Органических веществ более. "Номенклатура органических соединений" (учебное пособие)

В настоящее время установлено, что класс органических веществ - самый обширный среди других химических соединений. Что же ученые-химики относят к органическим веществам? Ответ таков: это те вещества, в состав которых включен углерод. Впрочем, из этого правила есть исключения: угольная кислота, цианиды, карбонаты, оксиды углерода не входят в состав органических соединений.

Углерод - очень любопытный в своем роде химический элемент. Его особенность состоит в том, что он может образовывать из своих атомов цепочки. Такая связь оказывается очень стабильной. В органических соединениях углерод демонстрирует высокую валентность (IV). Речь идет о способности образовывать связи с иными веществами. Эти связи вполне могут быть не только одинарными, но также двойными или тройными. По мере возрастания числа связей цепочка из атомов становится короче, стабильной этой связи увеличивается.

Углерод известен также тем, что он может образовывать линейные, плоские и даже объемные структуры. Эти свойства данного химического элемента обусловили такое разнообразие органических веществ в природе. Около трети всей массы каждой клетки человеческого тела составляют органические соединения. Это белки, из которых в основном и построено тело. Это углеводы - универсальное «топливо» для организма. Это жиры, которые позволяют запасать энергию. Гормоны управляют работой всех органов и даже влияют на поведение. А ферменты запускают внутри организма бурные химические реакции. Более того, «исходный код» живого существа - цепочка ДНК - это органическое соединение, в основе которого лежит углерод.

Почти все химические элементы, когда они соединяются с углеродом, способны дать начало органическим соединениям. Чаще всего в природе в состав органических веществ входят:

  • кислород;
  • водород;
  • сера;
  • азот;
  • фосфор.

Развитие теории при изучении органических веществ шло сразу по двум взаимосвязанным направлениям: ученые изучали пространственное расположение молекул соединений и выясняли сущность химических связей в соединениях. У истоков теории строения органических веществ стоял русский химик А.М. Бутлеров.

Принципы классификации органических веществ

В разделе науки, известном как органическая химия, особое значение имеют вопросы классификации веществ. Сложность состоит в том, что описанию подлежат миллионы химических соединений.

Требования к номенклатуре очень строги: она должна быть систематической и пригодной для использования в международных масштабах. Специалисты любой страны должны понимать, о каком соединении идет речь и однозначно представлять его структуру. Предпринимается ряд усилий, которые позволят сделать классификацию органических соединений пригодной для компьютерной обработки.

В основе современной классификации лежит строение углеродного скелета молекулы и наличие в ней функциональных групп.

По строению своего углеродного скелета органические вещества делятся на группы:

  • ациклические (алифатические);
  • карбоциклические;
  • гетероциклические.

Родоначальниками любых соединений в органической химии являются те углеводороды, которые состоят лишь из атомов углерода и водорода. Как правило, молекулы органических веществ содержат в своем составе так называемые функциональные группы. Это - атомы либо группы атомов, которые определяют, какими будут химические свойства соединения. Такие группы также позволяют отнести соединение к тому или иному классу.

Примерами функциональных групп могут служить:

  • карбонильная;
  • карбоксильная;
  • гидроксильная.

Те соединения, которые содержат только одну функциональную группу, именуют монофункциональными. Если в молекуле органического вещества имеется несколько таких групп, они считаются полифункциональными (к примеру, глицерин или хлороформ). Гетерофункциональными будут соединения, где функциональные группы различны по составу. Их в одно и то же время вполне можно отнести к разным классам. Пример: молочная кислота. Ее можно рассматривать как спирт и как карбоновую кислоту.

Переход от класса к классу осуществляется, как правило, с участием функциональных групп, но без изменения углеродного скелета.

Скелетом применительно к молекуле называют последовательность соединения атомов. Скелет может быть углеродным или же содержать так называемые гетероатомы (к примеру, азот, серу, кислород и т.д.). Также скелет молекулы органического соединения может быть разветвленным или неразветвленным; открытым или же циклическим.

Особым типом циклических соединений считаются ароматические: для них не являются характерными реакции присоединения.

Основные классы органических веществ

Известны следующие органические вещества биологического происхождения:

  • углеводы;
  • белки;
  • липиды;
  • нуклеиновые кислоты.

В более подробную классификацию органических соединений включаются вещества, которые не имеют биологического происхождения.

Различают классы органических веществ, в составе которых углерод входит в соединение с другими веществами (кроме водорода):

  • спирты и фенолы;
  • карбоновые кислоты;
  • альдегиды и кислоты;
  • сложные эфиры;
  • углеводы;
  • липиды;
  • аминокислоты;
  • нуклеиновые кислоты;
  • белки.

Строение органических веществ

Большое разнообразие органических соединений в природе объясняется особенностями атомов углерода. Они способны образовывать весьма прочные связи, объединяясь в группы - цепочки. Результатом становятся вполне устойчивые молекулы. Способ, который молекулы используют, чтобы соединиться в цепь, является ключевой особенностью их строения. Углерод способен объединяться как в открытые цепи, так и в замкнутые (их и называют циклическими).

Строение веществ непосредственно влияет на их свойства. Особенности строения дают возможность существовать десяткам и сотням самостоятельных соединений углерода.

Важную роль в поддержании многообразия органических веществ играют такие свойства как гомология и изомерия.

Речь идет о идентичных на первый взгляд веществах: их состав не отличается друг от друга, молекулярная формула одна и та же. А вот строение соединений принципиально различается. Разными будут и химические свойства веществ. К примеру, одно и то же написание имеют изомеры бутан и изобутан. Атомы в молекулах этих двух веществ располагаются в разном порядке. В одном случае они разветвлены, в другом - нет.

Под гомологией понимают характеристику углеродной цепи, где каждый последующий член можно получить, прибавляя к предыдущему одну и ту же группу. Иными словами, каждый из гомологических рядов вполне можно выразить одной и той же формулой. Зная такую формулу, можно без особого труда выяснить состав любого члена ряда.

Примеры органических веществ

Углеводы вполне победили бы в состязании между всеми органическими веществами, если взять их в целом по массе. Это - источник энергии для живых организмов и строительный материал для большинства клеток. Мир углеводов отличается большим разнообразием. Без крахмала и целлюлозы не смогли бы существовать растения. А животный мир стал бы невозможен без лактозы и гликогена.

Еще один представитель мира органических веществ - белки. Всего из двух десятков аминокислот природе удается образовать в организме человека до 5 млн типов белковых структур. В функции этих веществ входит регуляция жизненно важных процессов в организме, обеспечение свертываемости крови, перенос некоторых видов веществ в пределах организма. В виде ферментов белки выступают ускорителями реакций.

Еще один важный класс органических соединений - липиды (жиры). Эти вещества служат в качества запасного источника нужной организму энергии. Они являются растворителями и помогают протеканию биохимических реакций. Липиды участвуют также и в строительстве клеточных мембран.

Очень интересны и другие органические соединения - гормоны. Они отвечают за протекание биохимических реакций и обмен веществ. Это гормоны щитовидной железы заставляют человека испытывать радость или печалиться. А за ощущение счастья, как выяснили ученые, отвечает эндорфин.

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Изначально называлась химия веществ, полученных из организмов растений и животных. С такими веществами человечество знакомо с глубокой древности. Люди умели получать уксус из прокисшего вина, а эфирные масла из растений, выделять сахар из сахарного тростника, извлекать природные красители из организмов растений и животных.

Химики разделяли все вещества в зависимости от источника их получения на минеральные (неорганические), животные и растительные (органические).

Долгое время считалось, что для получения органических веществ нужна особая «жизненная сила» - vis Vitalis, которая действует только в живых организмах, а химики способны всего лишь выделять органические вещества из продуктов.

Шведский химик, президент Королевской шведской Академии наук. Научные исследования охватывают все главные проблемы общей химии первой половины XIX в. Экспериментально проверил и доказал достоверность законов постоянства состава и кратных отношений применительно к неорганическим оксидам и органическим соединениям. Определил атомную массу 45 химического элемента. Ввел современные обозначения химических элементов и первые формулы химических соединений.

Шведский химик Й. Я. Берцелиус определил органическую химию как химию растительных или животных веществ, образующихся под влиянием «жизненной силы». Именно Берцелиус ввел понятия органические вещества и органическая химия.

Развитие химии привело к накоплению большого количества фактов и к краху учения о «жизненной силе» - витализма. Немецкий ученый Ф. Вёлер в 1824 г. осуществил первый синтез органических веществ - получил щавелевую кислоту путем взаимодействия двух неорганических веществ - дициана и воды:

N=- C-С=N + 4Н 2 0 -> СООН + 2NН 3
СООН
дициан щавелевая кислота

А в 1828 г. Вёлер, нагревая водный раствор неорганического вещества цианата аммония, получил мочевину - продукт жизнедеятельности животных организмов:


Изумленный таким результатом, Вёлер написал Берцелиусу: «Должен сказать Вам, что я умею приготовить мочевину, не нуждаясь ни в почке, ни в животном организме вообще...»

Вёлер Фридрих (1800--1882}

Немецкий химик. Иностранный член Петербургской Академии наук (с 1853 г.). Его исследования посвящены как неорганической, так и органической химии. Открыл циановую кислоту (1822), получил алюминий (1827), бериллий и иттрий (1828).

В последующие годы блестяшие синтезы анилина Г. Кольбе и Э. Франклендом (1842), жира М. Бер^о (1854), сахаристых веществ А. Бутлеровым (1861) и др. окончательно похоронили миф о «жизненной силе».

Появилось классическое определение К. Шорлеммера, не потерявшее своего значения и более 120 лет спустя:

«Органическая химия есть химия углеводородов и их производных, т. е. продуктов, образующихся при замене водорода другими атомами или группами атомов».

Сейчас органическую химию чаще всего называют химией соединений углерода. Почему же из более чем ста элементов Периодической системы Д. И. Менделеева природа именно углерод положила в основу всего живого? Ответ на этот вопрос неоднозначен. Многое вам станет понятно, когда вы рассмотрите строение атома углерода и поймете слова Д. И. Менделеева, сказанные им в «Основах химии» об этом замечательном элементе: «Углерод встречается в природе как в свободном, так и в соединительном состоянии, в весьма различных формах и видах... Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях... Ни в одном из элементов... способности к усложнению не развито в такой степени, как в углероде... Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Многочисленные связи атомов углерода между собой и с атомами других элементов (водорода, кислорода, азота, серы, фосфора), входящих в состав органических веществ, могут разрушаться под влиянием природных факторов. Поэтому углерод совершает непрерывный круговорот в природе: из атмосферы (углекислый газ) - в растения (фотосинтез), из растений - в животные организмы, из живого - в мертвое, из мертвого - в живое... (рис. 1).

Органические вещества имеют ряд особенностей, которые отличают их от неорганических веществ:

1. Неорганических веществ насчитывается немногим более 100 тыс., тогда как органических - почти 18 млн (табл. 1).


Рис. 1. Круговорот углерода в природе

2. В состав всех органических веществ входят углерод и водород, поэтому большинство из них горючи и при горении обязательно образуют углекислый газ и воду.

3. Органические вещества построены более сложно, чем неорганические, и многие из них имеют огромную молекулярную массу, например те, благодаря которым происходят жизненные процессы: белки, жиры, углеводы, нуклеиновые кислоты и т. д.

4. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам - гомологов.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность СН 2 .

Таблица 1. Рост числа известных органических соединений

5. Для органических веществ характерной является изомерия, очень редко встречающаяся среди неорганических веществ. Вспомните примеры изомеров, с которыми вы знакомились в 9 классе. В чем причина различий в свойствах изомеров?

Изомерия - это явление существования разных веществ - изомеров с одинаковым качественным и количественным составом, т. е. одинаковой молекулярной формулой.

Величайшим обобщением знаний о неорганических веществах является Периодический закон и Периодическая система элементов Д. И. Менделеева. Для органических веществ аналогом такого обобщения служит теория строения органических соединений А. М. Бутлерова . Вспомните, что Бутлеров понимал под химическим строением. Сформулируйте основные положения этой теории.

Для количественной характеристики способности атомов одного химического элемента соединяться с определенным числом атомов другого химического элемента в неорганической химии, где большинство веществ имеет немолекулярное строение, применяют понятие «степень окисления>>. В органической химии, где большинство соединений имеет молекулярное строение, используют понятие «валентность». Вспомните, что означают эти понятия, сравните их.

Велико значение органической химии в нашей жизни. В любом организме в любой момент протекает множество превращений одних органических веществ в другие. Поэтому без знаний органической химии невозможно понять, как осуществляется функционирование систем, образующих живой организм, т. е. сложно понимание биологии и медицины.

С помощью органического синтеза получают разнообразные органические вещества: искусственные и синтетические волокна, каучуки, пластмассы, красители, пестициды (что это такое?), синтетические витамины, гормоны, лекарства и т. д.

Многие современные продукты и материалы, без которых мы не можем обходиться, являются органическими веществами (табл. 2).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

Видеоурок:

Лекция: Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)


Классификация органических веществ


В основе классификации органических веществ лежит теория А.М. Бутлерова. В таблице показана классификация органических веществ в зависимости от типа строения углеродной цепи, т.е. по типу углеродного скелета:

Ациклические соединения - это органические вещества, в молекулах которых атомы углерода соединены друг с другом в прямые, а так же разветвленные открытые цепи.

К ациклическим, например, относится этан:

или ацетилен:


Иначе подобные соединения называются алифатическими или соединениями жирного ряда, потому что первые соединения данного ряда органических веществ были получены из растительных или животных жиров. Из ациклических соединений выделяются:

    Предельные (или насыщенные) - данные соединения содержат в углеродном скелете одинарные ковалентные неполярные углерод-углеродные С-С и слабополярные С-Н связи, это алканы .

Общая молекулярная формула алканов - C n H 2n+2 , где n - количество атомов углерода в молекуле углеводорода. К ним относятся открытые цепи, а также замкнутые (циклические) углеводороды. Все атомы углерода в алканах имеют sp 3 - гибридизацию . Запомните следующие алканы:

Метан - СH 4

Этан - C 2 H 6: CH 3 -CH 3

Пропан - C 3 H 8: CH 3 -CH 2 -CH 3

Бутан - C 4 H 10: CH 3 -(CH 2) 2 -CH 3

Пентан - C 5 H 12: CH 3 -(CH 2) 3 -CH 3

Гексан - C 6 H 14: CH 3 -(CH 2) 4 -CH 3

Гептан - C 7 H 16: CH 3 -(CH 2) 5 -CH 3

Октан - C 8 H 18: CH 3 -(CH 2) 6 -CH 3

Нонан - C 9 H 20: CH 3 -(CH 2) 7 -CH 3

Декан - C 10 H 22: CH 3 -(CH 2) 8 -CH 3

    Непредельные (или ненасыщенные) - содержат кратные - двойные (С=С) или тройные (С≡С) связи, это алкены, алкины и алкадиены:

1) А лкены - содержат одну углерод-углеродную связь, которая является двойной C=C. Общая формула - C n H 2n . Атомы углерода в данных соединениях имеют sp 2 - гибридизацию . Связь C=C имеет π-связь и σ-связь, поэтому алкены более химически активны, чем алканы. Запомните следующие алкены:

Этен (этилен) - C 2 H 4: CH 2 =CH 2

Пропен (пропилен) - C 3 H 6: СН 2 =СН-СН 3

Бутен - С 4 Н 8: бутен-1 СН 3 -СН 2 -СН=СН, бутен-2 СН 3 -СН=СН-СН 3 , изобутен [СН 3 ] 2 С=СН 2

Пентен - C 5 H 10: 1-пентен CH 3 -CH 2 -CH 2 -CH=CH 2 , 2-пентен C 2 H 5 CH=CHCH 3

Гексен - C 6 H 12: 1-гексен CH 2 =CH-CH 2 -CH 2 -CH 2 -CH 3 , цис- гексен-2 CH 3 -CH=CH-CH 2 -CH 2 -CH 3 и другие изомеры.

Гептен - C 7 H 14: 1-гептен СН 2 =СН-СН 2 -СН-СН 2 -СН 2 -СН 3 , 2-гептен СН 3 -СН=СН-СН 2 -СН 2 -СН 2 -СН 3 и др.

Октен - C 8 H 16: 1-октен СН 2 =СН-СН 2 -СН 2 -СН 2 -СН 2 -СН 2 -СН 3 , 2-октен СН 3 -СН=СН-СН 2 -СН 2 -СН 2 -СН 2 -СН 3 и др.

Нонен - C 9 H 18: 3-нонен CH 3 -CH 2 -CH=CH-CH 2 -CH 2 -CH 2 -CH 2 -CH 3 , 5-нонен CH 3 -CH 2 -CH 2 -CH 2 -CH=CH-CH 2 -CH 2 -CH 3 и др.

Децен - C 10 H 20: 2-децен СН 3 -СН 2 -СН 2 -СН 2 -СН 2 -СН 2 -СН 2 -СН=СН-СН 3 и др.

Как вы заметили, названия алкенов схожи с названиями алканов, с разницей суффикса. Названия алканов имеют суффикс -ан , а алкенов суффикс -ен . Кроме того среди перечисленных алкенов отсутствует метен. Запомните, метена не существует, потому что метан имеет только один углерод. А для образования алкенов, обязательно образование двойных связей.

Местоположение двойной связи обозначается цифрой, например, 1-бутен: СН 2 =СН–СН 2 –СН 3 или 1-гексен: СН 3 –СН 2 –СН 2 –СН 2 –СН=СН 2 . Обратите внимание на данное правило: нумерация углеводородных цепей должна производиться так, чтобы двойные связи находились под наименьшим номером, например, 2-гексен:

2) А лкины – в молекулах присутствует одна тройная С≡С связь. Общая формула - C n H 2n-2 . В названиях алкинов суффикс -ан заменен на -ин. Например, 3-гептин: СН 3 –СН 2 –СН 2 –С≡С–СН 2 –СН 3 . Для этина НС≡СН возможно и тривиальное название ацетилен. Указание положения тройной связи производится также как в предыдущем случае с алкенами. Если в соединении тройных связей больше одной, то к названию прибавляется суффикс -диин или -триин . Если же в соединении присутствуют и двойные, и тройные связи, то их нумерацию определяет двойная связь, следовательно, называют сначала двойную, затем тройную связи. Например, гексадиен-1,3-ин-5: СН 2 =СН–СН 2 =СН 2 –С≡СН.

3) А л кадиены – в молекулах присутствуют две двойные С=С связи. Общая формула - C n H 2n-2, такая же, как и у алкинов. Алкины и алкадиены относятся к межклассовым изомерам. К примеру, 1,3-бутадиен или дивинил C 4 H 6: СН 2 =СН-СН=СН 2 .

Циклические соединения - это органические вещества , в молекулах которых содержится три или более связанных в замкнутое кольцо атомов, образующих циклы.

Предельные циклические углеводороды называются циклоалканами. Их о бщая формула - C n H 2n . В молекулах имеется замкнутая цепь или кольца. К примеру, циклопропан (C 3 H 6):


и циклобутан (C 4 H 8):


В зависимости от того, какими атомами были образованы циклы, данный вид соединений подразделяется на карбоциклические и гетероциклические.

Карбоциклические , которые иначе называются гомоциклическими, содержат в циклах только атомы углерода. В свою очередь, они делятся на алифатические и ароматические.

    Алициклические (алифатические) соединения отличаются тем, что атомы углерода могут соединяться между собой в прямые, разветвлённые цепочки или кольца одинарными, двойными или тройными связями.

Типичным алифатическим соединением является циклогексен:

    Ароматические соединения получили свое название благодаря ароматному запаху вещества. Иначе называются аренами. Они отличаются наличием в соединении бензольного кольца:

Таких колец в составе может быть несколько. Например, нафталин:


Также данная группа соединений имеет в составе ароматическую систему, что характеризует высокую устойчивость и стабильность соединения. Ароматичная система, содержит в кольце 4n+2 электронов (где n = 0, 1, 2, …). Данной группе органических веществ свойственно вступать в реакции замещения, а не присоединения.

Ароматические соединения могут иметь функциональную группу, прикрепленную непосредственно к кольцу. Например, толуол:


Гетероциклические соединения всегда содержат в составе углеводородного цикла один или несколько гетероатомов, которыми являются атомы кислорода, азота или серы. Если гетероатомов пять, то соединения называются пятичленными, если шесть, соответственно шестичленными. Примером гетероциклического соединения является пиридин:



Классификация производных углеводорода


Другие органические вещества рассматривают исключительно как производные углеводородов, которые образуются при введении в молекулы углеводородов функциональных групп, включающих в себя другие химические элементы. Формулу соединений, имеющих одну функциональную группу, можно записать как R - X . Где R – углеводородный радикал (фрагмент молекулы углеводорода без одного или нескольких атомов водорода; Х – функциональная группа. По наличию функциональных групп углеводороды подразделяются на:

    Галогенпроизводные - судя из названия ясно, что в данных соединениях атомы водорода замещены на атомы какого-либо галогена.

    Спирты и фенолы. В спиртах атомы водорода замещены на гидроксильную группу -OH. По количеству таких групп, спирты подразделяются на одноатомные и многоатомные, среди которых двухатомные, трехатомные и т.д.

Формула одноатомных спиртов: C n H 2n +1OH или C n H 2n +2O .

Формула многоатомных спиртов: C n H 2n +2O x ; x – атомность спирта.

Спирты могут быть и ароматическими. Формула одноатомных ароматических спиртов: C n H 2n -6O .

Следует помнить, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один/несколько атомов водорода не относятся к спиртам. Данный тип относят к классу фенолов. Причина, по которой фенолы не относят к спиртам, содержится в их специфических химических свойствах. Одноатомные фенолы изомерны одноатомным ароматическим спиртам. То есть они так же имеют общую молекулярную формулу C n H 2n -6O .

    Амины - производные аммиака, в которых один, два или три атома водорода заменены на углеводородный радикал. Амины, в которых только один атом водорода замещен на углеводородный радикал, то есть имеющие общую формулу R-NH 2 , именуют первичными аминами. Амины, в которых, два атома водорода заменены на углеводородные радикалы, именуют вторичными. Их формула - R-NH-R’ . Следует помнить, что радикалы R и R’ могут быть как одинаковые, так и разные. Если все три атома водорода молекулы аммиака замещены на углеводородный радикал, то амины являются третичными. При этом R, R’, R’’ могут быть как полностью одинаковыми, так и разными. Общая формула первичных, вторичных и третичных предельных аминов - C n H 2n +3N . Ароматические амины с одним непредельным заместителем имеют формулу C n H 2n -5N.

    Альдегиды и кетоны. У альдегидов при первичном атоме углерода два атома водорода замещены на один атом кислорода. То есть в их структуре имеется альдегидная группа – СН=О. Общая формула - R-CH=O . У кетонов при вторичном атоме углерода два атома водорода замещены на атом кислорода. То есть это соединения, в структуре которых есть карбонильная группа –C(O)-. Общая формула кетонов: R-C(O)-R ’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными. Альдегиды и кетоны достаточно схожи по строению, но их все-таки различают как классы, так как они имеют существенные различия в химических свойствах. Общая формула предельных кетонов и альдегидов имеет вид: C n H 2n O .

    Карбоновые кислоты содержат карбоксильную группу –COOH. В случае, когда кислота содержит две карбоксильные группы, такую кислоту именуют дикарбоновой кислотой. Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую формулу - C n H 2n O 2 . Ароматические монокарбоновые кислоты имеют общую формулу C n H 2n -8O 2 .

    Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода. То есть, имеют формулу вида: R-O-R’ . При этом радикалы R и R’ способны быть как одинаковыми, так и разными. Формула предельных простых эфиров - C n H 2n +1OH или C n H 2n +2О .

    Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе заменен на углеводородный радикал R.

    Нитросоединения – производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу –NO 2 . Предельные нитросоединения с одной нитрогруппой имеют формулу C n H 2n +1NO 2 .

    Аминокислоты имеют в структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например: NH 2 -CH 2 -COOH. Предельные аминокислоты, имеющие одну карбоксильную и одну аминогруппу изомерны соответствующим предельными нитросоединениям то есть, имеют общую формулу C n H 2n +1NO 2 .

Номенклатура органических соединений

Номенклатура соединения делится на 2 типа:

    тривиальную и

    систематическую.

Тривиальная - это исторически первая номенклатура, возникшая в самом начале развития органической химии. Названия веществ носили ассоциативный характер, например, щавелевая кислота, мочевина, индиго.

Создание систематической, т.е. международной номенклатуры началось с 1892 года. Тогда была начата Женевская номенклатура, которую с 1947 и по сегодняшний день продолжает ИЮПАК (IUPAC - международная единая химическая номенклатура). Согласно систематической номенклатуре названия органических соединений составляются из корня, обозначающего длину основной цепи, т.е. соединенных в неразветвленную цепь атомов углеродов, а также приставок и суффиксов, обозначающих наличие и расположение заместителей, функциональных групп и кратных связей.

Систематическая номенклатура алканов
Систематическая номенклатура алкенов