Образование нашей планеты произошло. Как образуются планеты

Вопрос происхождения Земли, планет и Солнечной системы в целом волновал людей еще с глубокой древности. Мифы о происхождении Земли прослеживаются у многих древних народов. Китайцы, египтяне, шумеры, греки имели свое представление о формировании мира. В начале нашей эры их наивные представления заменили религиозные догматы, не терпящие возражений. В средневековой Европе попытки поиска истины иногда заканчивались костром инквизиции. Первые научные объяснения проблемы относятся только к XVIII в. Даже сейчас нет единой гипотезы происхождения Земли, что дает простор для новых открытий и пищу для пытливого ума.

Мифология древних

Человек - существо пытливое. Издревле люди отличались от животных не только желанием выжить в суровом диком мире, но и попыткой понять его. Признавая тотальное превосходство сил природы над собой, люди стали обожествлять происходящие процессы. Чаще всего именно небожителям приписывается заслуга сотворения мира.

Мифы о происхождении Земли в разных уголках планеты значительно отличались друг от друга. По представлениям древних египтян, она вылупилась из священного яйца, слепленного богом Хнумом из обычной глины. Согласно верованиям островных народов, землю выудили боги из океана.

Теория хаоса

Ближе всех к научной теории подошли древние греки. По их понятиям, рождение Земли произошло из первородного Хаоса, наполненного смесью из воды, земли, огня и воздуха. Это стыкуется с научными постулатами теории происхождения Земли. Гремучая смесь элементов хаотично вращалась, заполняя все сущее. Но в какой-то момент из недр первородного Хаоса родилась Земля - богиня Гея, и ее вечный спутник, Небо, - бог Уран. Совместными усилиями они наполнили безжизненные просторы разнообразием жизни.

Похожий миф сформировался и в Китае. Хаос Хунь-тунь, наполненный пятью элементами - деревом, металлом, землей, огнем и водой - кружил в форме яйца по безграничной Вселенной, пока в нем не зародился бог Пань-Гу. Пробудившись, он обнаружил вокруг себя лишь безжизненную тьму. И этот факт его сильно опечалил. Собравшись с силами, божество Пань-Гу разломило скорлупу яйца-хаоса, высвободив два начала: Инь и Ян. Тяжелый Инь опустился вниз, сформировав землю, светлый и легкий Ян взмыл ввысь, образовав небо.

Классовая теория формирования Земли

Происхождение планет, и в частности Земли, современными учеными достаточно изучено. Но есть ряд принципиальных вопросов (например, откуда взялась вода), вызывающих жаркие споры. Поэтому наука о Вселенной развивается, каждое новое открытие становится кирпичиком в фундаменте гипотезы происхождения Земли.

Знаменитый советский ученый больше известный по полярным исследованиям, сгруппировал все предложенные гипотезы и объединил их в три класса. К первому относятся теории, исходящие из постулата об образовании Солнца, планет, лун и комет из единого материала (туманности). Это известные гипотезы Войткевича, Лапласа, Канта, Фесенкова, недавно переработанные Рудником, Соботовичем и другими учеными.

Второй класс объединяет представления, согласно которым планеты формировались непосредственно из вещества Солнца. Это гипотезы происхождения Земли ученых Джинса, Джеффриса, Мультона и Чемберлина, Бюффона и других.

И, наконец, к третьему классу относятся теории, не объединяющие Солнце и планеты общностью происхождения. Наиболее известна гипотеза Шмидта. Остановимся на характеристике каждого класса.

Гипотеза Канта

В 1755 году немецкий философ Кант происхождение Земли кратко описал следующим образом: первоначальная Вселенная состояла из неподвижных пылевидных частиц различной плотности. Силы гравитации привели их движение. Происходило налипание их друг на друга (эффект аккреции), в конечном итоге приведшее к образованию центрального раскаленного сгустка - Солнца. Дальнейшие столкновения частиц привели к вращению Солнца, а вместе с ним и пылевого облака.

В последнем постепенно образовывались отдельные сгустки вещества - зародыши будущих планет, вокруг которых по подобной схеме сформировались спутники. Образованная таким путем Земля в начале своего существования представлялась холодной.

Концепция Лапласа

Французский астроном и математик П. Лаплас предложил несколько отличный вариант, объясняющий происхождение планеты Земля и других планет. Солнечная система, по его мнению, образовалась из раскаленной газовой туманности со сгустком частиц в центре. Она вращалась и сжималась под действием всемирного тяготения. При дальнейшем охлаждении скорость вращения туманности росла, по периферии от нее отслаивались кольца, которые распадались на прообразы будущих планет. Последние на начальной стадии представляли собой раскаленные газовые шары, которые постепенно охлаждались и затвердевали.

Недостаток гипотез Канта и Лапласа

Гипотезы Канта и Лапласа, объясняющие происхождение планеты Земля, были господствующими в космогонии вплоть до начала ХХ века. И сыграли прогрессивную роль, служа основой естественным наукам, в особенности геологии. Главным недостатком гипотезы является неспособность объяснить распределение внутри Солнечной системы момента количества движения (МКР).

МКР определяется как произведение массы тела на расстояние от центра системы и скорость его вращения. Действительно, исходя из факта, что Солнце обладает более чем 90% всей массы системы, оно должно иметь и высокий МКР. На самом же деле Солнце имеет лишь 2% общего МКР, планеты же, особенно гиганты, наделены остальными 98%.

Теория Фесенкова

Указанное противоречие в 1960 попытался объяснить советский ученый Фесенков. Согласно его версии происхождения Земли, Солнце с планетами образовались в результате уплотнения гигантской туманности - «глобулы». Туманность обладала очень разреженной материей, составленной в основном из водорода, гелия и небольшого количества тяжелых элементов. Под действием силы гравитации в центральной части глобулы возникло звездообразное сгущение - Солнце. Оно быстро вращалось. В результате вещества в окружающую его газово-пылевую среду время от времени осуществлялись выбросы материи. Это приводило к потере Солнцем своей массы и передаче создаваемым планетам значительной части МКР. Формирование планет проходило путем аккреции вещества туманности.

Теории Мультона и Чемберлина

Американские исследователи астроном Мультон и геолог Чемберлин предложили схожие гипотезы происхождения Земли и Солнечной системы, согласно которым планеты образовались из вещества газовых веток спиралей, «вытянутых» из Солнца неизвестной звездой, которая прошла на достаточно близком расстоянии от него.

Учеными было введено в космогонию понятие «планетезималь» - это сгустки, сконденсированные из газов первоначального вещества, которые стали эмбрионами планет и астероидов.

Суждения Джинса

Английский астроном и физик Д. Джинс (1919) предположил, что при сближении с Солнцем другой звезды с последней оторвался сигарообразный выступ, который в дальнейшем распался на отдельные сгустки. Причем из средней утолщенной части «сигары» образовались крупные планеты, а по ее краям - мелкие.

Гипотеза Шмидта

В вопросах теории происхождения Земли оригинальную точку зрения в 1944 году высказал Шмидт. Это так называемая метеоритная гипотеза, впоследствии физико-математически обоснованная учениками известного ученого. Кстати, в гипотезе проблема образования Солнца не рассматривается.

Согласно теории, Солнце на одной из стадий своего развития захватило (притянуло к себе) холодное газово-пылевое метеоритное облако. До этого оно владело очень малым МКР, облако же вращалось со значительной скоростью. В сильном Солнца началась дифференциация метеоритного облака по массе, плотности и размерам. Часть метеоритного материала попала на светило, другая, в результате процессов аккреции, образовывала сгустки-зародыши планет и их спутников.

В этой гипотезе происхождение и развитие Земли зависимо от воздействия «солнечного ветра» - давления солнечного излучения, которое отталкивало легкие газовые компоненты на периферию Солнечной системы. Образованная таким образом Земля была холодным телом. Дальнейший разогрев связывается с радиогенным теплом, гравитационной дифференциацией и другими источниками внутренней энергии планеты. Большим недостатком гипотезы исследователи считают очень низкую вероятность захвата Солнцем подобного метеоритного облака.

Предположения Рудника и Соботовича

История происхождения Земли до сих пор волнует ученых. Относительно недавно (в 1984 году) В. Рудник и Е. Соботович представили собственную версию происхождения планет и Солнца. Согласно их представлениям, инициатором процессов в газово-пылевой туманности мог послужить близкий взрыв сверхновой звезды. Дальнейшие события, по мнению исследователей, выглядели так:

  1. Под действием взрыва началось сжатие туманности и образование центрального сгустка - Солнца.
  2. От формирующегося Солнца МРК передавался планетам электромагнитным или турбулентно-конвективным путем.
  3. Стали образовываться гигантские кольца, напоминающие кольца Сатурна.
  4. В результате аккреции материала колец сначала появились планетезимали, впоследствии сформировавшиеся в современные планеты.

Вся эволюция проходила очень быстро - на протяжении около 600 млн лет.

Формирование состава Земли

Существует разное понимание последовательности формирования внутренних частей нашей планеты. Согласно одной из них, протоземля представляла собой неотсортированный конгломерат железо-силикатного вещества. В дальнейшем в результате гравитации произошло разделение на железное ядро и силикатную мантию - явление гомогенной аккреции. Сторонники гетерогенной аккреции считают, что сначала аккумулировалось тугоплавковое железное ядро, затем на него налипали более легкоплавкие силикатные частицы.

В зависимости от решения этого вопроса речь может идти и о степени первоначального разогрева Земли. Действительно, сразу же после своего образования планета начала разогреваться вследствие совместных действий нескольких факторов:

  • Бомбардировка ее поверхности планетезималями, что сопровождалось выделением тепла.
  • изотопов, в том числе короткоживущих изотопов алюминия, йода, плутония и др.
  • Гравитационная дифференциация недр (если принять гомогенную аккрецию).

По мнению ряда исследователей, на этой ранней стадии формирования планеты внешние части могли находиться в состоянии, близком к расплаву. На фото планета Земля выглядела бы раскаленным шаром.

Контракционная теория образования материков

Одной из первых гипотез происхождения материков была контракционная, по которой горообразование связывалось с остыванием Земли и сокращением ее радиуса. Именно она служила фундаментом ранних геологических исследований. На ее основании австрийский геолог Е. Зюсс синтезировал все существующие на то время знания о структуре земной коры в монографии «Лик Земли». Но уже в конце XIX в. появились данные, свидетельствующие, что в одной части земной коры происходит сжатие, в другой - растяжение. Окончательно рухнула контракционная теория после открытия радиоактивности и наличия в коре Земли больших запасов радиоактивных элементов.

Дрейф материков

В начале ХХ в. зарождается гипотеза дрейфа материков. Ученые давно заметили сходство береговых линий Южной Америки и и Аравийского полуострова, Африки и Индостана и др. Первым сопоставил данные Пиллигрини (1858 г.), позднее Биханов. Сама идея дрейфа материков была сформулирована американскими геологами Тейлором и Бейкером (1910) и немецким метеорологом и геофизиком Вегенером (1912). Последний обосновал эту гипотезу в своей монографии «Происхождение материков и океанов», которая вышла в свет в 1915 году. Аргументы, которые приводились в защиту этой гипотезы:

  • Сходство очертаний материков по обе стороны Атлантики, а также материков, окаймляющих Индийский океан.
  • Сходство строения на смежных материках позднепалеозойских и раннемезозойских пород.
  • Окаменелые останки животных и растений, которые свидетельствуют, что древняя флора и фауна южных материков образовывала единую группировку: особенно об этом свидетельствуют окаменевшие останки динозавров рода листрозавров, найденные в Африке, Индии и Антарктиде.
  • Палеоклиматические данные: например, наличие следов позднепалеозойского покровного оледенения.

Формирование земной коры

Происхождение и развитие Земли неразрывно связано с горообразованием. А. Вегенер утверждал, что материки, состоящие из достаточно легких минеральных масс, как бы плавают на подстилающем их тяжелом пластическом веществе базальтового ложа. Предполагается, что вначале тонкий слой гранитного материала якобы покрывал всю Землю. Постепенно целостность его была нарушена приливными силами притяжения Луны и Солнца, воздействующими на поверхность планеты с востока на запад, а также центробежными силами от вращения Земли, воздействующими от полюсов к экватору.

Из гранита (предположительно) состоял единый суперматерик Пангея. Он просуществовал до середины и распался в юрском периоде. Сторонником этой гипотезы происхождения Земли был ученый Штауб. Затем возникло объединение материков северного полушария - Лавразия, и объединение материков южного полушария - Гондвана. Между ними оказались зажаты породы дна Тихого океана. Под материками залегало море магмы, по которому они двигались. Лавразия и Гондвана ритмично перемещались то к экватору, то к полюсам. При смещении к экватору суперматерики фронтально сжимались, при этом флангами надавливая на тихоокеанскую массу. Эти геологические процессы многие считают основными факторами образования крупных горных массивов. Движение к экватору происходило трижды: во время каледонского, герцинского и альпийского горообразования.

Вывод

На тему формирования Солнечной системы выпущено много научно-популярной литературы, детских книг, специализированных публикаций. Происхождение Земли для детей в доступной форме изложено в школьных учебниках. Но если взять литературу 50-летней давности, видно, что на некоторые проблемы современные ученые смотрят уже по-другому. Космология, геология и смежные науки не стоят на месте. Благодаря покорению околоземного пространства люди уже знают, какой видится на фото планета Земля из космоса. Новое знание формирует новое представление о законах Вселенной.

Очевидно, что для создания из первородного хаоса Земли, планет и Солнца были задействованы могучие силы природы. Неудивительно, что древние предки сопоставляли их со свершениями Богов. Даже образно невозможно представить происхождение Земли, картинки реальности наверняка превзошли бы самые смелые фантазии. Но по крупицам знаний, собираемым учеными, постепенно выстраивается целостная картина окружающего мира.

История нашей планеты еще хранит в себе немало загадок. Ученые разных областей естествознания вложили свою лепту в изучение развития жизни на Земле.

Считается, что возраст нашей планеты составляет около 4,54 миллиарда лет. Весь этот временной промежуток принято делить на два основных этапа: фанерозой и докембрий. Эти этапы называются эонами или эонотемой. Эоны в свою очередь делятся на несколько периодов, каждый из которых отличается совокупностью изменений, происходивших в геологическом, биологическом, атмосферном состоянии планеты.

  1. Докембрий, или криптозой — это эон (временной промежуток развития Земли), охватывающий около 3,8 миллиардов лет. То есть, докембрий — это развитие планеты от момента образования, формирования земной коры, протоокеана и возникновения жизни на Земле. К концу докембрия на планете уже были широко распространены высокоорганизованные организмы с развитым скелетом.

Эон включает в себя еще две эонотемы — катархей и архей. Последний, в свою очередь, включает в себя 4 эры.

1. Катархей — это время образования Земли, но не было еще ни ядра, ни земной коры. Планета была еще холодным космическим телом. Ученые предполагают, что в этот период на Земле уже была вода. Катархей длился около 600 млн. лет.

2. Архей охватывает период в 1,5 млрд лет. В этот период на Земле еще не было кислорода, происходило формирование залежей серы, железа, графита, никеля. Гидросфера и атмосфера представляли собой единую парогазовую оболочку, которая плотным облаком окутывала земной шар. Солнечные лучи сквозь эту завесу практически не проникали, поэтому на планете царил мрак.2.1 2.1. Эоархей — это первая геологическая эра, которая длилась около 400 млн.лет. Важнейшее событие эоархея — формирование гидросферы. Но воды было еще мало, водоемы существовали отдельно друг от друга и пока не сливались в мировой океан. В это же время земная кора становится твердой, хотя астероиды еще бомбят Землю. На исходе эоархея образуется первый в истории планеты суперконтинент — Ваальбара.

2.2 Палеоархей — следующая эра, которая также длилась приблизительно 400 млн.лет. В этот период формируется ядро Земли, возрастает напряженность магнитного поля. Сутки на планете длились всего 15 часов. Зато повышается содержание кислорода в атмосфере за счет деятельности появившихся бактерий. Остатки этих первых форм палеоархейской эры жизни были найдены в Западной Австралии.

2.3 Мезоархей также длился около 400 млн.лет. В мезоархейскую эру нашу планету покрывал неглубокий океан. Участки суши представляли собой небольшие вулканические острова. Но уже в этот период начинается формирование литосферы и запускается механизм тектоники плит. В конце мезоархея наблюдается первый ледниковый период, во время которого на Земле впервые образуются снег и лед. Биологические виды по-прежнему пока представлены бактериями и микробными формами жизни.

2.4 Неоархей — завершающая эра архейского эона, длительность которой составляет около 300 млн. лет. Колонии бактерий в это время формирует первые на Земле строматолиты (известняковые отложения). Важнейшее событие неоархея - образование кислородного фотосинтеза.

II. Протерозой — один из длиннейших временных отрезков истории Земли, который принято делить на три эры. Во время протерозоя впервые появляется озоновый слой, мировой океан достигает практически современного объема. А после длительнейшего гуронского оледенения на Земле появляются первые многоклеточные формы жизни - грибы и губки. Протерозой принято делить на три эры, каждая их которых содержала по несколько периодов.

3.1 Палео-протерозой — первая эра протерозоя, которая началась 2,5 млрд. лет назад. В это время полностью формируется литосфера. А вот прежние формы жизни вследствие увеличения содержания кислорода практически вымерли. Этот период получил название кислородной катастрофы. К концу эры на Земле появляются первые эукариоты.

3.2 Мезо-протерозой длился приблизительно 600 млн.лет. Важнейшие события этой эры: формирование континентальных масс, образование суперконтинента Родиния и эволюция полового размножения.

3.3 Нео-протерозой . Во время этой эры Родиния распадается примерно на 8 частей, суперокеан Мировия прекращает свое существование, а на исходе эры Земля практически до экватора покрывается льдами. В неопротерозойскую эру живые организмы впервые начинают приобретать твердую оболочку, что в дальнейшем послужит основой скелета.


III. Палеозой — первая эра фанерозойского эона, начавшаяся приблизительно 541 млн. лет назад и длившаяся около 289 млн. лет. Это эпоха появления древней жизни. Суперконтинент Гондвана объединяет южные материки, чуть позже к нему присоединяются остальные части суши и появляется Пангея. Начинают формироваться климатические пояса, а флора и фауна представлена, в основном, морскими видами. Только к концу палеозоя начинается освоение суши, и появляются первые позвоночные.

Палеозойскую эру условно делят на 6 периодов.

1. Кембрийский период длился 56 млн. лет. В этот период формируются основные горные породы, у живых организмов появляется минеральный скелет. А важнейшим событием кембрия является возникновение первых членистоногих.

2. Ордовикский период — второй период палеозоя, длившийся 42 млн. лет. Это эпоха образования осадочных пород, фосфоритов и горючих сланцев. Органический мир ордовика представлен морскими беспозвоночными и сине-зелеными водорослями.

3. Силурийский период охватывает следующие 24 млн. лет. В это время вымирают практически 60% живых организмов, существовавших прежде. Зато появляются первые в истории планеты хрящекостные и костные рыбы. На суше силур знаменуется возникновением сосудистых растений. Суперконтинеты сближаются и образуют Лавразию. К концу периода отмечено таяние льдов, уровень моря повысился, а климат стал мягче.


4. Девонский период отличается бурным развитием разнообразных форм жизни и освоением новых экологических ниш. Девон охватывает временной промежуток в 60 млн. лет. Появляются первые наземные позвоночные, пауки, насекомые. У животных суши формируются легкие. Хотя, по-прежнему, преобладают рыбы. Царство флоры этого периода представлено пропапоротниками, хвощевидными, плаунами и госеменными.

5. Каменноугольный период часто называют карбоном. В это время Лавразия сталкивается с Гондваной и появляется новый суперконтинент Пангея. Образовывается и новый океан — Тетис. Это время появления первых земноводных и рептилий.


6. Пермский период — последний период палеозоя, завершившийся 252 млн. лет назад. Предполагают, что в это время на Землю упал крупный астероид, что привело к значительному изменению климата и вымиранию практически 90% всех живых организмов. Большая часть суши покрывается песками, появляются самые обширные пустыни, которые только существовали за всю историю развития Земли.


IV. Мезозой — вторая эра фанерозойского эона, продолжавшаяся почти 186 млн.лет. В это время материки приобретают практически современные очертания. А теплый климат способствует бурному развитию жизни на Земле. Исчезают гигантские папоротники, а им на смену появляются покрытосеменные растения. Мезозой - это эпоха динозавров и появления первых млекопитающих.

В мезозойской эре выделяют три периода: триас, юра и мел.

1. Триасовый период длился чуть более 50 млн. лет. В это время Пангея начинает раскалываться, а внутренние моря постепенно мельчают и высыхают. Климат - мягкий, зоны выражены не ярко. Почти половина растений суши исчезает, так как распространяются пустыни. А в царстве фауны появляются первые теплокровные и сухопутные рептилии, ставшие предками динозавров и птиц.


2. Юрский период охватывает промежуток в 56 млн. лет. На Земле царил влажный и теплый климат. Суша покрывается зарослями папоротников, сосен, пальм, кипарисов. На планете царят динозавры, а многочисленные млекопитающие отличались пока маленьким ростом и густой шерстью.


3. Меловой период — наиболее продолжительный период мезозоя, длившийся почти 79 млн. лет. Практически заканчивается раскол континентов, Атлантический океан значительно увеличивается в объеме, на полюсах формируются ледяные покровы. Увеличение водной массы океанов приводит к образованию парникового эффекта. В конце мелового периода происходит катастрофа, причины которой до сих пор не ясны. В результате вымерли все динозавры и большинство видов рептилий и голосеменных растений.


V. Кайнозой — это эра животных и человека разумного, начавшаяся 66 млн. лет назад. Континенты в это время приобрели свое современное очертание, Антарктида заняла южный полюс Земли, а океаны продолжали увеличиваться. Уцелевшие после катастрофы мелового периода растения и животные оказались в совершенно новом мире. На каждом континенте начали формироваться уникальные сообщества форм жизни.

Кайнозойскую эру делят на три периода: палеоген, неоген и четвертичный.


1. Палеогеновый период закончился приблизительно 23 млн. лет назад. В это время на Земле царил тропический климат, Европа скрывалась под вечнозелеными тропическими лесами, лишь на севере континентов росли листопадные деревья. Именно в период палеогена происходит бурное развитие млекопитающих.


2. Неогеновый период охватывает следующие 20 млн. лет развития планеты. Появляются киты и рукокрылые. И, хотя по земле еще бродят саблезубые тигры и мастодонты, фауна все больше приобретает современные черты.


3. Четвертичный период начался более 2,5 млн. лет назад и продолжается до сих пор. Два важнейших события характеризуют этот временной отрезок: ледниковый период и появление человека. Ледниковая эпоха полностью завершила формирование климата, флоры и фауны континентов. А появление человека ознаменовало начало цивилизации.

Земля является объектом исследования значительного количества наук о Земле. Изучение Земли как небесного тела принадлежит к области , строение и состав Земли изучает геология, состояние атмосферы - метеорология, совокупность проявлений жизни на планете - биология. География дает описание особенностей рельефа поверхности планеты - океанов, морей, озер и год, материков и островов, гор и долин, а также поселения и обществ. образования: города и села, государства, экономические районы и т.д.

Планетарные характеристики

Земля вращается вокруг звезды Солнце по эллиптической орбите (очень близкой к круговой) со средней скоростью 29765 м / с на среднем расстоянии 149 600 000 км за период, что примерно равно 365,24 суток. Земля имеет спутник - , которая вращается вокруг Солнца на среднем расстоянии 384400 км. Наклон земной оси к плоскости эклиптики составляет 66 0 33"22"". Период обращения планеты вокруг своей оси 23 ч 56 мин 4,1 с. Вращение вокруг своей оси вызывает смену дня и ночи, а наклон оси и обращение вокруг Солнца - смену времен года.

Форма Земли - геоид. Средний радиус Земли составляет 6371,032 км, экваториальный - 6378,16 км, полярный - 6356,777 км. Площадь поверхности земного шара 510 млн км ², объем - 1,083 · 10 12 км ², средняя плотность - 5518 кг / м ³. Масса Земли составляет 5976.10 21 кг. Земля имеет магнитное и тесно связанное с ним электрическое поля. Гравитационное поле Земли обуславливает ее близкую к сферической форму и существование атмосферы.

По современным космогоническим представлениям Земля образовалась примерно 4,7 млрд лет назад из рассеянного в протосолнечной системе газового вещества. В результате дифференциации вещества Земли, под действием своего гравитационного поля, в условиях разогрева земных недр возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы: ядро (в центре), мантия, земная кора, гидросфера, атмосфера, магнитосфера. В составе Земли преобладает железо (34,6%), кислород (29,5%), кремний (15,2%), магний (12,7%). Земная кора, мантия и внутренняя часть ядра твердые (внешняя часть ядра считается жидкой). От поверхности Земли к центру возрастают давление, плотность и температура. Давление в центре планеты 3.6 · 10 11 Па, плотность примерно 12,5 · 10 ³ кг / м ³, температура в диапазоне от 5000 до 6000 ° C . Основные типы земной коры - материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения.

Форма Земли

Фигура Земли - это идеализация, с помощью которой пытаются описать форму планеты. В зависимости от цели описания используют различные модели формы Земли.

Первое приближение

Наиболее грубой форме описания фигуры Земли при первом приближении - есть сфера. Для большинства проблем общего землеведения этого приближения представляется достаточным, чтобы использовать в описании или исследовании некоторых географических процессов. В таком случае отвергают Сплющенность планеты при полюсах как несущественное замечание. Земля имеет одну ось вращения и экваториальную плоскость - плоскость симметрии и плоскости симметрии меридианов, что характерно отличает ее от бесконечности множеств симметрии идеальной сферы. Горизонтальная структура географической оболочки характеризуется определенной поясностью и определенной симметрией относительно экватора.

Второе приближение

При большем приближении фигуру Земли приравнивают к эллипсоида вращения. Эта модель, характеризующаяся выраженной осью, экваториальной плоскостью симметрии и меридиональными плоскостями, используется в геодезии для вычисления координат, построение картографических сетей, расчетов и т.д. Разница полуосей такого эллипсоида составляет 21 км, большая ось - 6378,160 км, малая - 6356,777 км, эксцентриситет - 1 / 298, 25. Положение поверхности легко может быть теоретически рассчитано, но его невозможно определить экспериментально в натуре.

Третье приближение

Так как экваториальный сечение Земли также эллипс с разностью длин полуосей в 200 м и эксцентриситетом 1 / 30000, третьей моделью выступает трехосный эллипсоид. В географических исследованиях эта модель почти не используется, она лишь свидетельствует о сложной внутреннее строение планеты.

Четвертое приближение

Геоид - это эквипотенциальные поверхность, совпадающая со средним уровнем Мирового океана, является геометрическим местом точек пространства, имеющих одинаковый потенциал силы тяжести. Такая поверхность имеет неправильную сложную форму, т.е. не является плоскостью. Уровневая поверхность в каждой точке перпендикулярна к отвеса. Практическое значение и важность этой модели состоит в том, что только с помощью отвеса, уровня, нивелира и других геодезических приборов можно проследить положение уровневых поверхностей, т.е. в нашем случае, геоида.

Океан и суша

Генеральная особенность строения земной поверхности заключается в распределении на материки и океаны. Большая часть Земли занята Мировым океаном (361,1 млн. км ² 70,8%), суша составляет 149,1 млн. км ² (29,2%), и образует шесть материков (Евразию, Африку, Северную Америку, Южную Америку, и Австралию) и острова. Она поднимается над уровнем мирового океана в среднем на 875 м (наибольшая высота 8848 м - гора Джомолунгма), горы занимают свыше 1 / 3 поверхности суши. Пустыни покрывают примерно 20% поверхности суши, леса - около 30%, ледники - свыше 10%. Амплитуда высот на планете достигает 20 км. Средняя глубина мирового океана примерно равна 3800 м (наибольшая глубина 11020 м - Марианский желоб (впадина) в Тихом океане). Объем воды на планете составляет 1370 млн км ³, средняя соленость 35 ‰ (г / л).

Геологическое строение

Геологическое строение Земли

Внутреннее ядро, предположительно, имеет диаметр 2600 км и состоит из чистого железа или никеля, внешнее ядро толщиной 2250 км из расплавленного железа или никеля, мантия около 2900 км толщиной состоит преимущественно из твердых горных пород, отделенная от земной коры поверхностью Мохоровича. Кора и верхний слой мантии образуют 12 основных подвижных блоки, некоторые из них несут континенты. Плато постоянно медленно движутся, это движение называется тектоническим дрейфом.

Внутреннее строение и состав «твердой» Земли. 3. состоит из трех основных геосфер: земной коры, мантии и ядра, которое, в свою очередь, делится на ряд слоев. Вещество этих геосфер разная по физическим свойствам, состоянием и минералогическим составом. В зависимости от величины скоростей сейсмических волн и характера их изменения с глубиной «твердую» Землю делят на восемь сейсмических слоев: А, В, С, D ", D ", Е, F и G. Кроме того, в Земле выделяют особо прочный слой литосферу и следующий, размягченный слой - астеносферу Шар А, или земная кора, имеет переменную толщину (в континентальной области - 33 км, в океанической - 6 км, в среднем - 18 км).

Под горами кора утолщается, в рифтовых долинах срединно-океанических хребтов почти исчезает. На нижней границе земной коры, - поверхности Мохоровичича, - скорости сейсмических волн возрастают скачкообразно, что связано преимущественно с изменением вещественного состава с глубиной, переходом от гранитов и базальтов в ультраосновных горных пород верхней мантии. Слои В, С, D ", D "входят в мантию. Слои Е, F и G образуют ядро Земли радиусом 3486 км На границе с ядром (поверхности Гутенберга) скорость продольных волн резко уменьшается на 30%, а поперечные волны исчезают, что означает, что внешнее ядро (слой Е, тянется до глубины 4980 км) жидкое Ниже переходного слоя F (4980-5120 км) находится твердое внутреннее ядро (слой G), в котором вновь распространяются поперечные волны.

В твердой земной коре преобладают такие химические элементы: кислород (47,0%), кремний (29,0%), алюминий (8,05%), железо (4,65%), кальций (2,96%), натрий (2,5%), магний (1,87%), калий (2,5%), титан (0,45%), которые в сумме составляют 98,98%. Наиболее редкие элементы: Ро (примерно 2.10 -14 %), Ra (2.10 -10 %), Re (7.10 -8 %), Au (4,3 · 10 -7 %), Bi (9 · 10 -7 %) и т.д.

В результате магматических, метаморфических, тектонических процессов и процессов осадкообразования земная кора резко дифференцирована, в ней протекают сложные процессы концентрации и рассеяния химических элементов, приводящих к образованию различных типов пород.

Считают, что верхняя мантия по составу близка к ультраосновных пород, в которых преобладает О (42,5%), Mg (25,9%), Si (19,0%) и Fe (9,85%). В минеральном отношении здесь царит оливин, меньше пироксенов. Нижнюю мантию считают аналогом каменных метеоритов (хондритов). Ядро 3емли по составу аналогичное железным метеоритам и содержит примерно 80% Fe , 9% Ni , 0,6% Co . На основе метеоритной модели рассчитан средний состав Земли, в котором преобладает Fe (35%), А (30%), Si (15%) и Mg (13%).

Температура является одной из важнейших характеристик земных недр, позволяющих объяснить состояние вещества в различных слоях и построить общую картину глобальных процессов. По измерениям в скважинах температура на первых километрах нарастает с глубиной с градиентом 20 ° C / км. На глубине 100 км, где находятся первичные очаги вулканов, средняя температура чуть ниже температуры плавления горных пород и равна 1100 ° C. При этом под океанами на глубине 100-200 км температура выше, чем во континентами, на 100-200 ° C. Скачок плотности вещества в слое С на глибинв 420 км соответствует давления 1,4 · 10 10 Па и отождествляется с фазовым переходом в оливин, который происходит при температуре примерно 1600 ° C. На границе с ядром при давления 1,4 · 10 11 Па и температуре порядка 4000 ° C силикаты находятся в твердом состоянии, а железо в жидком. В переходном слое F, где железо затвердевает, температура может быть 5000 ° C, в центре 3емли - 5000-6000 ° C, т.е., адекватная темпператури Солнца.

Атмосфера Земли

Атмосфера Земли, общая масса которой 5,15 · 10 15 т, состоит из воздуха - смеси в основном азота (78,08%) и кислорода (20,95%), 0,93% аргона, 0,03% углекислого газа, остальное - это водяной пар, а также инертные и другие газы. Максимальная температура поверхности суши 57-58 ° C (в тропических пустынях Африки и Северной Америки), минимальная - около -90 ° C (в центральных районах Антарктиды).

Атмосфера Земли защищает все живое от губительного воздействия космического излучения.

Химический состав атмосферы Земли : 78,1% - азот, 20 - кислород, 0,9 - аргон, остальные - углекислый газ, водяной пар, водород, гелий, неон.

Атмосфера Земли включает :

  • тропосферу (до 15 км)
  • стратосферу (15-100 км)
  • ионосферу (100 - 500 км).
Между тропосферой и стратосферой размещается переходный слой - тропопауза. В глубинах стратосферы под воздействием солнечного света создается озоновый экран, защищающий живые организмы от космического излучения. Выше - мезо- , термо- и экзосферы.

Погода и климат

Нижний слой атмосферы называется тропосферой. В ней происходят явления, определяющие погоду. Вследствие неравномерного нагрева поверхности Земли солнечной радиацией, в тропосфере непрестанно проходит циркуляция больших масс воздуха. Основными воздушными течениями в атмосфере Земли является пассаты в полосе до 30 ° вдоль экватора и западные ветры умеренного пояса в полосе от 30 ° до 60 °. Другим фактором переноса тепла является система океанических течений.

Вода оказывает на поверхности земли постоянный круговорот. Испаряясь с поверхности вод и суши, при благоприятных условиях водяной пар поднимается вверх в атмосфере, что приводит к образованию облаков. Вода возвращается на поверхность земли в виде атмосферных осадков и стекает к морей и океанов системой год.

Количество солнечной энергии, которую получает поверхность Земли уменьшается с ростом широты. Чем дальше от экватора, тем меньше угол падения солнечных лучей на поверхность, и тем больше расстояние, которое должен пройти луч в атмосфере. Вследствие этого среднегодовая температура на уровне моря уменьшается примерно на 0.4 ° ​​C на один градус широты. Поврехню Земли разделяют на широтные пояса из примерно одинаковым климатом: тропический, субтропический, умеренный и полярный. Классификация климатов зависит от температуры и количества осадков. Наибольшее признание получила классификация климатов Кеппена, по которой выделяют пять широких групп - влажные тропики, пустыня, влажные средние широты, континентальный климат, холодный полярный климат. Каждая из этих групп разделяется на специфические пидрупы.

Влияние человека на атмосферу Земли

Атмосфера Земли испытывает значительное влияние жизнедеятельности человека. Около 300 млн автомобилей ежегодно выбрасывают в атмосферу 400 млн т оксидов углерода, более 100 млн т углеводов, сотни тысяч тонн свинца. Мощные производители выбросов в атмосферу: ТЭС, металлургическая, химическая, нефтехимическая, целлюлозная и другие отрасли промышленности, автотранспорт.

Систематическое вдыхание загрязненного воздуха заметно ухудшает здоровье людей. Газообразные и пылевые примеси могут оказывать воздуху неприятного запаха, раздражать слизистые оболочки глаз, верхних дыхательных путей и тем самым снижать их защитные функции, быть причиной хронических бронхитов и заболеваний легких. Многочисленные исследования показали, что на фоне патологических отклонений в организме (заболевания легких, сердца, печени, почек и других органов) вредное воздействие атмосферного загрязнения проявляется сильнее. Важной экологической проблемой стало выпадение кислотных дождей. Ежегодно при сжигании топлива в атмосферу поступает до 15 млн т двуокиси серы, который, сочетаясь с водой, образует слабый раствор серной кислоты, что вместе с дождем выпадает на землю. Кислотные дожди негативно влияют на людей, урожай, сооружения и т.д.

Загрязнение атмосферного воздуха может также косвенно влиять на здоровье и санитарные условия жизни людей.

Накопление в атмосфере углекислого газа может вызвать потепление климата в результате парникового эффекта. Суть его заключается в том, что слой двуокиси углекислого газа, который свободно пропускает солнечную радиацию к Земле, будет задерживать возвращения в верхние слои атмосферы теплового излучения. В связи с этим в нижних слоях атмосферы повышаться температура, что, в свою очередь, приведет к таянию ледников, снегов, подъема уровня океанов и морей, затопление значительной части суши.

История

Земля образовалась примерно 4540 миллионов лет назад с дискообразной протопланетарном облака вместе с другими планетами Солнечной системы. Формирования Земли в результате аккреции продолжалось 10-20 млн лет. Сначала Земля была полностью расплавленной, но постепенно остыла, и на ее поверхности образовалась тонкая твердая оболочка - земная кора.

Вскоре после образования Земли, примерно 4530 миллионов лет назад, образовалась Луна. Современная теория образования единого естественного спутника Земли утверждает, что это произошло как результат столкновения с массивным небесным телом, которое получило название Тея.
Первичная атмосфера Земли образовалась в результате дегазации горных пород и вулканической активности. Из атмосферы сконденсировавшаяся вода, образовав Мировой океан. Несмотря на то, что Солнце к тому времени светило на 70% слабее, чем сейчас, геологические данные показывают, что океан не замерз, что, возможно, связано с парниковым эффектом. Примерно 3,5 млрд лет назад сформировалось магнитное поле Земли, что защитило ее атмосферу от солнечного ветра.

Образование Земли и начальный этап ее развития (продолжительностью примерно 1,2 млрд лет) относятся к догеологичнои истории. Абсолютный возраст древнейших горных пород составляет свыше 3,5 млрд лет и, начиная с этого момента, ведет отсчет геологическая история Земли, которая делится на два неравных этапа: докембрий, занимающий примерно 5 / 6 всего геологического летоисчисления (около 3 млрд. лет) , и фанерозой, охватывающей последние 570 млн. лет. Около 3-3,5 млрд лет назад в результате закономерной эволюции материи на Земле возникла жизнь, началось развитие биосферы - совокупности всех живых организмов (так называемая живое вещество Земли), которая существенно повлияла на развитие атмосферы, гидросферы и геосферы (по крайней мере в части осадочной оболочки). В результате кислородной катастрофы деятельность живых организмов изменила состав атмосферы Земли, обогатив ее кислородом, что создало возможность для развития аэробных живых существ.

Новый фактор, который оказывает мощное влияние на биосферу и даже геосферу - деятельность человечества, появившееся на Земле после появления в результате эволюции человека менее 3 млн лет назад (единства относительно датировки не достигнуто и некоторые исследователи считают - 7 млн лет назад) . Соответственно, в процессе развития биосферы выделяют образования и дальнейшее развитие ноосферы - оболочки Земли, на которую большое влияние оказывает деятельность человека.

Высокий темп роста населения Земли (численность земного населения составляла 275 млн в 1000 году, 1,6 млрд в 1900 году и примерно 6,7 млрд в 2009 году) и усиление влияния человеческого общества на природную среду выдвинули проблемы рационального использования всех природных ресурсов и охраны природы.

В масштабах космоса планеты — всего лишь песчинки, играющие незначительную роль в грандиозной картине развития природных процессов. Однако это наиболее разнообразные и сложные объекты Вселенной. Ни у одного из других типов небесных тел не наблюдается подобного взаимодействия астрономических, геологических, химических и биологических процессов. Ни в одном из иных мест в космосе не может зародиться жизнь в том виде, как мы ее знаем. Только в течение последнего десятилетия астрономы обнаружили более 200 планет.

Формирование планет, издавна считавшееся спокойным и стационарным процессом, в действительности оказалось весьма хаотическим.

Поразительное разнообразие масс, размеров, состава и орбит заставило многих задуматься об их происхождении. В 1970-е гг. формирование планет считалось упорядоченным, детерминированным процессом — конвейером, на котором аморфные газово-пылевые диски превращаются в копии Солнечной системы. Но теперь нам известно, что это хаотичный процесс, предполагающий различный результат для каждой системы. Родившиеся планеты выжили в хаосе конкурирующих механизмов формирования и разрушения. Многие объекты погибли, сгорев в огне своей звезды, или были выброшены в межзвездное пространство. У нашей Земли могли быть давно потерянные близнецы, странствующие ныне в темном и холодном космосе.

Наука о формировании планет лежит на стыке астрофизики, планетологии, статистической механики и нелинейной динамики. В целом планетологи развивают два основных направления. Согласно теории последовательной аккреции, крошечные частицы пыли слипаются, образуя крупные глыбы. Если такая глыба притянет к себе много газа, она превращается в газовый гигант, как Юпитер, а если нет — в каменистую планету типа Земли. Основные недостатки данной теории — медлительность процесса и возможность рассеяния газа до формирования планеты.

В другом сценарии (теория гравитационной неустойчивости) утверждается, что газовые гиганты формируются путем внезапного коллапса, приводящего к разрушению первичного газово-пылевого облака. Данный процесс в миниатюре копирует формирование звезд. Но гипотеза эта весьма спорная, т. к. предполагает наличие сильной неустойчивости, которая может и не наступить. К тому же астрономы обнаружили, что наиболее массивные планеты и наименее массивные звезды разделены «пустотой» (тел промежуточной массы просто не существует). Такой «провал» свидетельствует о том, что планеты — это не просто маломассивные звезды, но объекты совершенно иного происхождения.

Несмотря на то что ученые продолжают спорить, большинство считает более вероятным сценарий последовательной аккреции. В данной статье я буду опираться именно на него.

1. Межзвездное облако сжимается

Время: 0 (исходная точка процесса формирования планет)

Наша Солнечная система находится в Галактике, где около 100 млрд звезд и облака пыли и газа, в основном — остатки звезд предыдущих поколений. В данном случае пыль — это всего лишь микроскопические частицы водяного льда, железа и других твердых веществ, сконденсировавшиеся во внешних, прохладных слоях звезды и выброшенные в космическое пространство. Если облака достаточно холодные и плотные, они начинают сжиматься под действием силы гравитации, образуя скопления звезд. Такой процесс может длиться от 100 тыс. до нескольких миллионов лет.

Каждую звезду окружает диск из оставшегося вещества, которого достаточно для образования планет. Молодые диски в основном содержат водород и гелий. В их горячих внутренних областях частицы пыли испаряются, а в холодных и разреженных внешних слоях частицы пыли сохраняются и растут по мере конденсации на них пара.

Астрономы обнаружили много молодых звезд, окруженных такими дисками. Звезды возрастом от 1 до 3 млн лет обладают газовыми дисками, в то время как у тех, что существуют более 10 млн лет, наблюдаются слабые, бедные газом диски, поскольку газ «выдувает» из него либо сама новорожденная звезда, либо соседние яркие звезды. Этот диапазон времени как раз и есть эпоха формирования планет. Масса тяжелых элементов в таких дисках сравнима с массой данных элементов в планетах Солнечной системы: довольно сильный аргумент в защиту того факта, что планеты образуются из таких дисков.

Результат: новорожденная звезда окружена газом и крошечными (микронного размера) частицами пыли.

Клубки космической пыли

Даже гигантские планеты начинались со скромных тел — микронных пылинок (пепел давно умерших звезд), плавающих во вращающемся газовом диске. С удалением от новорожденной звезды температура газа падает, проходя через «линию льда», за которой вода замерзает. В нашей Солнечной системе эта граница отделяет внутренние твердые планеты от внешних газовых гигантов.

  1. Частицы сталкиваются, слипаются и растут.
  2. Малые частицы увлекает газ, но те, что больше миллиметра, тормозятся и по спирали движутся к звезде.
  3. У линии льда условия таковы, что сила трения меняет направление. Частицы стремятся слипнуться и легко объединяются в более крупные тела — планетезимали.

2. Диск приобретает структуру

Время: около 1 млн лет

Частицы пыли в протопланетном диске, хаотически двигаясь вместе с потоками газа, сталкиваются друг с другом и при этом иногда слипаются, иногда разрушаются. Пылинки поглощают свет звезды и переизлучают его в длинноволновом инфракрасном диапазоне, передавая тепло в самые темные внутренние области диска. Температура, плотность и давление газа в целом снижаются с удалением от звезды. Из-за баланса давления, гравитации и центробежной силы скорость вращения газа вокруг звезды меньше, чем у свободного тела на таком же расстоянии.

В результате пылинки размером более нескольких миллиметров опережают газ, поэтому встречный ветер тормозит их и вынуждает по спирали опускаться к звезде. Чем крупнее становятся эти частицы, тем быстрее они движутся вниз. Глыбы метрового размера могут сократить свое расстояние от звезды вдвое всего за 1000 лет.

Приближаясь к звезде, частицы нагреваются, и постепенно вода и другие вещества с низкой температурой кипения, называемые летучими веществами, испаряются. Расстояние, на котором это происходит, — так называемая «линия льда», — составляет 2-4 астрономических единицы (а.е.). В Солнечной системе это как раз нечто среднее между орбитами Марса и Юпитера (радиус орбиты Земли равен 1 а.е.). Линия льда делит планетную систему на внутреннюю область, лишенную летучих веществ и содержащую твердые тела, и внешнюю, богатую летучими веществами и содержащую ледяные тела.

На самой линии льда накапливаются молекулы воды, испарившиеся из пылинок, что служит пусковым механизмом для целого каскада явлений. В этой области происходит разрыв в параметрах газа, и возникает скачок давления. Баланс сил заставляет газ ускорять свое движение вокруг центральной звезды. В результате попадающие сюда частицы оказываются под влиянием не встречного, а попутного ветра, подгоняющего их вперед и останавливающего их миграцию внутрь диска. А поскольку из его внешних слоев продолжают поступать частицы, линия льда превращается в полосу его скопления.

Скапливаясь, частицы сталкиваются и растут. Некоторые из них прорываются за линию льда и продолжают миграцию внутрь; нагреваясь, они покрываются жидкой грязью и сложными молекулами, что делает их более липкими. Некоторые области настолько заполняются пылью, что взаимное гравитационное притяжение частиц ускоряет их рост.

Постепенно пылинки собираются в тела километрового размера, называемые планетезималями, которые на последней стадии формирования планет сгребают почти всю первичную пыль. Увидеть сами планетезимали в формирующихся планетных системах трудно, но астрономы могут догадываться об их существовании по обломкам их столкновений (см.: Ардила Д. Невидимки планетных систем // ВМН, № 7, 2004).

Результат: множество километровых «строительных блоков», называемых планетезималями.

Рост олигархов

Миллиарды километровых планетезималей, сформировавшихся на стадии 2, собираются затем в тела размером с Луну или Землю, называемые зародышами. Небольшое их количество господствует в своих орбитальных зонах. Эти «олигархи» среди зародышей борются за оставшееся вещество

3. Формируются зародыши планет

Время: от 1 до 10 млн лет

Покрытые кратерами поверхности Меркурия, Луны и астероидов не оставляют сомнения в том, что в период формирования планетные системы похожи на стрелковый тир. Взаимные столкновения планетезималей могут стимулировать как их рост, так и разрушение. Баланс между коагуляцией и фрагментацией приводит к распределению по размерам, при котором мелкие тела в основном отвечают за площадь поверхности системы, а крупные определяют ее массу. Орбиты тел вокруг звезды вначале могут быть эллиптическими, но со временем торможение в газе и взаимные столкновения превращают орбиты в круговые.

Вначале рост тела происходит в силу случайных столкновений. Но чем больше становится планетезималь, тем сильнее ее гравитация, тем интенсивнее она поглощает своих маломассивных соседей. Когда массы планетезималей становятся сравнимы с массой Луны, их гравитация возрастает настолько, что они встряхивают окружающие тела и отклоняют их в стороны еще до столкновения. Этим они ограничивают свой рост. Так возникают «олигархи» — зародыши планет со сравнимыми массами, конкурирующие друг с другом за оставшиеся планетезимали.

Зоной питания каждого зародыша служит узкая полоса вдоль его орбиты. Рост прекращается, когда зародыш поглотит большую часть планетезималей из своей зоны. Элементарная геометрия показывает, что размер зоны и продолжительность поглощения возрастают с удалением от звезды. На расстоянии 1 а.е. зародыши достигают массы 0,1 массы Земли в течение 100 тыс. лет. На расстоянии 5 а.е. они достигают четырех земных масс за несколько миллионов лет. Зародыши могут стать еще больше вблизи линии льда или на краях разрывов диска, где концентрируются планетезимали.

Рост «олигархов» заполняет систему излишком тел, стремящихся стать планетами, но лишь немногим это удается. В нашей Солнечной системе планеты хотя и распределены по большому пространству, но они близки друг к другу насколько это возможно. Если между планетами земного типа поместить еще одну планету с массой Земли, то она выведет из равновесия всю систему. То же самое можно сказать и о других известных системах планет. Если вы видите чашку кофе, заполненную до краев, то можете быть почти уверены, что кто-то ее переполнил и разлил немного жидкости; маловероятно, что можно до краев наполнить емкость, не разлив ни капли. Настолько же вероятно, что планетные системы в начале своей жизни обладают большим количеством вещества, чем в конце. Некоторые объекты выбрасываются из системы прежде, чем она достигнет равновесия. Астрономы уже наблюдали свободно летающие планеты в молодых звездных скоплениях.

Результат: «олигархи» — зародыши планет с массами в диапазоне от массы Луны до массы Земли.

Гигантский скачок для планетной системы

Формирование такого газового гиганта, как Юпитер, — важнейший момент в истории планетной системы. Если такая планета сформировалась, она начинает управлять всей системой. Но чтобы это произошло, зародыш должен собирать газ быстрее, чем он движется по спирали к центру.

Формированию гигантской планеты мешают волны, которые она возбуждает в окружающем газе. Действие этих волн не уравновешивается, тормозит планету и вызывает ее миграцию в сторону звезды.

Планета притягивает газ, но он не может осесть, пока не остынет. А за это время она может довольно близко по спирали подойти к звезде. Гигантская планета может сформироваться далеко не во всех системах

4. Рождается газовый гигант

Время: от 1 до 10 млн лет

Вероятно, Юпитер начинался с зародыша, сравнимого по размеру с Землей, а затем накопил еще около 300 земных масс газа. Такой внушительный рост обусловлен различными конкурирующими механизмами. Гравитация зародыша притягивает газ из диска, но сжимающийся к зародышу газ выделяет энергию, и чтобы осесть, он должен охлаждаться. Следовательно, скорость роста ограничена возможностью охлаждения. Если оно происходит слишком медленно, звезда может сдуть газ обратно в диск прежде, чем зародыш образует вокруг себя плотную атмосферу. Самым узким местом в отводе тепла является перенос излучения сквозь внешние слои растущей атмосферы. Поток тепла там определяется непрозрачностью газа (в основном зависит от его состава) и градиентом температуры (зависит от начальной массы зародыша).

Ранние модели показали, что зародыш планеты для достаточно быстрого охлаждения должен иметь массу не менее 10 масс Земли. Такой крупный экземпляр может вырасти лишь вблизи линии льда, где ранее собралось много вещества. Возможно, поэтому Юпитер расположен как раз за этой линией. Крупные зародыши могут образоваться и в любом другом месте, если диск содержит больше вещества, чем обычно предполагают планетологи. Астрономы уже наблюдали немало звезд, диски вокруг которых в несколько раз плотнее предполагавшихся ранее. Для крупного образца перенос тепла не представляется серьезной проблемой.

Другой фактор, затрудняющий рождение газовых гигантов, — движение зародыша по спирали к звезде. В процессе, называемом миграцией I типа, зародыш возбуждает волны в газовом диске, которые в свою очередь гравитационно воздействуют на его движение по орбите. Волны следуют за планетой, как тянется за лодкой ее след. Газ на внешней стороне орбиты вращается медленнее зародыша и влечет его назад, тормозя движение. А газ внутри орбиты вращается быстрее и тянет вперед, ускоряя его. Внешняя область обширнее, поэтому она выигрывает битву и заставляет зародыш терять энергию и опускаться к центру орбиты на несколько астрономических единиц за миллион лет. Эта миграция обычно прекращается у линии льда. Здесь встречный газовый ветер превращается в попутный и начинает подталкивать зародыш вперед, компенсируя его торможение. Возможно, еще и поэтому Юпитер находится именно там, где он находится.

Рост зародыша, его миграция и потеря газа из диска происходят почти в одном и том же темпе. Какой процесс победит — зависит от везения. Возможно, несколько поколений зародышей пройдут через процесс миграции, не будучи способными завершить свой рост. За ними из внешних областей диска к его центру движутся новые партии планетезималей, и это повторяется до тех пор, пока в конце концов не образуется газовый гигант, или же пока весь газ не рассосется, и газовый гигант уже не сможет сформироваться. Астрономы открыли планеты типа Юпитера примерно у 10% исследованных солнцеподобных звезд. Ядра таких планет могут быть редкими зародышами, выжившими из многих поколений — последними из могикан.

Итог всех этих процессов зависит от начального состава вещества. Примерно треть звезд, богатых тяжелыми элементами, имеет планеты типа Юпитера. Возможно, у таких звезд были плотные диски, позволившие сформироваться массивным зародышам, у которых не было проблем с теплоотводом. И, напротив, вокруг звезд, бедных тяжелыми элементами, планеты формируются редко.

В некий момент масса планеты начинает расти чудовищно быстро: за 1000 лет планета типа Юпитера приобретает половину своей конечной массы. При этом она выделяет так много тепла, что сияет почти как Солнце. Процесс стабилизируется, когда планета становится настолько массивной, что поворачивает миграцию I типа «с ног на голову». Вместо того чтобы диск менял орбиту планеты, сама планета начинает изменять движение газа в диске. Газ внутри орбиты планеты вращается быстрее нее, поэтому ее притяжение тормозит газ, вынуждая его падать в сторону звезды, т. е. от планеты. Газ же вне орбиты планеты вращается медленнее, поэтому планета ускоряет его, заставляя двигаться наружу, опять же от планеты. Таким образом, планета создает разрыв в диске и уничтожает запас строительного материала. Газ пытается его заполнить, но компьютерные модели показывают, что планета выигрывает битву, если при расстоянии в 5 а.е. ее масса превышает массу Юпитера.

Эта критическая масса зависит от эпохи. Чем раньше формируется планета, тем больше будет ее рост, поскольку в диске еще много газа. У Сатурна масса меньше, чем у Юпитера, просто потому, что он сформировался на несколько миллионов лет позже. Астрономы обнаружили дефицит планет с массами от 20 масс Земли (это масса Нептуна) до 100 земных масс (масса Сатурна). Это может стать ключом к восстановлению картины эволюции.

Результат: Планета размером с Юпитер (или ее отсутствие).

5. Газовый гигант становится неусидчивым

Время: от 1 до 3 млн лет

Как ни странно, многие внесолнечные планеты, открытые за последние десять лет, обращаются вокруг своей звезды на очень близком расстоянии, гораздо ближе, чем Меркурий — вокруг Солнца. Эти так называемые «горячие Юпитеры» сформировались не там, где они находятся сейчас, т. к. орбитальная зона питания была бы слишком мала для поставки необходимого вещества. Возможно, для их существования нужна трехступенчатая последовательность событий, которая по какой-то причине не реализовалась в нашей Солнечной системе.

Во-первых, газовый гигант должен формироваться во внутренней части планетной системы, вблизи линии льда, пока в диске еще достаточно газа. Но для этого в диске должно быть много и твердого вещества.

Во-вторых, планета-гигант должна переместиться к месту своего нынешнего расположения. Миграция I типа не может обеспечить этого, т. к. она действует на зародыши еще до того, как они наберут много газа. Но возможна и миграция II типа. Формирующийся гигант создает разрыв в диске и сдерживает течение газа через свою орбиту. В этом случае он должен бороться с тенденцией турбулентного газа распространяться в смежные области диска. Газ никогда не перестанет сочиться в разрыв, и его диффузия к центральной звезде заставит планету терять орбитальную энергию. Этот процесс довольно медленный: нужно несколько миллионов лет для перемещения планеты на несколько астрономических единиц. Поэтому планета должна начать формироваться во внутренней части системы, если в итоге ей предстоит выйти на орбиту вблизи звезды. Когда эта и другие планеты продвигаются внутрь, они толкают перед собой оставшиеся планетезимали и зародыши, возможно, создавая «горячие Земли» на еще более близких к звезде орбитах.

В-третьих, что-то должно остановить движение, прежде чем планета упадет на звезду. Это может быть магнитное поле звезды, расчищающее от газа пространство вблизи звезды, а без газа движение прекращается. Возможно, планета возбуждает приливы на звезде, а они в свою очередь замедляют падение планеты. Но эти ограничители могут и не срабатывать во всех системах, поэтому многие планеты могут продолжать свое движение к звезде.

Результат: планета-гигант на близкой орбите («горячий Юпитер»).

Как обнять звезду

Во многих системах образуется гигантская планета и начинает приближаться по спирали к звезде. Происходит это потому, что газ в диске теряет энергию из-за внутреннего трения и оседает к звезде, увлекая за собой планету, которая со временем оказывается так близко к звезде, что та стабилизирует ее орбиту

6. Появляются и другие планеты-гиганты

Время: от 2 до 10 млн лет

Если удалось сформироваться одному газовому гиганту, то он способствует рождению следующих гигантов. Многие, а возможно и большинство известных планет-гигантов имеют близнецов сравнимой массы. В Солнечной системе Юпитер помог Сатурну сформироваться быстрее, чем это произошло бы без его помощи. Кроме того, он «протянул руку помощи» Урану и Нептуну, без чего они не достигли бы своей нынешней массы. На их расстоянии от Солнца процесс формирования без посторонней помощи шел бы очень медленно: диск рассосался бы еще до того, как планеты успели бы набрать массу.

Первый газовый гигант оказывается полезным по нескольким причинам. У внешней кромки образованного им разрыва вещество концентрируется, в общем, по той же причине, что и на линии льда: перепад давления заставляет газ ускоряться и действовать как попутный ветер на пылинки и планетезимали, останавливая их миграцию из внешних областей диска. К тому же гравитация первого газового гиганта часто отбрасывает соседние с ним планетезимали во внешнюю область системы, где из них формируются новые планеты.

Второе поколение планет формируется из вещества, собранного для них первым газовым гигантом. При этом большое значение имеет темп: даже небольшая задержка во времени может существенно изменить результат. В случае Урана и Нептуна аккумуляция планетезималей была чрезмерной. Зародыш стал слишком большим, 10-20 земных масс, что отсрочило начало аккреции газа до момента, когда в диске его почти не осталось. Формирование этих тел завершилось, когда они набрали всего по две земных массы газа. Но это уже не газовые, а ледяные гиганты, которые могут оказаться самым распространенным типом.

Гравитационные поля планет второго поколения увеличивают в системе хаос. Если эти тела сформировались слишком близко, их взаимодействие друг с другом и с газовым диском может выбросить их на более высокие эллиптические орбиты. В Солнечной системе планеты имеют почти круговые орбиты и достаточно удалены друг от друга, что уменьшает их взаимное влияние. Но в других планетных системах орбиты как правило эллиптические. В некоторых системах они резонансные, т. е. орбитальные периоды соотносятся как небольшие целые числа. Вряд ли это было заложено при формировании, но могло возникнуть при миграции планет, когда постепенно взаимное гравитационное влияние привязало их друг к другу. Различие между такими системами и Солнечной системой могло определяться разным начальным распределением газа.

Большинство звезд рождаются в скоплениях, причем более половины из них — двойные. Планеты могут сформироваться не в плоскости орбитального движения звезд; в этом случае гравитация соседней звезды быстро перестраивает и искажает орбиты планет, образуя не такие плоские системы, как наша Солнечная, а сферические, напоминающие рой пчел вокруг улья.

Результат: компания планет-гигантов.

Прибавление в семействе

Первый газовый гигант создает условия для рождения следующих. Расчищенная им полоса действует как крепостной ров, который не может преодолеть вещество, движущееся снаружи к центру диска. Оно собирается на внешней стороне разрыва, где из него формируются новые планеты.

7. Формируются планеты типа Земли

Время: от 10 до 100 млн лет

Планетологи считают, что похожие на Землю планеты распространены больше, чем планеты-гиганты. Несмотря на то что рождение газового гиганта требует точного баланса конкурирующих процессов, формирование твердой планеты должно быть намного сложнее.

До обнаружения внесолнечных землеподобных планет мы опирались лишь на данные о Солнечной системе. Четыре планеты земной группы — Меркурий, Венера, Земля и Марс — в основном состоят из веществ с высокой температурой кипения, таких как железо и силикатные породы. Это свидетельствует о том, что сформировались они внутри линии льда и заметно не мигрировали. На таких расстояниях от звезды зародыши планет могут вырасти в газовом диске до 0,1 земной массы, т. е. не больше чем Меркурий. Для дальнейшего роста нужно, чтобы орбиты зародышей пересекались, тогда они будут сталкиваться и сливаться. Условия для этого возникают после испарения газа из диска: под действием взаимных возмущений в течение нескольких миллионов лет орбиты зародышей вытягиваются в эллипсы и начинают пересекаться.

Гораздо труднее объяснить, как система вновь стабилизирует себя, и как планеты земной группы оказались на их нынешних почти круговых орбитах. Небольшое количество оставшегося газа могло бы это обеспечить, но такой газ должен был предотвратить изначальное «разбалтывание» орбит зародышей. Возможно, когда планеты уже почти сформировались, остается еще приличный рой планетезималей. В течение следующих 100 млн лет планеты сметают часть из этих планетезималей, а оставшиеся отклоняют в сторону Солнца. Планеты передают свое беспорядочное движение обреченным планетезималям и переходят на круговые или почти круговые орбиты.

Согласно другой идее, длительное влияние гравитации Юпитера вызывает у формирующихся планет земной группы миграцию, передвигая их в области со свежим веществом. Это влияние должно быть сильнее на резонансных орбитах, которые постепенно сдвигались внутрь по мере опускания Юпитера к его современной орбите. Радиоизотопные измерения указывают, что астероиды сформировались первыми (спустя 4 млн лет после образования Солнца), затем — Марс (через 10 млн лет), а позже — Земля (через 50 млн лет): как будто бы поднятая Юпитером волна прошла через Солнечную систему. Если бы она не встретила препятствий, то сдвинула бы все планеты земной группы к орбите Меркурия. Как же им удалось избежать столь печальной участи? Возможно, они уже стали слишком массивными, и Юпитер не смог их сильно сдвинуть, а может быть, сильные удары выбросили их из зоны действия Юпитера.

Заметим, что многие планетологи не считают роль Юпитера решающей в формировании твердых планет. Большинство солнцеподобных звезд лишено планет типа Юпитера, но вокруг них есть пылевые диски. А значит, там есть планетезимали и зародыши планет, из которых могут сформироваться объекты типа Земли. Основной вопрос, на который должны ответить наблюдатели в ближайшее десятилетие, — в скольких системах есть земли, но нет юпитеров.

Важнейшей эпохой для нашей планеты стал период между 30 и 100 млн лет после формирования Солнца, когда зародыш размером с Марс врезался в прото-Землю и породил гигантское количество обломков, из которых сформировалась Луна. Столь мощный удар, конечно же, разбросал огромное количество вещества по Солнечной системе; поэтому землеподобные планеты в других системах тоже могут иметь спутники. Этот сильный удар должен был сорвать первичную атмосферу Земли. Ее современная атмосфера в основном возникла из газа, заключенного в планетезималях. Из них сформировалась Земля, а позже этот газ вышел наружу при извержении вулканов.

Результат: планеты земного типа.

Объяснение некругового движения

Во внутренней области солнечной системы зародыши планет не могут расти, захватывая газ, поэтому они должны сливаться друг с другом. Для этого их орбиты должны пересекаться, а значит, что-то должно нарушить их первоначально круговое движение.

Когда образуются зародыши, их круговые или почти круговые орбиты не пересекаются.

Гравитационное взаимодействие зародышей между собой и с гигантской планетой возмущает орбиты.

Зародыши объединяются в планету типа земли. Она возвращается на круговую орбиту, перемешивая оставшийся газ и разбрасывая сохранившиеся планетезимали.

8. Начинаются операции по зачистке

Время: от 50 млн до 1 млрд лет

К этому моменту планетная система уже почти сформировалась. Продолжаются еще несколько второстепенных процессов: распад окружающего звездного скопления, способного своей гравитацией дестабилизировать орбиты планет; внутренняя неустойчивость, возникающая после того, как звезда окончательно разрушает свой газовый диск; и, наконец, продолжающееся рассеивание оставшихся планетезималей гигантской планетой. В Солнечной системе Уран и Нептун выбрасывают планетезимали наружу, в пояс Койпера, или же к Солнцу. А Юпитер своим мощным тяготением отсылает их в облако Оорта, на самый край области гравитационного влияния Солнца. В облаке Оорта может содержаться около 100 земных масс вещества. Время от времени планетезимали из пояса Койпера или облака Оорта приближаются к Солнцу, образуя кометы.

Разбрасывая планетезимали, сами планеты немного мигрируют, и этим можно объяснить синхронизацию орбит Плутона и Нептуна. Возможно, орбита Сатурна когда-то располагалась ближе к Юпитеру, но затем отдалилась от него. Вероятно, с этим связана так называемая поздняя эпоха сильной бомбардировки — период очень интенсивных столкновений с Луной (и, по-видимому, с Землей), наступивший спустя 800 млн лет после формирования Солнца. В некоторых системах грандиозные столкновения сформировавшихся планет могут возникать на поздней стадии развития.

Результат: Конец формирования планет и комет.

Посланцы из прошлого

Метеориты — не просто космические камни, а космические ископаемые. По мнению планетологов, это единственные осязаемые свидетели рождения Солнечной системы. Считается, что это куски астероидов, которые являются фрагментами планетезималей, никогда не участвовавших в формировании планет и навсегда оставшихся в замороженном состоянии. Состав метеоритов отражает все, что случилось с их родительскими телами. Поразительно, что на них видны следы от давнего гравитационного воздействия Юпитера.

Железные и каменные метеориты очевидно образовались в планетезималях, испытавших плавление, в результате чего железо отделилось от силикатов. Тяжелое железо опустилось к ядру, а легкие силикаты собрались во внешних слоях. Ученые считают, что нагрев был вызван распадом радиоактивного изотопа алюминий-26, имеющего период полураспада 700 тыс. лет. Взрыв сверхновой или соседняя звезда могли «заразить» протосолнечное облако этим изотопом, в результате чего он в большом количестве попал в первое поколение планетезималей Солнечной системы.

Однако железные и каменные метеориты встречаются редко. Большинство содержит хондры — мелкие зерна миллиметрового размера. Эти метеориты — хондриты — возникли до планетезималей и никогда не испытывали плавления. Похоже, что большинство астероидов не связаны с первым поколением планетезималей, которые скорее всего были выброшены из системы под действием Юпитера. Планетологи вычислили, что в области нынешнего пояса астероидов раньше содержалось в тысячу раз больше вещества, чем сейчас. Частицы, избежавшие когтей Юпитера или позже попавшие в пояс астероидов, объединились в новые планетезимали, но к тому времени в них осталось мало алюминия-26, поэтому они никогда не плавились. Изотопный состав хондритов показывает, что они сформировались примерно через 2 млн лет после начала формирования Солнечной системы.

Стеклообразное строение некоторых хондр указывает, что перед тем как попасть в планетезимали, они были резко нагреты, расплавились, а затем быстро остыли. Волны, управлявшие ранней орбитальной миграцией Юпитера, должны были превращаться в ударные волны и могли вызвать этот внезапный нагрев.

Нет единого плана

До начала эры открытия внесолнечных планет мы могли изучать только Солнечную систему. Несмотря на то что это позволило нам понять микрофизику важнейших процессов, у нас не было представления о путях развития иных систем. Удивительное разнообразие планет, обнаруженных за последнее десятилетие, значительно раздвинуло горизонт наших знаний. Мы начинаем понимать, что внесолнечные планеты — это последнее выжившее поколение в ряду протопланет, испытавших формирование, миграцию, разрушение и непрерывную динамическую эволюцию. Относительный порядок в нашей Солнечной системе не может быть отражением какого-то общего плана.

От попыток выяснить, как в далеком прошлом формировалась наша Солнечная система, теоретики обратились к исследованиям, позволяющим делать прогнозы о свойствах еще не открытых систем, которые могут быть обнаружены в ближайшее время. До сих пор наблюдатели замечали вблизи солнцеподобных звезд только планеты с массами порядка массы Юпитера. Вооружившись приборами нового поколения, они смогут искать объекты земного типа, которые в соответствии с теорией последовательной аккреции должны быть широко распространены. Планетологи только начинают осознавать то, насколько разнообразны миры во Вселенной.

Перевод: В. Г. Сурдин

Дополнительная литература:
1) Towards a Deterministic Model of Planetary Formation . S. Ida and D.N.C. Lin in Astrophysical Journal, Vol. 604, No. 1, pages 388-413; March 2004.
2) Planet Formation: Theory, Observation, and Experiments. Edited by Hubert Klahr and Wolfgang Brandner. Cambridge University Press, 2006.
3) Альвен Х., Аррениус Г. Эволюция Солнечной системы. М.: Мир, 1979.
4) Витязев А.В., Печерникова Г.В., Сафронов В.С. Планеты земной группы: Происхождение и ранняя эволюция. М.: Наука, 1990.

То едином способе образования планет. Уникальные особенности каждой звездной системы связаны с особенностями ее формирования.

Имеются две основных теории о возникновении планет. Первая предполагает образование в протопланетном облаке центров масс, вокруг которых начинает собираться пыль и газы из облака. Эта теория называется теорией аккреции и является на данный момент общепринятой. Другая теория - гравитационной неустойчивости - предполагает, что планеты образуются в результате внезапного коллапса неустойчивых частей протопланетного облака. Эта теория имеет ряд серьезных недостатков.

Вокруг каждой новой образуется огромное газо-пылевое облако, которое под действием гравитационных сил начинает все быстрее вращаться вокруг звезды и сжиматься.

Примерно через 1 миллион лет после возникновения звезды газо-пылевое облако делится на две части, в одной, более близкой к звезде, скапливаются более тяжелые частицы, в другой, более удаленной, в основном находится газ. В эти области разделены между орбитами Марса и Юпитера, то есть в одной зоне формируются твердые планеты, а в другой - газовые гиганты.

В газо-пылевом облаке в результате аккреции, то есть падения и прилипания мелких частиц к более крупным, возникает множество планетезималей, небольших объектов, которые притягивают к себе все большее количество вещества. Чем больше они становятся, тем быстрее начинает расти их масса. Иногда они сталкиваются между собой и формируют еще более массивные объекты. В течение нескольких миллионов лет вокруг звезды происходят активные бурные процессы столкновения, разрушения и образования планетезималей, которые борются за оставшееся в облаке . В результате возникают зародыши планет.

На стабилизацию процесса влияет появление крупных газовых гигантов, которые начинают воздействовать своим притяжением на более мелкие зародыши, стабилизировать их орбиты. Еще несколько десятков миллионов лет система стабилизируется, зародыши планет растут и в результате образуется новая стабильная планетная система.

Происхождение планет, история возникновения Земли – тема, которая всегда занимала умы людей. Даже в древности были свои представления о сотворении мира. Первые же научные гипотезы, взявшие за основу астрономические наблюдения, появились в 18 веке. Сегодня ученые вооружены современной техникой и глубокими познаниями в области химического состава Солнечной системы.

Из чего возникла Земля

Согласно современным представлениям, Солнечная система возникла из нехолодной туманности - скопления пыли и газа. Эта туманность состояла из обломков звезд более ранних поколений, представляя собой скопление микроскопических частиц веществ, выброшенных в космос. Силы притяжения сталкивали эти частицы между собой, в результате чего формировались большие блоки. В случае когда такая глыба притягивала к себе достаточно газа, образовывался газовый гигант (как Юпитер), иначе – каменистая планета, как наша Земля.

Более плотные вещества спускались к центру планеты, а легкие всплывали на поверхность. Зародыши планет захватывали газовые облака, сливались друг с другом. Процесс образования каждой планеты проходил уникально, чем и объясняется разнообразие планет.

Энергия, которая образовывалась при склеивании частиц, и та, что высвобождалась в результате ядерных реакций, разогревали недра планеты. Благодаря этому теплу планета была создана в расплавленном состоянии.

От каменной глыбы до обитаемой планеты

Для формирования Земле понадобилось 300-400 миллионов лет. Начальный этап жизни Земли содержит множество загадок. Это было время сильной вулканической активности, именно тогда сформировалось ядро планеты, мантия и земная кора. Также в это время из-за столкновения Земли с астероидом образовалась Луна.

Постепенно Земля охлаждалась, ее поверхность приобрела твердую корку, из которой были созданы первые континенты. Земля постоянно подвергалась метеоритным бомбардировкам, в планету врезались кометы со льдом. Благодаря этому Земля получила огромное количество воды, из которой образовались океаны. Сильная вулканическая активность и выделение водяного пара создали первую атмосферу, изначально она была лишена кислорода. Созданные континенты перемещались по расплавленной мантии, сближаясь и отдаляясь, порой образовывая суперконтинент.

Со временем благодаря химическим реакциям были образованы первые органические молекулы. Они формировали все более сложные структуры, что в итоге привело к появлению молекул, способных воспроизводить свои копии. Именно так зародилась жизнь на Земле.

Несмотря на то что Земля появилась более четырех миллиардов лет назад, ее формирование продолжается и в наши дни: недра планеты и ее кора находятся в постоянном движении, изменяя климат, очертания материков и рельеф.

Видео по теме