Нобелевская премия графен. Как «мусорные физики» из России получили Нобелевскую премию

Нобелевскую премию по физике получили наши соотечественники - Андрей (Андре) Гейм, 51 год, и Константин Новоселов, 36 лет. В истории новой России такая радость бывает нечасто - в третий раз. И если предыдущие лауреаты (Жорес Иванович Алферов, 2000 г., и Виталий Лазаревич Гинзбург, 2003 г.) награждались за достижения, сделанные еще в советский период, Новоселов и Гейм получили премию за открытие, датированное 2004 годом. (Что по меркам Нобелевского комитета буквально только что.) Радость омрачает факт: свое открытие ученые сделали не на родине и даже без ее участия. Нобелевскую премию получили сотрудники Манчестерского университета, гражданин Нидерландов (Гейм) и гражданин Британии (Новоселов).

Телезрителю трудно объяснить, что хорошие ученые до сих пор играют не за Россию, поднимающуюся с колен (а должны!). Надо как-то выкручиваться. И вот уже спустя несколько часов после объявления лауреатов - Новоселова и Гейма позвали обратно на родину. А именно в Сколково. Для физиков это стало неожиданностью. Более того, в тандеме ученых, кажется, единогласия по данному вопросу нет. В монологе для «Новой» Андрей Гейм, например, от предложения вернуться категорически отказался, назвав Сколково «полнейшим сюрреализмом». А Новоселов заявил, что «есть смысл, наверное, приехать».

Константин Новоселов: «Душой в России, но работа пока - в Англии»

– Всем хочется сказать спасибо за поддержку! Сегодня я радуюсь как ребенок, но чувствую, что завтра буду очень переживать от осознания факта такого великого признания. Нобелевская премия уже давит морально, для меня это слишком большая ответственность…

В России, как передают друзья, все очень радуются за нас. Говорят, что-то похожее было, когда премией наградили Жореса Ивановича Алферова. Это приятно, ведь отчасти я уже не принадлежу России, а люди все равно радуются.

Я сегодня думаю, рассуждаю, чисто гипотетически: а что если бы я остался в свое время в России? Смог бы я добиться тех же результатов, что и в Англии? С одной стороны, никаких трюков и сложных технологий мы не использовали. Технологические сложности были минимальны. Но другой вопрос - это стиль работы, принятый в научных кругах России. Он слишком устарел.

С того момента, как нас с Андреем объявили лауреатами, все вокруг тут же заговорили про Сколково. Я слышал это название и раньше, но понятия не имел, что это такое и как это работает. Да и сейчас еще не очень хорошо понимаю. А тут нас уже приглашают, пообещали содействие, финансирование… Я не знаю. Для меня это сложное решение, но, думаю, есть смысл попробовать. Здесь, в Англии, мне очень-очень нравится, здесь бесконечно комфортно, но именно это и пугает. Мне нужно что-то еще, идти дальше…

Я привык работать «по-английски». Все очень комфортно, все нужное есть, у нас маленькие группы, дружелюбная атмосфера, и ты видишь результаты своей работы в течение минимального времени. Мне бы хотелось сохранить такой стиль работы. Но я подозреваю, в случае переезда в Сколково это будет исключено.

В прошлом году многие русские ученые-эмигранты написали открытое письмо президенту Медведеву о гибели отечественной фундаментальной науки. Я про него слышал, но сам не подписывал. Это мне кажется настолько очевидным, что такие письма вообще не нужны. Ведь, разумеется, очень удобно критиковать издалека… А между тем в России достаточно прекрасных ученых, которые сами должны принимать решения о том, как реформировать науку. В России вообще в целом достаточно умных голов, которые все понимают сами. То, что сейчас делает Медведев, - это правильные шаги. Любая поддержка науки - это всегда хорошо. Я так считаю, и было бы глупо писать сейчас ему письмо со словами своей поддержки и одобрения. Вы что думаете, он ничего не понимает?! Без нас, что ли, не разберется?

Даже в Англии с наукой сегодня все не так радужно, как вам может показаться. А в следующие три-четыре года ученые пострадают еще больше из-за урезания финансирования. Слава богу, коллеги из России не пишут в этой связи письма в британский парламент и королеве с премьер-министром.

Тянет ли в Россию? Душой - очень! Здесь у меня огромное количество друзей, в Москве живут родители. Приезжаю раз в полтора года или раз в год, но в основном в Москву и Питер. В Нижнем Тагиле не был, к сожалению, уже года четыре, но очень хочется. Скучаю. Но на первом месте работа - и поэтому пока Англия.

Андрей Гейм: «Из ума пока не выжил, чтобы возвращаться»

Зовут в Сколково? Хотят, чтоб вернулись? Простите, конечно, «съесть-то он съест, но кто ж ему даст». Ребята, вы там чего?! Сама идея Сколкова - полнейший сюрреализм, но еще больший сюрреализм, с нашей точки зрения, это когда нас, не спрашивая даже, куда-то выписывают, чуть ли не выкупают. Ладно, это вопрос этики. А если по делу: вы что думаете, господа, отвалив мешок с деньгами, чего-то добьетесь?

Никто не спорит - России для выживания необходимо двигаться вперед. Задача по модернизации, которую ставит Дмитрий Медведев, верна. Но какими средствами он хочет этого добиться? Наука - это часть великой когда-то российской культуры. Культуру можно разрушить за два года, что и было сделано. А чтобы восстановить ее, нужны поколения новых людей, масштабная реконструкция фундамента. Один проект «Сколково» ничего не решит, даже если в него заливают с таким пионерским, молодогвардейским пылом миллиарды. Потому что сегодня заливают, а завтра из-за отсутствия результатов (а так и будет) скажут «привет!». Все свободны.

Нужно масштабно финансировать всю науку в течение десятилетий. Вот бы Медведев сказал: мы обязуемся ежегодно расходовать на исследования 2% нашего ВВП. Вот это было бы дело! Это был бы уровень европейских стран и какое-то развитие. Хотя России для поставленных задач нужно хотя бы 3%, как в Сингапуре и Южной Корее. Иначе о модернизации говорить бессмысленно.

Но при этом отсюда, из Британии, мы видим, что молодая Россия развивается, причем довольно быстро. Хотя вам внутри процесс может казаться слишком медленным. Но помните: десятилетнему ребенку всегда хочется, чтобы завтрашний день наступил пораньше, а когда тебе семьдесят, появляется огромное желание остановить время. Россия - это огромная территория, большой потенциал, все есть, дергаться только не надо! Не нужно этих бесконечных рывков на опережение, приводящих к жертвам. Мы, то есть вы теперь уже, постоянно хотите, как лучше, а получается, как у Черномырдина. Любим широкие жесты, громкие решения, вот придумали Сколково, город-сад. Ну зачем?! Ведь нужно всего лишь спокойствие, размеренность. Постепенно, кропотливо работать. Убирать барьеры, выжигать коррупцию, главную беду…

На родину, конечно, тянет, но пока я из ума еще не выжил, чтоб возвращаться. Я слишком много растратил там своей жизни, борясь с ветряными мельницам. Я нормальный ученый, а не борец. Я хочу и могу еще работать, и поэтому остаюсь в Британии.

Признаться, не нуждается во мне и Россия. Ну нобелевский лауреат - и что? Премию присуждают за сделанные в прошлом дела, а России нужна молодежь, новые люди, они создадут будущее. Поддерживайте тех, кому 25-30. Не нужны вам старики-авторитеты вроде меня! Гоните всех авторитетов. Я даже так скажу: останься Новоселов в России, не видать ему Нобелевской премии. Потому что ее получил бы единолично профессор Андрей Гейм, его научный руководитель. То есть я. Испокон веков все лавры в России шли академическим начальникам. Это несправедливая советская иерархия, которой нет ни в одной научной державе. От Китая до Британии в ученой среде - равноправие и братство. Все равны от Ph.D. студента (по-нашему, аспиранта. - П.К.) до самого заслуженного профессора.

Адекватное задачам финансирование, уважение к науке, ставка на молодежь и терпение - только такая среда благоприятствует новым открытиям.

Конечно, кто-то скажет: а вот есть же Григорий Перельман. Сделал грандиозное открытие, отказался от миллиона. Но Гриша сумасшедший гений. Исключение, какое бывает раз в тысячу лет. А России нужны нормальные ученые, сытые и довольные. А главное - свои. Растите их. Тратьте на них миллиарды, а не на тех, кто из-за границы уже через десять лет обещает вам золотые горы. Эти ученые-эмигранты называют себя патриотами России. Хотя сами уже выстроились в очередь, готовые хапнуть и убежать. Так что настоящие патриоты никуда не едут.

Справка

Нобелевская неделя-2010

Нобелевской премии в области физиологии и медицины удостоен 85-летний британский эмбриолог Роберт ЭДВАРДС, разработавший технологию экстракорпорального оплодотворения, более известную как «зачатие в пробирке». Буддисты, Ватикан и Русская православная церковь осудили решение Нобелевского комитета.

Трое ученых - 75-летний Эй-Ити НЕГИСИ из Университета Пердью в США, 79-летний американский ученый Ричард Ф. ХЕК из Университета Делавэра в США и 80-летний японский ученый Акира СУДЗУКИ из Университета Хоккайдо в Японии - получили премию по химии за открытие новых способов соединения атомов углерода.

Королевская академия наук Швеции считает, что это «точный и эффективный» инструмент, который помогает исследователям во всем мире, «в коммерческом производстве фармацевтических препаратов и молекул веществ, используемых в электронной промышленности». Благодаря работам нынешних нобелевских лауреатов исследователи теперь могут искусственно получать вещество, аналогичное тому, что содержится в морской губке. Его сегодня успешно применяют в фармацевтике для борьбы с раковыми клетками.

51-летний Андрей ГЕЙМ и 36-летний Константин НОВОСЕЛОВ, ученые из Манчестерского университета, Великобритания, были награждены премией по физике за инновационные эксперименты с графеном, ультратонким и суперсильным материалом.

Графен - это плоский лист углерода толщиной в один атом. Он почти прозрачен, но обладает феноменальной прочностью и хорошо проводит электричество. Эти уникальные свойства означают, что у этого материала может быть огромное количество практических применений. В том числе в области инновационной электроники, включая производство более быстрых компьютеров. Графен может очень скоро заменить кремний - основу микросхем.

Нобелевскую премию по литературе вчера вручили перуанскому драматургу и прозаику Марио Варгасу ЛЬОСЕ.

Сегодня в 13.00 (по Москве) будет назван обладатель премии мира, а в понедельник (15.00) - премии по экономике.

Во вторник в Стокгольме были объявлены лауреаты Нобелевской премии по физике за 2010 год. Ими стали русские физики из университета Манчестера Андрей Гейм и Константин Новоселов. Их главное изобретение - материал под названием графен. Что такое графен, и как его можно использовать? Об этом Новоселов рассказал в ровно год назад. Ниже - статья из журнала Forbes, вышедшая в октябрьском номере в 2009 году.

Прозрачная голубая полоска на столе работает будильником. Она же показывает расписание на день, в машине развертывается в экран навигатора, на работе превращается в ноутбук, а вечером на ней можно смотреть кино. Авторы ролика об универсальном гаджете будущего, ученые из южнокорейского университета Сонгюнгван убеждены, что он будет создан в ближайшие 10 лет благодаря графену, самому тонкому во Вселенной материалу с уникальными электронными свойствами.

Это будущее приближают десятки лабораторий во всем мире. Путь от фундаментального открытия до практических результатов в случае с графеном преодолевается даже не за годы, а за месяцы. «Год назад я скептически относился к применению графена в электронике, сейчас это становится вполне реальным бизнесом», - говорит автор открытия Константин Новоселов.

Агентство Thomson Reuters в прошлом году сочло графен достойным Нобелевской премии. В список вероятных лауреатов включены Новоселов и его руководитель - Андрей Гейм, директор Центра мезоскопической физики при Манчестерском университете. «Нобелевку» они пока не получили, но их шансы с каждым годом будут расти. Даже удивительно, что материал со столь блестящими перспективами был получен с помощью липкой ленты, которая случайно не попала в мусорное ведро.

Графен представляет собой слой углерода толщиной в один атом. Миллиарды таких слоев образуют графит, из которого делают грифели для карандашей. В возможность отделить один слой никто не верил. Семьдесят лет назад Лев Ландау и Рудольф Пайерлс доказали, что таких материалов существовать не может: силы взаимодействия между атомами должны смять их в гармошку или свернуть в трубочку.

Графен оказался исключением из этого правила. Гейм и Новоселов обратили внимание на обычный скотч, с помощью которого готовят образцы графита для работы на сканирующем туннельном микроскопе. Скотч отрывает графитные слои, оставляя абсолютно гладкую поверхность. Ленту выбрасывают вместе с тем, что к ней прилипло. «За то, что мы ее подобрали и исследовали, нас обозвали garbage scientists - мусорными учеными», - смеется Новоселов. Склеивая и разлепляя ленту с хлопьями графита несколько раз, Новоселов получил то, что считалось невозможным, - слои графита толщиной в один атом. Их площадь достигала одного квадратного миллиметра: этого более чем достаточно, чтобы перенести графен на подложку и исследовать механические и электронные свойства. В 2004 году в журнале Science вышла эпохальная статья Гейма, Новоселова и их давнего коллеги Сергея Морозова. Свойства - проводимость, прочность, стабильность - оказались уникальными.

«У графена есть свойства, которых нет ни у одного материала, - говорит Новоселов, - это в буквальном смысле материя, ткань. С ней можно делать то же самое, что вот с этой салфеткой: сгибать, сворачивать, растягивать…» Бумажная салфетка неожиданно рвется у него в руках. С графеном такого не случится, замечает физик, это самый прочный материал на Земле.

Почему в графене видят материал, который вытеснит кремниевую электронику? Электроны в нем перемещаются в сотню раз быстрее, чем в кремнии. В прошлом году Гейм и Новоселов с соавторами показали, что из графена можно делать транзисторы, управляемые отдельными электронами. Все это позволит создать более миниатюрные и быстрые микросхемы, которые и греются намного меньше кремниевых.

Не хотел бы Новоселов заработать на своем открытии? Физик смотрит на меня с недоумением. Для него есть вещи поинтереснее. «Мы заканчиваем исследования задолго до того, как начинается коммерциализация, - объясняет он, - и не пытаемся заниматься технологиями». Представителей компаний, которые обращаются к ним, Гейм и Новоселов обычно отправляют в Graphene Industries - фирму, созданную их студентами. Те вручную делают пластинки графена и поштучно продают в лаборатории IBM, Intel, Samsung.

До 2020 года, по прогнозам исследовательской компании Lux Research, графен не поколеблет основы кремниевой электроники. Но уже сейчас новый материал обходит кремний по флангам, показывая себя в новых приложениях. Например, в сверхбыстрых высокочастотных транзисторах для приемников и передатчиков мобильной связи. «Опытные образцы появились в начале года, а сейчас у них уже наблюдаются рекордные показатели», - говорит Новоселов. Особенно продвинулись в их создании IBM и HRL (близкие к оборонному заказу исследовательские лаборатории, которыми совместно владеют Boeing и General Motors). В конце прошлого года HRL получили грант на 50-месячную программу графеновой электроники, которую координирует SPAWAR - инжиниринговый центр Военно-морского флота США. «Они даже не притворяются, что занимаются физикой, а прямо говорят, что делают приборы», - замечает Новоселов.

Развитие графеновой темы привлекло к ней внимание частных инвесторов. Несколько американских компаний замахнулись на производство сотен тонн графена к концу 2010 года. Такие объемы могут затоварить рынок радиочастотных транзисторов навечно, но производители пока ориентируются не на электронику.

Уже сейчас графен востребован как наполнитель для композитных материалов, говорит гендиректор фирмы XG Sciences Майкл Нокс. Гендиректор фирмы Angstron Materials Бор Джанг предлагает использовать графен в устройствах для хранения энергии - аккумуляторах и суперконденсаторах, а также топливных элементах, которые вырабатывают электроэнергию от соединения водорода с кислородом. Компания Vorbeck Materials продает Vor-ink - «чернила», позволяющие печатать электронные схемы.

Нокс узнал о графене в 2006 году от профессора Мичиганского университета Лоуренса Дрзала, который убедил его в том, что на графене можно хорошо заработать. «Я как раз продал свой предыдущий бизнес и искал какую-нибудь перспективную технологию, - вспоминает Нокс. - С тех пор ажиотаж вокруг графена непрерывно растет».

Джанг - пример ученого-предпринимателя, словно сошедший со страниц брошюры о коммерциализации технологий. С 2005 года он декан Колледжа технических и компьютерных наук при Университете Райта. Старт его компании Nanotek Instruments в 1997 году обеспечили гранты Министерства энергетики США. Затем от Nanotek отпочковалась Angstron. Свой первый патент, связанный с графеном, Джанг заявил еще в 2002-м - за два года до революционной работы русских физиков. «Их заслуга в том, что они первыми обнаружили необычные электронные свойства изолированных листов графена», - объясняет Джанг. К 2015 году он скромно планирует занять 30–40% мирового рынка графена, а еще раньше - провести IPO или продать компанию крупному инвестору. Vorbeck уже обзавелась серьезным партнером: для немецкого химического гиганта BASF фирма разрабатывает токопроводящую краску.

Чтобы фундаментальное открытие было применено на практике, оно должно обрасти тысячами изобретений. От создания первого транзистора в 1947 году до распространения интегральных схем, обеспечивших первенство кремниевой электроники, прошло почти два десятилетия. Если графеновая революция пойдет теми же темпами, универсальный гаджет, о котором мечтают южнокорейские исследователи, появится на прилавках самое позднее в 2022 году.

МОСКВА, 5 окт - РИА Новости. Нобелевская премия 2010 года по физике стала праздником сразу для двух стран, для родины лауреатов - России, и для их нынешнего дома - Британии. Шведские академики присудили высшую научную награду Андрею Гейму и Константину Новоселову за открытие двумерной формы углерода - графена, заставив российских ученых сетовать на утечку мозгов, а британских - надеяться на сохранение финансирования науки.

"Жаль, что свои открытия Гейм и Новоселов сделали за рубежом", - сказал РИА Новости завкафедрой физики полимеров и кристаллов МГУ, академик РАН Алексей Хохлов.

"Правительству следует извлечь уроки из решения Нобелевского комитета", - прокомментировал присуждение Нобелевской премии по физике президент Королевского научного общества профессор Мартин Риз. Он напомнил о том, что многие ученые, в том числе иностранные, которые работают в Британии, в случае сворачивания финансирования могут просто уехать в другие страны.

Британское правительство 20 октября обнародует планы серьезного урезания государственных расходов . Наука и высшее образование, как ожидается, станут одной из сфер, которые сокращения затронут наиболее остро.

Выпускники МФТИ Гейм и Новоселов, работающие в Манчестере, получили премию "за новаторские эксперименты по исследованию двумерного материала графена". Они разделят между собой 10 миллионов шведских крон (около одного миллиона евро). Церемония вручения награды пройдет в Стокгольме 10 декабря, в день кончины ее основателя - Альфреда Нобеля.

Графен стал первым в истории двумерным материалом , состоящим из единичного слоя атомов углерода, соединенных между собой структурой химических связей, напоминающих по своей геометрии структуру пчелиных сот. Долгое время считалось, что такая структура невозможна.

"Считали, что таких двумерных однослойных кристаллов не может существовать. Они должны потерять устойчивость и превратиться в нечто другое, ведь это фактически плоскость без толщины", - сказал РИА Новости бывший начальник лауреатов, директор Института проблем технологии микроэлектроники и особо чистых материалов РАН (ИПТМ) Вячеслав Тулин.

Однако "невозможный" материал, как оказалось, обладает уникальными физико-химическими свойствами, которые делают его незаменимым в самых разных сферах. Графен проводит электричество так же хорошо, как медь, на его базе можно создавать сенсорные экраны, фотоэлементы для солнечных батарей, гибкие электронные приборы.

"Это будущая революция в микроэлектронике. Если сейчас компьютеры гигагерцовые, то будут терагерцовые и так далее. На базе графена будут создавать транзисторы и все другие элементы электронных схем", - сказал РИА Новости профессор кафедры квантовой электроники МФТИ Алексей Фомичев.

Одну область применения графен уже нашел: это солнечные фотоэлементы. "Раньше при производстве фотоэлементов в качестве прозрачного электрода применялись оксиды индия, допированные оловом. Но оказалось, что несколько слоев графена гораздо эффективнее", - сказал Александр Вуль, завлабораторией физики кластерных структур петербургского Физико-технического института имени Иоффе РАН.

Первые с физтеха

Андрей Гейм и Константин Новоселов - первые в истории выпускники Московского физико-технического института, получившие Нобелевскую премию: до этого лауреатами становились основатели и сотрудники МФТИ - Петр Капица, Николай Семенов, Лев Ландау, Игорь Тамм, Александр Прохоров, Николай Басов, Виталий Гинзбург и Алексей Абрикосов. Гейм закончил факультет общей и прикладной физики (ФОПФ) в 1982 году, Новоселов - факультет физической и квантовой электроники (ФФКЭ) в 1997 году. Оба выпускника получили красные дипломы.

"Это суперновость. Мы очень рады решению Нобелевского комитета. МФТИ уже направил поздравления новым Нобелевским лауреатам", - сообщил РИА Новости во вторник ректор МФТИ Николай Кудрявцев.

По словам ректора, сотрудники "подняли из архива их личные дела и убедились, что это были выдающиеся студенты". При этом Андрей Гейм не поступил в институт с первого раза, год проработав на заводе, но "проявил упорство" и стал студентом МФТИ.

"В течении всего времени учебы на ФОПФе Гейм получал самые высокие отзывы от преподавателей. А выпускную работу Гейма дипломная комиссия оценила исключительно высоко", - сообщил руководитель МФТИ.

Студент 152-й группы факультета физической и квантовой электроники Константин Новоселов, как отметил Кудрявцев, "посещал занятия нерегулярно, но все задания сдавал успешно и в срок".

"И отзывы преподавателей о Новоселове - также самые высокие. Это значит, что он был настолько талантлив, что ему, в общем-то, было необязательно ходить на все занятия", - прокомментировал архивные документы ректор МФТИ.

От Шнобеля к Нобелю

Коллега Гейма, Константин Новоселов , стал самым молодым Нобелевским лауреатом с российским гражданством: 36-летний физик на шесть лет моложе своего советского коллеги Николая Басова, в 42 года получившего премию 1964 года за работы в области квантовой электроники, которые привели к созданию излучателей и усилителей на лазерно-мазерном принципе.

Самым молодым лауреатом во всей истории Нобелевской премии стал Лоуренс Брэгг, в 25 лет разделивший премию по физике со своим отцом, Уильямом Генри Брэггом. Следующие четыре позиции в списке самых молодых в истории лауреатов также занимают физики: Вернер Гейзенберг, Цзундао Ли, Карл Андерсон и Поль Дирак получили премии в 31 год.

Константин Новоселов, однако, войдет в историю премии как первый представитель поколения, родившегося в 1970-е годы. Как сообщает сайт премии, предыдущее десятилетие в списке лауреатов представляют физик Эрик Корнелл, биологи Кэрол Грейдер и Крейг Мелло, а также президент США Барак Обама, получивший Нобелевскую премию мира. Никого моложе 1961 года рождения, кроме Новоселова, в списке лауреатов нет.

Родился в 1958 году в Сочи, защитил диссертацию в Институте физики твердого тела АН СССР. Работал научным сотрудником в Черноголовке, потом эмигрировал за границу, где трудился в университетах Ноттингема, Копенгагена и Неймегена. С 2001 года работает в английском Манчестере. В настоящее время Гейм, который теперь носит имя Андре, возглавляет Манчестерский центр по «мезонауке и нанотехнологиям», а также отдел физики конденсированного состояния.

Андре Гейм — подданный Нидерландов, в то время как его коллега и второй лауреат Нобеля-2010 имеет российское и британское подданство.

Новоселов родился в 1974 году в Нижнем Тагиле. После окончания МФТИ он несколько лет проработал в Черноголовке, после чего уехал в Университет Неймегена, где защитил диссертацию.

Нобелевскую премию Гейм и Новоселов получили «За новаторские эксперименты, касающиеся двумерного материала графена». На двоих ученые получат 1,5 млн долларов (10 млн шведских крон).

Выступая по телефону на пресс-конференции, Гейм заявил, что не ожидал получения премии. «Мой план на сегодня — пойти на офис и закончить работу с бумагами, которую я еще не успел сделать», — приводит слова Гейма.

Графен — одна из форм (так называемых аллотропных модификаций), в которых может существовать углерод, пожалуй, самая экзотическая. Более известные — собственно, графит (из которого состоят грифели карандашей), алмаз, карбин (модификация с цепочечным строением молекул) и фуллерен (получивший в научной среде прозвище «футбольный мяч» за свою структуру). Графен представляет собой сверхтонкие (толщиной в один атом) слои из атомов углерода, связанные в гексагональную (состоящую из шестиугольников с общими сторонами) структуру. Как материал — новый и современный — он является самым тонким и одновременно самым прочным. Кроме того, он обладает проводящими свойствами, характерными для таких металлов, как медь. По теплопроводности он превосходит все известные на сегодняшний день материалы. Двумерные слои графена почти прозрачные, однако настолько плотные, что даже самые маленькие молекулы (например, одноатомные молекулы благородного газа гелия) не могут пройти сквозь слой.

Графен — еще одно проявление уникальных химических свойств углерода, благодаря которым, в частности, на нашей планете существует все живое.

Теоретическое исследование графена началось задолго до получения реальных образцов материала, поскольку графен является базой для построения трехмерного кристалла обычного графита. Однако получить графен экспериментально не удавалось. Интерес к нему возродился после открытия углеродных нанотрубок, представляющих собой фактически свернутый в цилиндр монослой.

Попытки получения графена, прикрепленного к другому материалу (ранее было показано теоретически, что свободную идеальную двумерную пленку получить невозможно из-за нестабильности относительно сворачивания или скручивания), начались с экспериментов, использующих простой карандаш, и продолжились с использованием атомно-силового микроскопа для механического удаления слоев графита, но не достигли успеха.

Однако в 2004 году Новоселов и Гейм опубликовали в журнале Science работу, где сообщалось о получении графена на подложке окисленного кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрика SiO 2 .

Метод «отшелушивания» является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабо (по сравнению с силами в плоскости) связанные слои двумерных кристаллов. После этого ученым удалось таким же способом получить двумерные кристаллы BN, MoS 2 , NbSe 2 , Bi 2 Sr 2 CaCu 2 O x .

Фактически открытие графена привело к созданию целого класса принципиально новых двумерных материалов с уникальными свойствами.

Квантовая физика развивает теорию таких объектов, а их практические применения обещают быть поистине впечатляющими. Материалы на основе графена могут перевернуть мир электроники: в частности, ученые предполагают, что графеновые транзисторы будут работать на порядки быстрее, чем современная кремниевая техника. Графен можно использовать для производства прозрачных сенсорных экранов, световых панелей или даже солнечных батарей. В смеси с пластиками графен дает возможность создавать композитные проводящие материалы, более устойчивые к действию высоких температур. Прочность графена позволяет конструировать новые механически устойчивые материалы, сверхтонкие, эластичные и легкие. В будущем из композитных материалов на основе графена, возможно, будут делать спутники, самолеты и автомобили.

Интересно, что в 2000 году Андре Гейм стал лауреатом Шнобелевской премии с формулировкой «За использование магнитов для подвешивания (левитации) лягушки». В научной среде ходят слухи, что после этих опытов лягушка выжила и даже дала потомство.

Эксперты из Thompson Reuters вновь не угадали лауреата Нобелевской премии.

Накануне они предполагали, что премией отметят астрономов, открывших противоречащий фундаментальному закону Хаббла феномен ускоряющегося расширения Вселенной, а также роль темной энергии в нем. Поэтому звонка от Нобелевского комитета могли ждать из Университета Калифорнии в Беркли, Адам Райес из Университета в Балтиморе и из Австралийского национального университета. Вторым основным претендентом на премию считалась научная группа космического аппарата WMAP (Wilkinson Microwave Anisotropy Probe, ), предназначенного для изучения реликтового излучения, образовавшегося в результате Большого взрыва в момент зарождения Вселенной. В качестве возможных лауреатов назывались Чарльз Беннет (NASA и Университет Джона Хопкинса, Мэриленд), а также Лиман Пейдж и Дэвид Шпергель из (Нью-Джерси). Последние в этом году стали лауреатами молодой, но довольно престижной премии Шоу по астрономии.Петр Капица получил награду «за основополагающие изобретения и открытия в области физики низких температур». В 2000 году лауреатом стал «за разработку полупроводниковых гетероструктур, используемых в высокоскоростной и оптической электронике». И, наконец, последняя на данный момент российская Нобелевская премия досталась в 2003 году и «за пионерский вклад в теорию сверхпроводимости и сверхтекучести».