубки. Состоят они из члеников - удлинённых безъядерных клеток с тонкими клеточными стенками, главным компонентом которых являются целлюлоза и пектиновые вещества. Ядро они теряют при созревании - оно отмирает, а цитоплазма превращается в тонкий слой, размещённый у стенки клетки. Жизнь этих безъядерных клеток связана с клетками-спутниками, имеющими ядро; они тесно связаны друг с другом и фактически составляют одно целое. Членики и спутники развиваются в общей меристематической клетке.

Клетки ситовидных трубок живые, но это единственное исключение; все остальные клетки без ядра у растений являются мертвыми. У эукариотических организмов (к которым относятся и растения) безъядерные клетки способны жить очень короткое время. Клетки ситовидных трубок недолговечны, после смерти образуют поверхностный слой растения - покровную ткань (например, кору дерева).

Безъядерные клетки человека и животных

В организме человека и млекопитающих животных также есть клетки без ядра - эритроциты и тромбоциты. Рассмотрим их подробнее.

Эритроциты

Иначе их называют красными кровяными тельцами. На этапе формирования молодые эритроциты содержат ядро, а вот взрослые клетки его не имеют.

Эритроциты обеспечивают насыщение кислородом органов и тканей. С помощью содержащегося в красных кровяных клетках пигмента гемоглобина клетки связывают молекулы кислорода и переносят их от лёгких в мозг и к другим жизненно важным органам. Также они участвуют в выводе из организма продукта газообмена - углекислого газа СО 2 , транспортируя его.

Эритроциты человека имеют размер всего 7-10 мкм и форму двояковогнутого диска. Благодаря маленьким размерам и эластичности, красные кровяные тельца легко проходят через капилляры, которые значительно меньше них по размеру. В результате отсутствия ядра и других клеточных органелл количество гемоглобина в клетке повышено, гемоглобин заполняет весь её внутренний объём.

Выработка эритроцитов проходит в костном мозге ребёр, черепа и позвоночника. У детей задействован также костный мозг костей ног и рук. Каждую минуту формируется более 2 миллионов эритроцитов, живущих около трёх месяцев. Интересный факт - красные клетки крови составляют примерно ¼ от всех клеток человека.

Тромбоциты

Раньше их называли еще кровяными пластинками. Это мелкие безъядерные клетки крови плоской формы, размер которых не превышает 2-4 мкм. Представляют собой фрагменты цитоплазмы, которые отделились от клеток костного мозга - мегакариоцитов.

Функцией тромбоцитов является формирование сгустка крови, который «затыкает» в сосудах поврежденные места, и обеспечение нормальной свертываемости крови. Также кровяные пластинки могут выделять соединения, способствующие росту клеток (так называемые факторы роста), поэтому они важны для заживления поврежденных тканей и способствуют их регенерации. Когда тромбоциты активизируются, то есть переходят в новое состояние, они принимают форму сферы с выростами (псевдоподиями), при помощи которых сцепляются друг с другом или сосудистой стенкой, закрывая тем самым её повреждение.

Отклонение количества тромбоцитов от нормы может приводить к различным заболеваниям. Так, уменьшение количества кровяных пластинок повышает риск кровотечений, а их увеличение приводит к тромбозу сосудов, то есть появлению сгустков крови, которые в свою очередь могут стать причиной инфарктов и инсультов, эмболии лёгочной артерии и закупорке сосудов в других органах.

Образуются тромбоциты в костном мозге и селезёнке. После формирования 1/3 из них разрушается, а оставшиеся циркулируют в кровотоке чуть дольше недели.

Корнеоциты

Некоторые клетки кожи человека также не содержат ядер. Из безъядерных клеток состоят два верхних слоя эпидермиса - роговой и блестящий (цикловидный). Оба состоят из одинаковых клеток - корнеоцитов, которые представляют собой бывшие клетки нижних слоев эпидермиса - кератиноциты. Эти клетки, образовавшись на границе наружного и среднего слоев кожи (дермы и эпидермиса), поднимаются по мере "взросления" все выше, в шиповатый, а затем и в зернистый слои эпидермиса. В кераноците накапливается вырабатываемый им белок кератин - важный компонент, который отвечает за прочность и упругость нашей кожи. В итоге клетка теряет ядро и практически все органеллы, поэтому большую её часть составляет белок кератин.

Получившиеся корнеоциты имеют плоскую форму. Плотно прилегая друг к другу, они образуют роговой слой кожи, служащий барьером для микроорганизмов и многих веществ - его чешуйки выполняют защитную функцию. Переходным от зернистого к роговому служит блестящий слой, также состоящий из потерявших ядра и органеллы кератиноцитов. По сути, корнеоциты - это мертвые клетки, так как никаких активных процессов в них не происходит.

Безъядерные клетки в трансплантологии

Для клонирования клеток нужных тканей в трансплантологии используются искусственно созданные безъядерные клетки. Так как генетическую информацию у эукариотических организмов хранит именно ядро, путём манипуляций с ним можно воздействовать на свойства клетки. Как бы фантастически это ни звучало, но можно заменить ядро и таким способом получить совершенно другую клетку. Для этого ядра удаляются или разрушаются различными способами - хирургическим, с помощью ультрафиолетового излучения или центрифугирования в сочетании с воздействием цитохалазинов. В полученную безъядерную клетку пересаживают новое ядро.

До сих пор учёные не пришли к общему мнению по поводу этичности клонирования, потому оно всё ещё находится под запретом.

Таким образом, фактически живые безъядерные клетки у высших (эукариотических) организмов почти не встречаются. Исключением являются клетки крови человека - эритроциты и тромбоциты, а также клетки флоэмы у растений. В остальных случаях безъядерные клетки нельзя назвать живыми, как, например, клетки верхних слоев эпидермиса или клетки, полученные искусственным путем для клонирования тканей в трансплантологии.

1. Перечислите царства живых организмов, клетки которых имеют ядро.

Ответ. Это царства грибов, растений, животных, то есть эукариоты.

2. Трудами каких учёных была создана клеточная теория?

Ответ. В 1838-1939гг. немецкие ученые ботаник Маттиас Шлейден и физиолог Теодор Шванн создали так называемую клеточную теорию.

3. В чём основное отличие прокариотической клетки от эукариотической?

Ответ. Все живые организмы на земле состоят из клеток. Различают два вида клеток, в зависимости от их организации: эукариоты и прокариоты.

Эукариоты представляют собой надцарство живых организмов. В переводе с греческого языка «эукариот» обозначает «владеющий ядром» . Соответственно эти организмы в своем составе имеют ядро, в котором закодирована вся генетическая информация. К ним относятся грибы, растения и животные.

Прокариоты – это живые организмы, в клетках которых ядро отсутствует. Характерными представителями прокариот являются бактерии и цианобактерии.

Первыми приблизительно 3,5 миллиарда лет тому назад возникли прокариоты, которые через 2,4 миллиарда лет положили начало развитию эукариотических клеток.

Эукариоты и прокариоты сильно отличаются по размеру друг от друга. Так диаметр эукариотической клетки - 0,01-0,1 мм, а прокариотической – 0,0005-0,01 мм. Объем эукариота порядка 10000 раз больше, чем объем прокариота.

Прокариоты имеют кольцевую ДНК, которая располагается в нуклеоиде. Эта клеточная область отделена от остальной цитоплазмы при помощи мембраны. ДНК никак не связана с РНК и белками, отсутствуют хромосомы. ДНК эукариотических клеток линейная, располагается в ядре, в котором имеются хромосомы.

Прокариоты размножаются в основном простым делением пополам, в то время как эукариоты делятся при помощи митоза, мейоза или сочетанием этих двух способов.

У эукариотических клеток имеются органеллы, характеризующиеся наличием собственного генетического аппарата: митохондрии и пластиды. Они окружены мембраной и имеют способность к размножению посредством деления.

В прокариотических клетках также встречаются органеллы, но в меньшем количестве и не ограниченные мембраной.

Эукариоты, в отличие от прокариот, имеют способность к перевариванию твердых частиц, заключая их в мембранный пузырек. Существует мнение, что эта особенность возникла в ответ на необходимость полноценно обеспечить питанием клетку во много раз большую прокариотической. Следствием наличия у эукариот фагоцитоза стало появление первых хищников.

Жгутики эукариот имеют достаточно сложное строение. Они представляют собой тонкие клеточные выросты, окруженные тремя слоями мембраны, содержащие 9 пар микротрубочек по периферии и две в центре. Имеют толщину до 0,1 миллиметра и способны изгибаться по всей длине. Кроме жгутиков, для эукариот характерно наличие ресничек. Они по своей структуре идентичны жгутикам, отличаясь только размером. Длина ресничек не более 0,01 миллиметра.

Некоторые прокариоты также имеют жгутики, однако, очень тонкие, около 20 нанометров в диаметре. Они представляют собой пассивно вращающиеся полые белковые нити.

4. У всех ли эукариотических клеток есть ядро?

Ответ. У эукариотических организмов во всех клетках есть ядро, за исключением зрелых эритроцитов млекопитающих и клеток ситовидных трубок растений.

5. Каково строение клеточной мембраны?

Ответ. Клеточная мембрана представляет собой оболочку, отделяющую содержимое клетки от внешней среды или соседних клеток. Основу клеточной мембраны составляет двойной слой липидов, в который погружены белковые молекулы, некоторые из них выполняют функцию рецепторов. Снаружи мембрана покрыта слоем гликопротеинов – гликокаликсом.

Вопросы после §14

1. Какое строение имеет мембрана клетки? Какие функции она выполняет?

Ответ. Каждая клетка покрыта плазматической (цитоплазматической) мембраной, имеющей толщину 8–12 нм. Эта мембрана построена из двух слоёв липидов (билипидный слой, или бислой). Каждая молекула липида образована гидрофильной головкой и гидрофобным хвостом. В биологических мембранах молекулы липидов располагаются головками наружу, а хвостами внутрь (друг к другу). Двойной слой липидов обеспечивает барьерную функцию мембраны, не давая содержимому клетки растекаться и препятствуя проникновению в клетку опасных для неё веществ. В билипидный слой мембраны погружены многочисленные молекулы белков. Одни из них находятся на внешней стороне мембраны, другие – на внутренней, а третьи пронизывают всю мембрану насквозь. Мембранные белки выполняют целый ряд важнейших функций. Некоторые белки являются рецепторами, с помощью которых клетка воспринимает различные воздействия на свою поверхность. Другие белки образуют каналы, по которым осуществляется транспорт различных ионов в клетку и из неё. Третьи белки являются ферментами, обеспечивающими процессы жизнедеятельности в клетке. Как вы уже знаете, пищевые частицы не могут пройти через мембрану; они проникают в клетку путём фагоцитоза или пиноцитоза. Общее название фаго– и пиноцитоза – эндоцитоз. Существует и обратный эндоцитозу процесс – экзоцитоз, когда вещества, синтезированные в клетке (например, гормоны), упаковываются в мембранные пузырьки, которые подходят к клеточной мембране, встраиваются в неё, и содержимое пузырька выбрасывается из клетки. Таким же образом клетка может избавляться и от ненужных ей продуктов обмена.

2. Каково строение ядерной оболочки?

Ответ. Ядро отделено от цитоплазмы оболочкой, состоящей из двух мембран. Внутренняя мембрана – гладкая, а наружная переходит в каналы эндоплазматической сети (ЭПС). Общая толщина двумембранной ядерной оболочки составляет 30 нм. В ней имеется множество пор, по которым из ядра в цитоплазму выходят молекулы иРНК и тРНК, а в ядро из цитоплазмы проникают ферменты, молекулы АТФ, неорганических ионов и т. д.

3. Какова функция ядра в клетке?

Ответ. В ядре содержится вся информация о процессах жизнедеятельности, росте и раз­витии клетки. Эта информация хранится в ядре в виде молекул ДНК, входящих в состав хромосом. Поэтому ядро координирует и регулирует синтез белка, а следовательно, все процессы обмена веществ и энергии, протекающие в клетке.

Роль ядра в клетке можно продемонстрировать в следующем опыте. Клетку амёбы разделяют на две части, в одной из которых содержится ядро, а другая, естественно, оказывается без ядра. Первая часть быстро оправляется от травмы, питается, растёт, начинает делиться. Вторая же часть существует несколько дней, а затем погибает. Но если в неё ввести ядро от другой амебы, то она быстро восстанавливается в нормальный организм, который способен выполнять все жизненные функции амебы

4. Что представляет собой хроматин?

Ответ. Хроматин – это ДНК, связанная с белками. Перед делением клетки ДНК плотно скручивается, образуя хромосомы, а ядерные белки – гистоны – необходимы для правильной укладки ДНК, в результате которой объём, занимаемый ДНК, во много раз уменьшается. В растянутом виде длина хромосомы человека может достигать 5 см.

5. Сколько молекул ДНК образуют одну хромосому?

Ответ. Количество молекул ДНК в хромосоме зависит от стадии клеточного цикла.

До репликации ДНК в хромосоме одна хроматида (т. е. одна молекула ДНК) и набор хромосом описывается формулой 2n2c (т. е. сколько хромосом - 2n, столько и хроматид - 2c).

В период интерфазы происходит репликация ДНК (удвоение хроматид) , и к концу интерфазы хромосомы становятся двухроматидными и набор хромосом описывается формулой 2n4c (т. е. хромосом - 2n, а хроматид в 2 раза больше - 4c). Двухроматидные хромосомы содержат 2 молекулы ДНК.

В профазе и метафазе митоза хромосомы двухроматидные и набор хромосом описывается формулой 2n4c.

В анафазе хроматиды расходятся к полюсам и у каждого полюса образуется диплоидный набор однохроматидных хромосом 2n2c (у одного полюса) и 2n2c (у другого полюса) .

В телофазе вокруг хромосом формируется ядерная оболочка, в клетке 2 ядра, каждое из которых содержит диплоидный набор однохроматидных хромосом 2n2c (в одном ядре) и 2n2c (в другом ядре) .

6. Какую функцию выполняют ядрышки?

Ответ. Ядрышки - участки ДНК, которые отвечают за синтез молекул РНК и белков, использующихся клеткой для постро­ения рибосом

7. Какие клетки имеют не одно ядро, а несколько ядер?

Ответ. Многоядерные клетки: клетки скелетных мышц, волокна поперечно-полосатой мускулатуры, до 20% клеток печени человека, мыши, крапива двудомная, виноградная улитка, гриб-трутовик, клоп ягодный, кишечная палочка, инфузория туфелька.

8. Какие клетки не имеют ядер?

Ответ. Не имеют ядра клетки прокариотов. У эукариотов практически все клетки имеют ядра. Единственное исключение составляют эритроциты и тромбоциты млекопитающих.

Эукариоты - это наиболее прогрессивно устроенные организмы. В нашей статье мы рассмотрим, кто из представителей живой природы относится к этой группе и какие черты организации позволили занять им господствующее положение в органическом мире.

Кто такие эукариоты

Согласно определению понятия, эукариоты - это организмы, клетки которых содержат оформленное ядро. К ним относятся следующие царства: Растения, Животные, Грибы. Причем не имеет значения, насколько сложно устроен их организм. Микроскопическая амеба, колонии вольвокса, - все они эукариоты.

Хотя клетки настоящих тканей иногда могут быть лишены ядра. К примеру, его нет в эритроцитах. Вместо этого данная клетка крови содержит гемоглобин, переносящий кислород и углекислый газ. Подобные клетки содержат ядро только на первых этапах своего развития. Потом данная органелла разрушается, а вместе с этим и теряется способность всей структуры к делению. Поэтому, выполнив свои функции, подобные клетки погибают.

Строение эукариотов

В клетках всех эукариотов есть ядро. Причем иногда даже не одно. Эта двумембранная органелла содержит в своем матриксе генетическую информацию, зашифрованную в виде молекул ДНК. Ядро состоит из поверхностного аппарата, который обеспечивает транспорт веществ, и матрикса - его внутренней среды. Основная функция данной структуры - хранение наследственной информации и ее передача дочерним клеткам, образующимся в результате деления.

Внутренняя среда ядра представлена несколькими составляющими. Прежде всего это кариоплазма. В ней находятся ядрышки и нити хроматина. Последние состоят из белков и нуклеиновых кислот. Именно при их спирализации формируются хромосомы. Они непосредственно являются носителями генетической информации. Эукариоты - это организмы, у которых в некоторых случаях могут формироваться ядра двух видов: вегетативные и генеративные. Яркий пример этому - инфузория. Ее генеративные ядра осуществляют сохранность и передачу генотипа, а вегетативные - регуляцию

Основные отличия про- и эукариотов

Прокариоты не имеют оформленного ядра. К этой группе организмов относится единственное - Бактерии. Но такая черта строения вовсе не означает, что в клетках данных организмов отсутствуют носители генетической информации. Бактерии содержат кольцевые молекулы ДНК - плазмиды. Однако расположены они в виде скоплений в определенном месте цитоплазмы и не имеют общей оболочки. Такая структура называется нуклеоид. Есть и еще одно отличие. ДНК в клетках прокариотов не связана с белками ядра. Учеными установлено существование плазмид и в клетках эукариотов. Они находятся в некоторых полуавтономных органеллах, например, в пластидах и митохондриях.

Прогрессивные черты строения

К эукариотам относятся организмы, которые отличаются более сложными чертами строения на всех уровнях организации. Прежде всего это касается способа размножения. обеспечивает самый простой из них - надвое. Эукариоты - это организмы, которые способны и ко всем видам воспроизведения себе подобных: половому и бесполому, партеногенезу, конъюгации. Это обеспечивает обмен генетической информацией, появление и закрепление в генотипе ряда полезных признаков, а значит, и лучшую адаптацию организмов к постоянно меняющимся условиям окружающей среды. Эта особенность и позволила эукариотам занять господствующее положение в

Итак, эукариотами являются организмы, в клетках которых есть оформленное ядро. К ним относятся растения, животные и грибы. Наличие ядра является прогрессивной чертой строения, обеспечивающей высокий уровень развития и адаптации.