О чем говорится в теоремах геделя. Теоремы Гёделя о неполноте

09Сен

Всякая система математических аксиом, начиная с определенного уровня сложности, либо внутренне противоречива, либо неполна.

В 1900 году в Париже прошла Всемирная конференция математиков, на которой Давид Гильберт (David Hilbert, 1862–1943) изложил в виде тезисов сформулированные им 23 наиважнейшие, по его мнению, задачи, которые предстояло решить ученым-теоретикам наступающего ХХ века. Под вторым номером в его списке значилась одна из тех простых задач, ответ на которые кажется очевидным, пока не копнешь немножечко глубже. Говоря современным языком, это был вопрос: самодостаточна ли математика? Вторая задача Гильберта сводилась к необходимости строго доказать, что система аксиом - базовых утверждений, принимаемых в математике за основу без доказательств, - совершенна и полна, то есть позволяет математически описать всё сущее. Надо было доказать, что можно задать такую систему аксиом, что они будут, во-первых, взаимно непротиворечивы, а во-вторых, из них можно вывести заключение относительно истинности или ложности любого утверждения.

Возьмем пример из школьной геометрии. В стандартной Евклидовой планиметрии (геометрии на плоскости) можно безоговорочно доказать, что утверждение «сумма углов треугольника равна 180°» истинно, а утверждение «сумма углов треугольника равна 137°» ложно. Если говорить по существу, то в Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе.

И тут в 1931 году какой-то венский очкарик - математик Курт Гёдель - взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». После долгих и сложных математико-теоретических преамбул он установил буквально следующее. Возьмем любое утверждение типа: «Предположение №247 в данной системе аксиом логически недоказуемо» и назовем его «утверждением A». Так вот, Гёдель попросту доказал следующее удивительное свойство любой системы аксиом:

«Если можно доказать утверждение A, то можно доказать и утверждение не-A».

Иными словами, если можно доказать справедливость утверждения «предположение 247 недоказуемо», то можно доказать и справедливость утверждения «предположение 247 доказуемо». То есть, возвращаясь к формулировке второй задачи Гильберта, если система аксиом полна (то есть любое утверждение в ней может быть доказано), то она противоречива.

Единственным выходом из такой ситуации остается принятие неполной системы аксиом. То есть приходиться мириться с тем, что в контексте любой логической системы у нас останутся утверждения «типа А», которые являются заведомо истинными или ложными, - и мы можем судить об их истинности лишь вне рамок принятой нами аксиоматики. Если же таких утверждений не имеется, значит, наша аксиоматика противоречива, и в ее рамках неизбежно будут присутствовать формулировки, которые можно одновременно и доказать, и опровергнуть.

Итак, формулировка первой, или слабой теоремы Гёделя о неполноте: «Любая формальная система аксиом содержит неразрешенные предположения» . Но на этом Гёдель не остановился, сформулировав и доказав вторую, или сильную теорему Гёделя о неполноте: «Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)» .

Спокойнее было бы думать, что теоремы Гёделя носят отвлеченный характер и касаются не нас, а лишь областей возвышенной математической логики, однако фактически оказалось, что они напрямую связаны с устройством человеческого мозга. Английский математик и физик Роджер Пенроуз (Roger Penrose, р. 1931) показал, что теоремы Гёделя можно использовать для доказательства наличия принципиальных различий между человеческим мозгом и компьютером. Смысл его рассуждения прост. Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно теореме Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность - исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми логическими схемами. Человеческий мозг способен понять всю глубину истины, заключенной в теоремах Гёделя, а компьютерный - никогда. Следовательно, человеческий мозг представляет собой что угодно, но не просто компьютер. Он способен принимать решения, и тест Тьюринга пройдет успешно.

Теорема Геделя о неполноте

Успенский В.А.

Пожалуй, теорема Геделя о неполноте является воистину уникальной. Уникальной в том, что на нее ссылаются, когда хотят доказать "все на свете" - от наличия богов до отсутствия разума. Меня всегда интересовал более "первичный вопрос" - а кто из ссылающихся на теорему о неполноте смог-бы не только сформулировать ее, но и доказать? Я публикую данную статью по той причине, что в ней изложена вполне доступная формулировка теоремы Геделя. Рекомендую предварительно ознакомиться со статьей Туллио Редже Курт Гедель и его знаменитая теорема

Вывод о невозможности универсального критерия истины является непосредственным следствием результата, полученного Тарским путем соединения теоремы Геделя о неразрешимости с его собственной теорией истины, согласно которому универсального критерия истины не может быть даже для относительно узкой области теории чисел, а значит, и для любой науки, использующей арифметику. Естественно, что этот результат применим a fortiori к понятию истины в любой нематематической области знания, в которой широко используется арифметика.

Карл Поппер

Успенский Влaдимиp Aндpеевич pодился 27 ноябpя 1930 г. в г. Москве. Окончил мехaнико-мaтемaтический фaкультет МГУ (1952). Доктоp физико-мaтемaтических нaук (1964). Пpофессоp, заведующий кaфедpой мaтемaтической логики и теоpии aлгоpитмов мехaнико-мaтемaтического фaкультетa (1966). Читает курсы лекций "Введение в математическую логику", "Вычислимые функции", "Теорема Геделя о полноте". Подготовил 25 кандидатов и 2 докторов наук

1. Постановка задачи

Теорема о неполноте, точную формулировку которой мы дадим в конце этой главки, а быть может позже (в случае возникновения к этому интереса у читателя) и доказательство, утверждает примерно следующее: при определенных условиях в любом языке существуют истинные, но недоказуемые утверждения.

Когда мы таким образом формулируем теорему, почти каждое слово требует некоторых пояснений. Поэтому мы начнем с того, что объясним значение слов, используемых нами в этой формулировке.

1.1. Язык

Мы не будем давать наиболее общее из возможных определений языка, предпочтя ограничиться теми языковыми концепциями, которые нам понадобятся впоследствии. Есть два таких понятия: "алфавит языка" и "множество истинных утверждений языка".

1.1.1. Алфавит

Под алфавитом мы понимаем конечный набор элементарных знаков (то есть - вещей, которые невозможно разбить на составные части). Эти знаки называются буквами алфавита. Под словом алфавита мы понимаем конечную последовательность букв. Например, обыкновенные слова в английском языке (включая имена собственные) являются словами 54-хбуквенного алфавита (26 маленьких букв, 26 прописных, тире и апостроф). Другой пример - натуральные числа в десятичной записи являются словами 10-тибуквенного алфавита, чьи буквы - знаки: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Для обозначения алфавитов мы будем использовать обыкновенные заглавные буквы. Если L - алфавит, то L? будет обозначать множество всех слов алфавита L, - слов, образованных из его букв. Мы предположим, что любой язык имеет свой алфавит, так что все выражения этого языка (т. е. - имена различных объектов, утверждения относительно этих объектов и т.д.) являются словами этого алфавита. Например, любое предложение английского языка, равно как и любой текст, написанный по-английски, может рассматриваться как слово расширенного алфавита из 54-х букв, включающего также знаки пунктуации, междусловный пробел, знак красной строки и, возможно, некоторые другие полезные знаки. Предполагая, что выражения языка являются словами некоторого алфавита, мы, таким образом, исключаем из рассмотрения "многослойные" выражения типа???f(x)dx. Однако, это ограничение не слишком существенно, так как любое подобное выражение, при использовании подходящих конвенций, может быть "растянуто" в линейную форму. Любое множество М, содержащееся в L? называется словным множеством алфавита L. Если мы просто говорим, что М - словное множество, то мы подразумеваем, что оно является словом некоторого алфавита. Теперь сформулированное выше предположение о языке может быть перефразировано следующим образом: в любом языке любое множество выражений является словным множеством.

1.1.2. Множество истинных утверждений

Мы предположим, что нам задано подмножество Т множества L? (где L алфавит некоторого рассматриваемого нами языка), которое называется множеством "истинных утверждений" (или просто "истин"). Переходя непосредственно к подмножеству Т, мы опускаем следующие промежуточные шаги рассуждения: во-первых, какие именно слова алфавита L являются корректно образованными выражениями языка, то есть - имеющими определенное значение в нашей интерпретации этого языка (например, 2+3, х+3, х=у, х=3, 2=3, 2=2 являются корректно образованными выражениями, в то время как выражения типа +=х таковыми не являются); во-вторых, какие именно выражения являются формулами, т.е. могут зависеть от параметра (например, х=3, х=у, 2=3, 2=2); в третьих, какие именно из формул являются закрытыми формулами, т.е. утверждениями, не зависящими параметров (например, 2=3, 2=2); и наконец, какие именно закрытые формулы являются истинными утверждениями (например, 2=2).

1.1.3. Фундаментальная пара языка

1.2. "Недоказуемые"

"Недоказуемые" значит не имеющие доказательства.

1.3. Доказательство

Несмотря на то что термин "доказательство" является, возможно, одним из важнейших в математике (Бурбаки начинают свою книгу "Основания математики" словами: "Со времени древних греков сказать "математика" значило то же, что сказать "доказательство""), он не имеет своей точной дефиниции. В целом, понятие доказательства со всеми его смысловыми ответвлениями относится, скорей, к области психологии, нежели к математике. Но как бы то ни было, доказательство - это просто аргумент, который мы сами находим вполне убедительным для того, чтобы убедить всех остальных.

Будучи записано, доказательство становится словом в некотором алфавите Р, так же как любой английский текст является словом алфавита L, пример которого был приведен выше. Множество всех доказательств образуют подмножество (и довольно-таки обширное подмножество) множества Р?. Мы не будем пытаться дать точное определение этой одновременно "наивной" и "абсолютной" концепции доказательства, или - что равносильно - дать определение соответствующему подмножеству Р?. Вместо этого мы рассмотрим формальный аналог этого смутного понятия, для обозначения которого в дальнейшем мы все же будем пользоваться термином "доказательство". Этот аналог имеет две весьма важные особенности, кои отличают его от интуитивного понятия (хотя интуитивная идея доказательства все же отражает в некоторой степени эти особенности). Прежде всего мы допустим, что существуют разные концепции доказательства, то есть - допустимы разные подмножества доказательств в Р?, и даже больше того: мы, на деле, будем допускать, что сам алфавит доказательств Р может изменяться. Далее мы потребуем, чтобы для каждой такой концепции доказательства существовал эффективный метод, другими словами, алгоритм, который бы с необходимостью определял, является ли данное слово алфавита Р доказательством или нет. Мы также предположим, что существует алгоритм, с помощью которого всегда можно определить, какое именно утверждение доказывает данное доказательство. (Во многих ситуациях доказываемым утверждением просто является последнее утверждение в последовательности шагов, образующих доказательство.)

Таким образом, наша окончательная формулировка определения выглядит следующим образом:

(1) У нас имеются алфавит L (алфавит языка) и алфавит Р (алфавит доказательства).

(2) Нам дано множество Р, являющееся подмножеством Р?, и чьи элементы называются "доказательствами". В дальнейшем мы будем предполагать, что также у нас имеется алгоритм, который позволяет нам определить является ли произвольное слово алфавита Р элементом множества Р, то есть доказательством, или нет.

(3) Также у нас есть функция? (для нахождения того, что именно было доказано), чья область определения? удовлетворяет условию Р???Р?, и чья область значений находится в Р?. Мы предполагаем, что у нас есть алгоритм, который вычисляет эту функцию (точное значение слов "алгоритм вычисляет функцию" следующее: значения функции получаются при помощи этого алгоритма - набора специальных правил преобразования). Мы будем говорить, что элемент р? Р есть доказательство слова?(р) алфавита L.

Тройка <Р, Р, ?>, удовлетворяющая условиям (1)-(3) называется дедуктивной системой над алфавитом L.

Для читателя, знакомого с обычным способом определения "доказательства" в терминах "аксиома" и "правило вывода", мы сейчас поясним, как этот метод может рассматриваться в качестве специального случая определения, данного в параграфе 1.3.2. То есть - доказательство обычно определяется как последовательность таких выражений языка, каждое из которых является либо аксиомой, либо ранее полученным из уже существующих утверждений при помощи одного из правил вывода. Если мы добавим новое слово * к алфавиту нашего языка, то мы сможем записать такое доказательство в виде слова составленного при помощи полученного в результате такой модификации алфавита: последовательность выражений становится словом C1*C2*...*Cn. В таком случае, функция, определяющая, что именно было доказано, своим значением имеет часть этого слова, стоящую сразу за последней в последовательности буквой *. Алгоритм, существование которого требуется в части 1.3.2. определения, может легко быть сконструирован, как только мы точно определим какое-либо из принятых значений слов "аксиома" и "правила вывода".

1.4.Попытки точной формулировки теоремы о неполноте

1.4.1. Первая попытка

"При определенных условиях для фундаментальной пары языка алфавита L и дедуктивной системы <Р, Р, ?> над L - всегда существует слово в Т, не имеющее доказательства". Этот вариант все еще выглядит смутным. В частности, мы могли бы запросто придумать сколько угодно дедуктивных систем, имеющих очень немного доказуемых слов. Например, в пустой дедуктивной системе (где Р = ?) совсем нет слов, у которых были бы доказательства.

1.4.2. Вторая попытка

Есть другой, более естественный подход. Предположим, нам задан язык - в том смысле, что нам задана фундаментальная пара этого языка. Теперь мы будем искать такую дедуктивную систему над L (интуитивно, мы ищем технику доказательства), при помощи которой мы могли бы доказать как можно больше слов из Т, в пределе все слова из Т. Теорема Геделя описывает ситуацию, в которой такая дедуктивная система (посредством коей, каждое слово в Т было бы доказуемо) не существует. Таким образом, нам бы хотелось сформулировать следующее утверждение:

"При определенных условиях относительно фундаментальной пары не существует такой дедуктивной системы, в которой бы каждое слово из Т имело бы доказательство".

Однако такое утверждение, очевидно, ложно, так как необходимо лишь взять такую дедуктивную систему, в которой Р = L, Р = Р? и?(р) = р для всех р из Р?; тогда каждое слово из L? является тривиально доказуемым. Следовательно, нам нужно принять некоторое ограничение на то, какими дедуктивными системами мы пользуемся.

1.5. Непротиворечивость

Было бы вполне естественно потребовать, что только "истинные утверждения", то есть только слова из Т, могут быть доказаны. Мы будем говорить, что дедуктивная система <Р, Р, ?> является непротиворечивой относительно фундаментальной пары, если?(Р)?Т. Во всех последующих рассуждениях нас будут интересовать только такие непротиворечивые дедуктивные системы. Если же нам задан язык, то было бы чрезвычайно соблазнительно найти такую непротиворечивую дедуктивную систему, в которой каждое истинное утверждение имело бы доказательство. Интересующий нас вариант теоремы Геделя в точности утверждает, что при определенных условиях относительно фундаментальной пары, невозможно найти такую дедуктивную систему.

1.6. Полнота

Говорится, что дедуктивная система <Р,Р,?> полна относительно фундаментальной пары, при условии если?(Р)?Т. Тогда наша формулировка теоремы о неполноте приобретает следующий вид:

При определенных условиях относительно фундаментальной пары, не существует такой дедуктивной системы <Р,Р,?> над L, которая была бы одновременно полна и непротиворечива относительно.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://filosof.historic.ru

Одной из самых известных теорем математической логики, повезло и не повезло одновременно. В этом она похожа на специальную теорию относительности Эйнштейна. С одной стороны, почти все о них что-то слышали. С другой - в народной интерпретации теория Эйнштейна, как известно, «говорит, что всё в мире относительно» . А теорема Гёделя о неполноте (далее просто ТГН), в примерно столь же вольной фолк-формулировке, «доказывает, что есть вещи, непостижимые для человеческого разума» . И вот одни пытаются приспособить её в качестве аргумента против материализма , а другие, напротив, доказывают с её помощью, что бога нет . Забавно не только то, что обе стороны не могут оказаться правыми одновременно, но и то, что ни те, ни другие не удосуживаются разобраться, что же, собственно, эта теорема утверждает.

Итак, что же? Ниже я попытаюсь «на пальцах» рассказать об этом. Изложение моё будет, разумеется нестрогим и интуитивным, но я попрошу математиков не судить меня строго. Возможно, что для нематематиков (к которым, вообще-то, отношусь и я), в рассказанном ниже будет что-то новое и полезное.

Математическая логика - наука действительно довольно сложная, а главное - не очень привычная. Она требует аккуратных и строгих манёвров, при которых важно не перепутать реально доказанное с тем, что «и так понятно». Тем не менее, я надеюсь, что для понимания следующего ниже «наброска доказательства ТГН» читателю понадобится только знание школьной математики/информатики, навыки логического мышления и 15-20 минут времени.

Несколько упрощая, ТГН утверждает, что в достаточно сложных языках существуют недоказуемые высказывания. Но в этой фразе почти каждое слово нуждается в пояснении.

Начнём с того, что попытаемся разобраться, что такое доказательство. Возьмём какую-нибудь школьную задачку по арифметике. Например, пусть требуется доказать верность следующей незамысловатой формулы: « » (напомню, что символ читается «для любого» и называется «квантор всеобщности»). Доказать её можно, тождественно преобразуя, скажем, так:


Переход от одной формулы к другой происходит по некоторым известным правилам. Переход от 4-й формулы к 5-й произошёл, скажем, потому, что всякое число равно самому себе - такова аксиома арифметики. А вся процедура доказывания, таким образом, переводит формулу в булево значение ИСТИНА. Результатом могла быть и ЛОЖЬ - если бы мы опровергали какую-то формулу. В таком случае мы бы доказали её отрицание. Можно себе представить программу (и такие программы действительно написаны), которые бы доказывали подобные (и более сложные) высказывания без участия человека.

Изложим то же самое чуть более формально. Пусть у нас есть множество, состоящее из строк символов какого-то алфавита, и существуют правила, по которым из этих строк можно выделить подмножество так называемых высказываний - то есть грамматически осмысленных фраз, каждая из которых истинна или ложна. Можно сказать, что существует функция , сопоставляющая высказываниям из одно из двух значений: ИСТИНА или ЛОЖЬ (то есть отображающая их в булево множество из двух элементов).

Назовём такую пару - множество высказываний и функция из в - «языком высказываний» . Заметим, что в повседневном смысле понятие языка несколько шире. Например, фраза русского языка «А ну иди сюда!» не истинна и не ложна, то есть высказыванием, с точки зрения математической логики, не является.

Для дальнейшего нам понадобится понятие алгоритма. Приводить здесь формальное его определение я не буду - это завело бы нас довольно далеко в сторону. Ограничусь неформальным: «алгоритм» - эта последовательность однозначных инструкций («программа»), которая за конечное число шагов переводит исходные данные в результат. Выделенное курсивом принципиально важно - если на каких-то начальных данных программа зацикливается, то алгоритма она не описывает. Для простоты и в применении к нашему случаю читатель может считать, что алгоритм - это программа, написанная на любом известном ему языке программирования, которая для любых входных данных из заданного класса гарантированно завершает свою работу с выдачей булевого результата.

Спросим себя: для всякой ли функции существует «доказывающий алгоритм» (или, короче, «дедуктика» ), эквивалентный этой функции, то есть переводящий каждое высказывание именно в то булево значение, что и она? Лаконичнее тот же вопрос можно сформулировать так: всякая ли функция над множеством высказываний вычислима ? Как вы уже догадываетесь, из справедливости ТГН следует, что нет, не всякая - существуют невычислимые функции такого типа. Иными словами, не всякое верное высказывание можно доказать.

Очень может быть, что это утверждение вызовет у вас внутренний протест. Связано это с несколькими обстоятельствами. Во-первых, когда нас учат школьной математике, то иногда возникает ложное впечатление почти полной тождественности фраз «теорема верна» и «можно доказать или проверить теорему ». Но, если вдуматься, это совершенно не очевидно. Некоторые теоремы доказываются довольно просто (например, перебором небольшого числа вариантов), а некоторые - очень сложно. Вспомним, например, знаменитую Великую теорему Ферма :


доказательство которой нашли только через три с половиной века после первой формулировки (и оно далеко не элементарно). Следует различать истинность высказывания и его доказуемость. Ниоткуда не следует, что не существует истинных, но недоказуемых (и не проверяемых в полной мере) высказываний.

Второй интуитивный довод против ТГН более тонок. Допустим, у нас есть какое-то недоказуемое (в рамках данной дедуктики) высказывание. Что мешает нам принять его в качестве новой аксиомы? Тем самым мы чуть усложним нашу систему доказательств, но это не страшно. Этот довод был бы совершенно верен, если бы недоказуемых высказываний было конечное число. На практике же может произойти следующее - после постулирования новой аксиомы вы наткнётесь на новое недоказуемое высказывание. Примете его в качестве ещё аксиомы - наткнётесь на третье. И так до бесконечности. Говорят, что дедуктика останется неполной . Мы можем также принять силовые меры, чтобы доказывающий алгоритм заканчивался через конечное число шагов с каким-то результатом для любого высказывания языка. Но при этом он начнёт врать - приводить к истине для неверных высказываний, или ко лжи - для верных. В таких случаях говорят, что дедуктика противоречива . Таким образом, ещё одна формулировка ТГН звучит так: «Существуют языки высказываний, для которых невозможна полная непротиворечивая дедуктика» - отсюда и название теоремы.

Иногда называют «теоремой Гёделя» утверждение о том, что любая теория содержит проблемы, которые не могут быть решены в рамках самой теории и требуют её обобщения. В каком-то смысле это верно, хотя такая формулировка скорее затуманивает вопрос, чем проясняет его.

Замечу также, что если бы речь шла о привычных функциях, отображающих множество вещественных чисел в него же, то «невычислимость» функции никого бы не удивила (только не надо путать «вычислимые функции» и «вычислимые числа» - это разные вещи). Любому школьнику известно, что, скажем, в случае функции вам должно сильно повезти с аргументом, чтобы процесс вычисления точного десятичного представления значения этой функции окончился за конечное число шагов. А скорее всего вы будете вычислять её с помощью бесконечного ряда, и это вычисление никогда не приведёт к точному результату, хотя может подойти к нему как угодно близко - просто потому, что значение синуса большинства аргументов иррационально. ТГН просто говорит нам о том, что даже среди функций, аргументами которой являются строки, а значениями - ноль или единица, невычислимые функции, хотя и совсем по другому устроенные, тоже бывают.

Для дальнейшего опишем «язык формальной арифметики». Рассмотрим класс строк текста конечной длины, состоящих из арабских цифр, переменных (букв латинского алфавита), принимающих натуральные значения, пробелов, знаков арифметических действий, равенства и неравенства, кванторов («существует») и («для любого») и, быть может, каких-то ещё символов (точное их количество и состав для нас неважны). Понятно, что не все такие строки осмысленны (например, « » - это бессмыслица). Подмножество осмысленных выражений из этого класса (то есть строк, которые истинны или ложны с точки зрения обычной арифметики) и будет нашим множеством высказываний.

Примеры высказываний формальной арифметики:


и т.д. Теперь назовём «формулой со свободным параметром» (ФСП) строку, которая становится высказыванием, если в качестве этого параметра подставить в неё натуральное число. Примеры ФСП (с параметром ):


и т.д. Иными словами, ФСП эквивалентны функциям натурального аргумента с булевыми значением.

Обозначим множество всех ФСП буквой . Понятно, что его можно упорядочить (например, сначала выпишем упорядоченные по алфавиту однобуквенные формулы, за ними - двухбуквенные и т.д.; по какому именно алфавиту будет происходить упорядочивание, нам непринципиально). Таким образом, любой ФСП соответствует её номер в упорядоченном списке, и мы будем обозначать её .

Перейдём теперь к наброску доказательства ТГН в такой формулировке:

  • Для языка высказываний формальной арифметики не существует полной непротиворечивой дедуктики.

Доказывать будем от противного.

Итак, допустим, что такая дедуктика существует. Опишем следующий вспомогательный алгоритм , ставящий в соответствие натуральному числу булево значение следующим образом:


Проще говоря, алгоритм приводит к значению ИСТИНА тогда и только тогда, когда результат подстановки в ФСП её собственного номера в нашем списке даёт ложное высказывание.

Тут мы подходим к единственному месту, в котором я попрошу читателя поверить мне на слово.

Очевидно, что, при сделанном выше предположении, любой ФСП из можно сопоставить алгоритм, содержащий на входе натуральное число, а на выходе – булево значение. Менее очевидно обратное утверждение:


Доказательство этой леммы потребовало бы, как минимум, формального, а не интуитивного, определения понятия алгоритма. Однако, если немного подумать, то она довольно правдоподобна. В самом деле, алгоритмы записываются на алгоритмических языках, среди которых есть такие экзотические, как, например, Brainfuck , состоящий из восьми односимвольных слов, на котором, тем не менее, можно реализовать любой алгоритм. Странно было бы, если бы описанный нами более богатый язык формул формальной арифметики оказался бы беднее - хотя, без сомнения, для обычного программирования он не очень подходит.

Пройдя это скользкое место, мы быстро добираемся до конца.

Итак, выше мы описали алгоритм . Согласно лемме, в которую я попросил вас поверить, существует эквивалентная ему ФСП. Она имеет какой-то номер в списке - скажем, . Спросим себя, чему равно ? Пусть это ИСТИНА. Тогда, по построению алгоритма (а значит, и эквивалентной ему функции ), это означает, что результат подстановки числа в функцию - ЛОЖЬ. Аналогично проверяется и обратное: из ЛОЖЬ следует ИСТИНА. Мы пришли к противоречию, а значит, исходное предположение неверно. Таким образом, для формальной арифметики не существует полной непротиворечивой дедуктики. Что и требовалось доказать.

Здесь уместно вспомнить Эпименида (см. портрет в заголовке), который, как известно, заявил, что все критяне - лжецы, сам являясь критянином. В более лаконичной формулировке его высказывание (известное как «парадокс лжеца») можно сформулировать так: «Я лгу». Именно такое высказывание, само превозглашающее свою ложность, мы и использовали для доказательства.

В заключение я хочу заметить, что ничего особенного удивительного ТГН не утверждает. В конце концов, все давно привыкли, что не все числа представимы в виде отношения двух целых (помните, у этого утверждения есть очень изящное доказательство , которому больше двух тысяч лет?). И корнями полиномов с рациональными коэффициентами являются тоже не все числа . А теперь вот выяснилось, что не все функции натурального аргумента вычислимы.

Приведённый набросок доказательства относился к формальной арифметике, но нетрудно понять, что ТГН применима и к многим другим языкам высказываний. Разумеется, не всякие языки таковы. Например, определим язык следующим образом:

  • «Любая фраза китайского языка является верным высказыванием, если она содержится в цитатнике товарища Мао Дзе Дуна, и неверна, если не содержится».

Тогда соответствующий полный и непротиворечивый доказывающий алгоритм (его можно назвать «догматической дедуктикой») выглядит примерно так:

  • «Листай цитатник товарища Мао Дзе Дуна, пока не найдёшь искомое высказывание. Если оно найдено, то оно верно, а если цитатник закончился, а высказывание не найдено, то оно неверно».

Здесь нас спасает то, что любой цитатник, очевидно, конечен, поэтому процесс «доказывания» неминуемо закончится. Таким образом, к языку догматических высказываний ТГН неприменима. Но мы ведь говорили о сложных языках, правда?

Одной из самых известных теорем математической логики, повезло и не повезло одновременно. В этом она похожа на специальную теорию относительности Эйнштейна. С одной стороны, почти все о них что-то слышали. С другой - в народной интерпретации теория Эйнштейна, как известно, «говорит, что всё в мире относительно» . А теорема Гёделя о неполноте (далее просто ТГН), в примерно столь же вольной фолк-формулировке, «доказывает, что есть вещи, непостижимые для человеческого разума» . И вот одни пытаются приспособить её в качестве аргумента против материализма , а другие, напротив, доказывают с её помощью, что бога нет . Забавно не только то, что обе стороны не могут оказаться правыми одновременно, но и то, что ни те, ни другие не удосуживаются разобраться, что же, собственно, эта теорема утверждает.

Итак, что же? Ниже я попытаюсь «на пальцах» рассказать об этом. Изложение моё будет, разумеется нестрогим и интуитивным, но я попрошу математиков не судить меня строго. Возможно, что для нематематиков (к которым, вообще-то, отношусь и я), в рассказанном ниже будет что-то новое и полезное.

Математическая логика - наука действительно довольно сложная, а главное - не очень привычная. Она требует аккуратных и строгих манёвров, при которых важно не перепутать реально доказанное с тем, что «и так понятно». Тем не менее, я надеюсь, что для понимания следующего ниже «наброска доказательства ТГН» читателю понадобится только знание школьной математики/информатики, навыки логического мышления и 15-20 минут времени.

Несколько упрощая, ТГН утверждает, что в достаточно сложных языках существуют недоказуемые высказывания. Но в этой фразе почти каждое слово нуждается в пояснении.

Начнём с того, что попытаемся разобраться, что такое доказательство. Возьмём какую-нибудь школьную задачку по арифметике. Например, пусть требуется доказать верность следующей незамысловатой формулы: « » (напомню, что символ читается «для любого» и называется «квантор всеобщности»). Доказать её можно, тождественно преобразуя, скажем, так:


Переход от одной формулы к другой происходит по некоторым известным правилам. Переход от 4-й формулы к 5-й произошёл, скажем, потому, что всякое число равно самому себе - такова аксиома арифметики. А вся процедура доказывания, таким образом, переводит формулу в булево значение ИСТИНА. Результатом могла быть и ЛОЖЬ - если бы мы опровергали какую-то формулу. В таком случае мы бы доказали её отрицание. Можно себе представить программу (и такие программы действительно написаны), которые бы доказывали подобные (и более сложные) высказывания без участия человека.

Изложим то же самое чуть более формально. Пусть у нас есть множество, состоящее из строк символов какого-то алфавита, и существуют правила, по которым из этих строк можно выделить подмножество так называемых высказываний - то есть грамматически осмысленных фраз, каждая из которых истинна или ложна. Можно сказать, что существует функция , сопоставляющая высказываниям из одно из двух значений: ИСТИНА или ЛОЖЬ (то есть отображающая их в булево множество из двух элементов).

Назовём такую пару - множество высказываний и функция из в - «языком высказываний» . Заметим, что в повседневном смысле понятие языка несколько шире. Например, фраза русского языка «А ну иди сюда!» не истинна и не ложна, то есть высказыванием, с точки зрения математической логики, не является.

Для дальнейшего нам понадобится понятие алгоритма. Приводить здесь формальное его определение я не буду - это завело бы нас довольно далеко в сторону. Ограничусь неформальным: «алгоритм» - эта последовательность однозначных инструкций («программа»), которая за конечное число шагов переводит исходные данные в результат. Выделенное курсивом принципиально важно - если на каких-то начальных данных программа зацикливается, то алгоритма она не описывает. Для простоты и в применении к нашему случаю читатель может считать, что алгоритм - это программа, написанная на любом известном ему языке программирования, которая для любых входных данных из заданного класса гарантированно завершает свою работу с выдачей булевого результата.

Спросим себя: для всякой ли функции существует «доказывающий алгоритм» (или, короче, «дедуктика» ), эквивалентный этой функции, то есть переводящий каждое высказывание именно в то булево значение, что и она? Лаконичнее тот же вопрос можно сформулировать так: всякая ли функция над множеством высказываний вычислима ? Как вы уже догадываетесь, из справедливости ТГН следует, что нет, не всякая - существуют невычислимые функции такого типа. Иными словами, не всякое верное высказывание можно доказать.

Очень может быть, что это утверждение вызовет у вас внутренний протест. Связано это с несколькими обстоятельствами. Во-первых, когда нас учат школьной математике, то иногда возникает ложное впечатление почти полной тождественности фраз «теорема верна» и «можно доказать или проверить теорему ». Но, если вдуматься, это совершенно не очевидно. Некоторые теоремы доказываются довольно просто (например, перебором небольшого числа вариантов), а некоторые - очень сложно. Вспомним, например, знаменитую Великую теорему Ферма :


доказательство которой нашли только через три с половиной века после первой формулировки (и оно далеко не элементарно). Следует различать истинность высказывания и его доказуемость. Ниоткуда не следует, что не существует истинных, но недоказуемых (и не проверяемых в полной мере) высказываний.

Второй интуитивный довод против ТГН более тонок. Допустим, у нас есть какое-то недоказуемое (в рамках данной дедуктики) высказывание. Что мешает нам принять его в качестве новой аксиомы? Тем самым мы чуть усложним нашу систему доказательств, но это не страшно. Этот довод был бы совершенно верен, если бы недоказуемых высказываний было конечное число. На практике же может произойти следующее - после постулирования новой аксиомы вы наткнётесь на новое недоказуемое высказывание. Примете его в качестве ещё аксиомы - наткнётесь на третье. И так до бесконечности. Говорят, что дедуктика останется неполной . Мы можем также принять силовые меры, чтобы доказывающий алгоритм заканчивался через конечное число шагов с каким-то результатом для любого высказывания языка. Но при этом он начнёт врать - приводить к истине для неверных высказываний, или ко лжи - для верных. В таких случаях говорят, что дедуктика противоречива . Таким образом, ещё одна формулировка ТГН звучит так: «Существуют языки высказываний, для которых невозможна полная непротиворечивая дедуктика» - отсюда и название теоремы.

Иногда называют «теоремой Гёделя» утверждение о том, что любая теория содержит проблемы, которые не могут быть решены в рамках самой теории и требуют её обобщения. В каком-то смысле это верно, хотя такая формулировка скорее затуманивает вопрос, чем проясняет его.

Замечу также, что если бы речь шла о привычных функциях, отображающих множество вещественных чисел в него же, то «невычислимость» функции никого бы не удивила (только не надо путать «вычислимые функции» и «вычислимые числа» - это разные вещи). Любому школьнику известно, что, скажем, в случае функции вам должно сильно повезти с аргументом, чтобы процесс вычисления точного десятичного представления значения этой функции окончился за конечное число шагов. А скорее всего вы будете вычислять её с помощью бесконечного ряда, и это вычисление никогда не приведёт к точному результату, хотя может подойти к нему как угодно близко - просто потому, что значение синуса большинства аргументов иррационально. ТГН просто говорит нам о том, что даже среди функций, аргументами которой являются строки, а значениями - ноль или единица, невычислимые функции, хотя и совсем по другому устроенные, тоже бывают.

Для дальнейшего опишем «язык формальной арифметики». Рассмотрим класс строк текста конечной длины, состоящих из арабских цифр, переменных (букв латинского алфавита), принимающих натуральные значения, пробелов, знаков арифметических действий, равенства и неравенства, кванторов («существует») и («для любого») и, быть может, каких-то ещё символов (точное их количество и состав для нас неважны). Понятно, что не все такие строки осмысленны (например, « » - это бессмыслица). Подмножество осмысленных выражений из этого класса (то есть строк, которые истинны или ложны с точки зрения обычной арифметики) и будет нашим множеством высказываний.

Примеры высказываний формальной арифметики:


и т.д. Теперь назовём «формулой со свободным параметром» (ФСП) строку, которая становится высказыванием, если в качестве этого параметра подставить в неё натуральное число. Примеры ФСП (с параметром ):


и т.д. Иными словами, ФСП эквивалентны функциям натурального аргумента с булевыми значением.

Обозначим множество всех ФСП буквой . Понятно, что его можно упорядочить (например, сначала выпишем упорядоченные по алфавиту однобуквенные формулы, за ними - двухбуквенные и т.д.; по какому именно алфавиту будет происходить упорядочивание, нам непринципиально). Таким образом, любой ФСП соответствует её номер в упорядоченном списке, и мы будем обозначать её .

Перейдём теперь к наброску доказательства ТГН в такой формулировке:

  • Для языка высказываний формальной арифметики не существует полной непротиворечивой дедуктики.

Доказывать будем от противного.

Итак, допустим, что такая дедуктика существует. Опишем следующий вспомогательный алгоритм , ставящий в соответствие натуральному числу булево значение следующим образом:


Проще говоря, алгоритм приводит к значению ИСТИНА тогда и только тогда, когда результат подстановки в ФСП её собственного номера в нашем списке даёт ложное высказывание.

Тут мы подходим к единственному месту, в котором я попрошу читателя поверить мне на слово.

Очевидно, что, при сделанном выше предположении, любой ФСП из можно сопоставить алгоритм, содержащий на входе натуральное число, а на выходе – булево значение. Менее очевидно обратное утверждение:


Доказательство этой леммы потребовало бы, как минимум, формального, а не интуитивного, определения понятия алгоритма. Однако, если немного подумать, то она довольно правдоподобна. В самом деле, алгоритмы записываются на алгоритмических языках, среди которых есть такие экзотические, как, например, Brainfuck , состоящий из восьми односимвольных слов, на котором, тем не менее, можно реализовать любой алгоритм. Странно было бы, если бы описанный нами более богатый язык формул формальной арифметики оказался бы беднее - хотя, без сомнения, для обычного программирования он не очень подходит.

Пройдя это скользкое место, мы быстро добираемся до конца.

Итак, выше мы описали алгоритм . Согласно лемме, в которую я попросил вас поверить, существует эквивалентная ему ФСП. Она имеет какой-то номер в списке - скажем, . Спросим себя, чему равно ? Пусть это ИСТИНА. Тогда, по построению алгоритма (а значит, и эквивалентной ему функции ), это означает, что результат подстановки числа в функцию - ЛОЖЬ. Аналогично проверяется и обратное: из ЛОЖЬ следует ИСТИНА. Мы пришли к противоречию, а значит, исходное предположение неверно. Таким образом, для формальной арифметики не существует полной непротиворечивой дедуктики. Что и требовалось доказать.

Здесь уместно вспомнить Эпименида (см. портрет в заголовке), который, как известно, заявил, что все критяне - лжецы, сам являясь критянином. В более лаконичной формулировке его высказывание (известное как «парадокс лжеца») можно сформулировать так: «Я лгу». Именно такое высказывание, само превозглашающее свою ложность, мы и использовали для доказательства.

В заключение я хочу заметить, что ничего особенного удивительного ТГН не утверждает. В конце концов, все давно привыкли, что не все числа представимы в виде отношения двух целых (помните, у этого утверждения есть очень изящное доказательство , которому больше двух тысяч лет?). И корнями полиномов с рациональными коэффициентами являются тоже не все числа . А теперь вот выяснилось, что не все функции натурального аргумента вычислимы.

Приведённый набросок доказательства относился к формальной арифметике, но нетрудно понять, что ТГН применима и к многим другим языкам высказываний. Разумеется, не всякие языки таковы. Например, определим язык следующим образом:

  • «Любая фраза китайского языка является верным высказыванием, если она содержится в цитатнике товарища Мао Дзе Дуна, и неверна, если не содержится».

Тогда соответствующий полный и непротиворечивый доказывающий алгоритм (его можно назвать «догматической дедуктикой») выглядит примерно так:

  • «Листай цитатник товарища Мао Дзе Дуна, пока не найдёшь искомое высказывание. Если оно найдено, то оно верно, а если цитатник закончился, а высказывание не найдено, то оно неверно».

Здесь нас спасает то, что любой цитатник, очевидно, конечен, поэтому процесс «доказывания» неминуемо закончится. Таким образом, к языку догматических высказываний ТГН неприменима. Но мы ведь говорили о сложных языках, правда?

Теги: Добавить метки

Теоремы Гёделя о неполноте

Теоремы Гёделя о неполноте

Теоремы Гёделя о неполноте - две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой достаточно сильной теории первого порядка .

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой теории.

Первая теорема Гёделя о неполноте

Утверждение первой теоремы Гёделя о неполноте можно сформулировать следующим образом:

Если формальная арифметика S непротиворечива, то в ней существует такая замкнутая формула G, что ни G, ни её отрицание ¬G не являются выводимыми в S.

При доказательстве теоремы Гёдель построил формулу G в явном виде, иногда её называют гёделевой неразрешимой формулой. В стандартной интерпретации предложение G утверждает свою собственную невыводимость в S. Следовательно, по теореме Гёделя, если теория S непротиворечива, то эта формула и в самом деле невыводима в S и потому истинна в стандартной интерпретации. Таким образом, для натуральных чисел, формула G верна, но в S невыводима.

Доказательство Гёделя можно провести и для любой теории, полученной из S добавлением новых аксиом, например, формулы G в качестве аксиомы. Поэтому любая непротиворечивая теория, являющаяся расширением формальной арифметики, будет неполна.

Для доказательства первой теоремы о неполноте Гёдель сопоставил каждому символу, выражению и последовательности выражений формальной арифметики определенный номер. Поскольку формулы и теоремы являются предложениями арифметики, а формальные выводы теорем являются последовательностями формул, то стало возможным говорить о теоремах и доказательствах в терминах натуральных чисел. Например, пусть гёделева неразрешимая формула G имеет номер m , тогда она эквивалентна следующему утверждению на языке арифметики: "нет такого натурального числа n , что n есть номер вывода формулы с номером m ". Подобное сопоставление формул и натуральных чисел называется арифметизацией математики и было осуществлено Гёделем впервые. Эта идея впоследствии стала ключом к решению многих важных задач математической логики.

Набросок доказательства

Зафиксируем некоторую формальную систему PM, в которой можно представить элементарные математические понятия .

Выражения формальной системы являются, если смотреть извне, конечными последовательностями примитивных символов (переменных, логических постоянных, и скобок или точек) и нетрудно строго уточнить какие последовательности примитивных символов являются формулами, а какие нет. Аналогично, с формальной точки зрения, доказательства есть ни что иное, как конечные последовательности формул (со строго заданными свойствами). Для математического рассмотрения не имеет значения, какие объекты взять в качестве примитивных символов, и мы решаем использовать для этих целей натуральные числа. Соответственно, формула является конечной последовательностью натуральных чисел, вывод формулы - конечной последовательностью конечных последовательностей натуральных чисел. Математические понятия (утверждения) таким образом становятся понятиями (утверждениями) о натуральных числах или их последовательностях, и, следовательно, сами могут быть выражены в символизме системы PM (по крайней мере частично). Может быть показано, в частности, что понятия "формула", "вывод", "выводимая формула" определимы внутри системы PM, то есть можно восстановить, например, формулу F (v ) в PM с одной свободной переменной v (тип которой - числовая последовательность) такую, что F (v ), в интуитивной интерпретации, означает: v - выводимая формула. Теперь построим неразрешимое предложение системы PM, то есть предложение A , для которого ни A , ни не-A невыводимы, следующим образом:

Формулу в PM с точно одной свободной переменной, тип которой натуральное число (класс классов), будем называть класс-выражением. Упорядочим класс-выражения в последовательность каким-либо образом, обозначим n -е через R (n ), и заметим, что понятие "класс-выражение", также как и отношение упорядочения R можно определить в системе PM. Пусть α будет произвольным класс-выражением; через [α;n ] обозначим формулу, которая образуется из класс-выражения α заменой свободной переменной на символ натурального числа n . Тернарное отношение x = [y ;z ] тоже оказывается определимым в PM. Теперь мы определим класс K натуральных чисел следующим образом:

n K ≡ ¬Bew[R (n );n ] (*)

(где Bew x означает: x - выводимая формула). Так как все понятия, встречающиеся в этом определении, можно выразить в PM, то это же верно и для понятия K , которое из них строится, то есть имеется такое класс-выражение S , что формула [S ;n ], интуитивно интерпретируемая, обозначает, что натуральное число n принадлежит K . Как класс-выражение, S идентична некоторому определенному R (q ) в нашей нумерации, то есть

S = R (q )

выполняется для некоторого определенного натурального числа q . Теперь покажем, что предложение [R (q );q ] неразрешимо в PM. Так, если предложение [R (q );q ] предполагается выводимым, тогда оно оказывается истинным, то есть, в соответсвии со сказанным выше, q будет принадлежать K , то есть, в соответствии с (*), ¬Bew[R (q );q ] будет выполняться, что противоречит нашему предположению. С другой стороны, если бы отрицание [R (q );q ] было выводимым, то будет иметь место ¬ n K , то есть Bew[R (q );q ] будет истинным. Следовательно, [R (q );q ] вместе со своим отрицанием будет выводимо, что снова невозможно.

Полиномиальная форма

Для каждой непротиворечивой теории T можно указать такое целое значение параметра K, что уравнение (θ + 2z b 5) 2 + (u + t θ − l ) 2 + (y + m θ − e ) 2 + (n q 16) 2 + ((g + e q 3 + l q 5 + (2(e z λ)(1 + g ) 4 + λb 5 + λb 5 q 4)q 4)(n 2 − n ) + (q 3 − b l + l + θλq 3 + (b 5 − 2)q 5)(n 2 − 1) − r ) 2 + (p − 2w s 2 r 2 n 2) 2 + (p 2 k 2 − k 2 + 1 − τ 2) 2 + (4(c k s n 2) 2 + η − k 2) 2 + (r + 1 + h p h k ) 2 + (a − (w n 2 + 1)r s n 2) 2 + (2r + 1 + φ − c ) 2 + (b w + c a − 2c + 4αγ − 5γ − d ) 2 + ((a 2 − 1)c 2 + 1 − d 2) 2 + ((a 2 − 1)i 2 c 4 + 1 − f 2) 2 + (((a + f 2 (d 2 − a )) 2 − 1)(2r + 1 + j c ) 2 + 1 − (d + o f ) 2) 2 + (((z + u + y ) 2 + u ) 2 + y K ) 2 = 0 не имеет решений в неотрицательных целых числах, но этот факт не может быть доказан в теории T. Более того, для каждой непротиворечивой теории множество значений параметра K, обладающих таким свойством, бесконечно и алгоритмически неперечислимо .

Вторая теорема Гёделя о неполноте

В формальной арифметике S можно построить такую формулу, которая в стандартной интерпретации является истинной в том и только в том случае, когда теория S непротиворечива. Для этой формулы справеливо утверждение второй теоремы Гёделя:

Если формальная арифметика S непротиворечива, то в ней невыводима формула, содержательно утверждающая непротиворечивость S.

Иными словами, непротиворечивость формальной арифметики не может быть доказана средствами этой теории. Однако существуют доказательства непротиворечивости формальной арифметики, использующие средства, невыразимые в ней.

Набросок доказательства

Сначала строится формула Con , содержательно выражающая невозможность вывода в теории S какой-либо формулы вместе с ее отрицанием. Тогда утверждение первой теоремы Гёделя выражается формулой Con G , где G - Гёделева неразрешимая формула. Все рассуждения для доказательства первой теоремы могут быть выражены и проведены средствами S, то есть в S выводима формула Con G . Отсюда, если в S выводима Con , то в ней выводима и G . Однако, согласно первой теореме Гёделя, если S непротиворечива, то G в ней невыводима. Следовательно, если S непротиворечива, то в ней невыводима и формула Con .

Примечания

См. также

Ссылки

  • В. А. Успенский Теорема Гёделя о неполноте . - М.: Наука, 1982. - 110 с. - (Популярные лекции по математике).
  • Академик Ю. Л. Ершов «Доказательность в математике» , программа А. Гордона от 16 июня 2003 года
  • А. Б. Сосинский Теорема Геделя // летняя школа «Современная математика» . - Дубна: 2006.
  • П. Дж. Коэн Об основаниях теории множеств // Успехи математических наук . - 1974. - Т. 29. - № 5(179). - С. 169–176.
  • М. Кордонский Конец истины . - ISBN 5-946448-001-04
  • В. А. Успенский Теорема Гёделя о неполноте и четыре дороги, ведущие к ней // летняя школа «Современная математика» . - Дубна: 2007.
  • Зенкин А. А. Принцип разделения времени и анализ одного класса квазифинитных правдоподобных рассуждений (на примере теоремы Г. Кантора о несчётности) // ДАН . - 1997. - Т. 356. - № 6. - С. 733-735.
  • Чечулин В. Л. О кратком варинте доказательства теорем Гёделя // «Фундаментальные проблемы математики и информационных наук», материалы XXXIV Дальневосточной Математической Школы-семинара имени академика Е.В. Золотова . - Хабаровск, Россия: 2009. - С. 60-61.

Wikimedia Foundation . 2010 .

Смотреть что такое "Теоремы Гёделя о неполноте" в других словарях:

    У этого термина существуют и другие значения, см. Теорема Гёделя. Теорема Гёделя о неполноте и вторая теорема Гёделя[ 1] две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой… … Википедия

    Теоремы Гёделя о неполноте две теоремы математической логики о неполноте формальных систем определённого рода. Содержание 1 Первая теорема Гёделя о неполноте 2 Вторая теорема Гёделя о неполноте … Википедия

    У этого термина существуют и другие значения, см. Теорема Гёделя. Теорема Гёделя о полноте исчисления предикатов является одной из фундаментальных теорем математической логики: она устанавливает однозначную связь между логической истинностью… … Википедия

    Общее название двух теорем, установленных К. Гёделем . Первая Г. т. о н. утверждает, что в любой непротиворечивой формальной системе, содержащей минимум арифметики (знаки и обычные правила обращения с ними), найдется формально неразрешимое… … Математическая энциклопедия