Неравенство с одной переменной и их системы. Решение неравенств с одной переменной — Гипермаркет знаний


Если в школьном курсе математики и алгебры отдельно выделить тему «неравенства», то основную часть времени постигаются азы работы с неравенствами , которые содержат в своей записи переменную. В данной статье мы разберем, что такое неравенства с переменными, скажем, что называют их решением, а также разберемся, как записываются решения неравенств. Для пояснения будем приводить примеры и необходимые комментарии.

Навигация по странице.

Что такое неравенства с переменными?

Например, если неравенство не имеет решений, то так и пишут «нет решений» или используют знак пустого множества ∅.

Когда общим решением неравенства является одно число, то его и так и записывают, к примеру, 0 , −7,2 или 7/9 , а иногда еще заключают в фигурные скобки.

Если решение неравенства представляется несколькими числами и их количество невелико, то их просто перечисляют через запятую (или через точку с запятой), или записывают через запятую в фигурных скобках. Например, если общее решение неравенства с одной переменной составляют три числа −5 , 1,5 и 47 , то записывают −5 , 1,5 , 47 или {−5, 1,5, 47} .

А для записи решений неравенств, имеющих бесконечное множество решений используют как принятые обозначения множеств натуральных, целых, рациональных, действительных чисел вида N , Z , Q и R , обозначения числовых промежутков и множеств отдельных чисел, простейшие неравенства, так и описание множества через характеристическое свойство, и все не названные способы. Но на практике наиболее часто пользуются простейшими неравенствами и числовыми промежутками. Например, если решением неравенства является число 1 , полуинтервал (3, 7] и луч , ∪ ; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  • Уравнения с одной переменной. Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

    Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство.

    Решить уравнение - значит найти все его корни или доказать, что корней нет.

    Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

    Теоремы о равносильности уравнений. Первые три теоремы - «спокойные», они гарантируют равносильность преобразований без каких-либо дополнительных условий, их использование не причиняет решающему никаких неприятностей.

    Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

    Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение,равносильное данному.

    Теорема 3. Показательное уравнение

    Следующие три теоремы - «беспокойные», они работают лишь при определенных условиях, а значит, могут доставить некоторые неприятности при решении уравнений.

    Областью определения уравнения f(х) = g(х) или областью допустимых значений (ОДЗ) переменной называют множество тех значений переменной х, при которых одновременно имеют смысл выражения f(х) и g(х).

    Теорема 4. Если обе части уравнения f(х)=g(х) умножить на одно и то же выражение h(х), которое:

    а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(х) = g(х);

    б) нигде в этой области не обращается в 0 - то получится уравнение f(х) h(х) = g(х) h(х), равносильное данному.



    Следствием теоремы 4 является еще одно «спокойное» утверждение: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

    Теорема 5. Если обе части уравнения f(х) = g(х) неотрицательны в области определения уравнения, то после возведения обеих его частей в одну и ту же четную степень п получится уравнение, равносильное данному: f(х)n = g (x)n .

    Теорема 6. Если f(х) > 0 и g (х) > 0, то логарифмическое уравнение

    Равносильно уравнению f(х) = g(x).

    Линейные неравенства с одной переменной. Если переменной х придать какое-либо числовое значение, то мы получим числовое неравенство, выражающее либо истинное, либо ложное высказывание. Пусть, например, дано неравенство 5х-1>3х+2. При х=2 получим 5·2-1>3·2+2 – истинное высказывание (верное числовое высказывание); при х=0 получаем 5·0-1>3·0+2 – ложное высказывание. Всякое значение переменной, при котором данное неравенство с переменной обращается в верное числовое неравенство, называется решением неравенства. Решить неравенство с переменной – значит найти множество всех его решений.

    Два неравенства с одной переменной х называются равносильными, если множества решений этих неравенств совпадают.

    Основная идея решения неравенства состоит в следующем: мы заменяем данное неравенство другим, более простым, но равносильным данному; полученное неравенство снова заменяем более простым равносильным ему неравенством и т.д.

    Такие замены осуществляются на основе следующих утверждений.

    Теорема 1. Если какой-либо член неравенства с одной переменной перенести из одной части неравенства в другую с противоположным знаком, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

    Теорема 2. Если обе части неравенства с одной переменной умножить или разделить на одно и то же положительное число, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

    Теорема 3. Если обе части неравенства с одной переменной умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится неравенство, равносильное данному.

    Линейным называется неравенство вида ax+b>0 (соответственно ax+b<0, ax+b³0, ax+b£0), где а и b – действительные числа, причем а¹0. Решение этих неравенств основано на трех теоремах равносильности изложенных выше.

    Теперь можно разбираться, как решаются линейные неравенства a·x+b<0 (они могут быть записаны и с помощью любого другого знака неравенства).

    Основной способ их решения заключается в использовании равносильных преобразований, позволяющих прийти при a≠0 к элементарным неравенствам вида x

    , ≥), p - некоторое число, которые и являются искомым решением, а при a=0 – к числовым неравенствам вида a

    , ≥), из которых делается вывод о решении исходного неравенства. Его мы и разберем в первую очередь.

    Также не помешает взглянуть на решение линейных неравенств с одной переменной и с других позиций. Поэтому, мы еще покажем, как можно решить линейное неравенство графически и методом интервалов.

    Используя равносильные преобразования

    Пусть нам нужно решить линейное неравенство a·x+b<0 (≤, >, ≥). Покажем, как это сделать, используя равносильные преобразования неравенства .

    Подходы при этом различаются в зависимости от равенства или неравенства нулю коэффициента a при переменной x . Рассмотрим их по очереди. Причем при рассмотрении будем придерживаться схемы из трех пунктов: сначала будем давать суть процесса, дальше – алгоритм решения линейного неравенства, наконец, приводить решения характерных примеров.

    Начнем с алгоритма решения линейного неравенства a·x+b<0 (≤, >, ≥) при a≠0 .

    • Во-первых, число b переносится в правую часть неравенства с противоположным знаком. Это позволяет перейти к равносильному неравенству a·x<−b (≤, >, ≥).
    • Во-вторых, проводится деление обеих частей полученного неравенства на отличное от нуля число a . При этом, если a – положительное число, то знак неравенства сохраняется, а если a - отрицательное число, то знак неравенства изменяется на противоположный. В результате получается элементарное неравенство, равносильное исходному линейному неравенству, оно и является ответом.

    Остается разобраться с применением озвученного алгоритма на примерах. Рассмотрим, как с его помощью решаются линейные неравенства при a≠0 .

    Пример.

    Решите неравенство 3·x+12≤0 .

    Решение.

    Для данного линейного неравенства имеем a=3 и b=12 . Очевидно, коэффициент a при переменной x отличен от нуля. Воспользуемся соответствующим алгоритмом решения, приведенным выше.

    Во-первых, переносим слагаемое 12 в правую часть неравенства, не забывая изменить его знак, то есть, в правой части окажется −12 . В результате приходим к равносильному неравенству 3·x≤−12 .

    И, во-вторых, делим обе части полученного неравенства на 3 , так как 3 – число положительное, то знак неравенства не изменяем. Имеем (3·x):3≤(−12):3 , что то же самое x≤−4 .

    Полученное элементарное неравенство x≤−4 равносильно исходному линейному неравенству и является его искомым решением.

    Итак, решением линейного неравенства 3·x+12≤0 является любое действительное число, меньшее или равное минус четырем. Ответ можно записать и в виде числового промежутка , отвечающего неравенству x≤−4 , то есть, как (−∞, −4] .

    Приобретя сноровку в работе с линейными неравенствами, их решения можно будет записывать кратко без пояснений. При этом сначала записывают исходное линейное неравенство, а ниже – равносильные ему неравенства, получающиеся на каждом шаге решения:
    3·x+12≤0 ;
    3·x≤−12 ;
    x≤−4 .

    Ответ:

    x≤−4 или (−∞, −4] .

    Пример.

    Укажите все решения линейного неравенства −2,7·z>0 .

    Решение.

    Здесь коэффициент a при переменной z равен −2,7 . А коэффициент b отсутствует в явном виде, то есть, он равен нулю. Поэтому, первый шаг алгоритма решения линейного неравенства с одной переменной выполнять не нужно, так как перенос нуля из левой части в правую не изменит вид исходного неравенства.

    Остается разделить обе части неравенства на −2,7 , не забыв изменить знак неравенства на противоположный, так как −2,7 – отрицательное число. Имеем (−2,7·z):(−2,7)<0:(−2,7) , и дальше z<0 .

    А теперь кратко:
    −2,7·z>0 ;
    z<0 .

    Ответ:

    z<0 или (−∞, 0) .

    Пример.

    Решите неравенство .

    Решение.

    Нам нужно решить линейное неравенство с коэффициентом a при переменной x , равным −5 , и с коэффициентом b , которому отвечает дробь −15/22 . Действуем по известной схеме: сначала переносим −15/22 в правую часть с противоположным знаком, после чего выполняем деление обеих частей неравенства на отрицательное число −5 , изменяя при этом знак неравенства:

    В последнем переходе в правой части используется , затем выполняется .

    Ответ:

    Теперь переходим к случаю, когда a=0 . Принцип решения линейного неравенства a·x+b<0 (знак, естественно, может быть и другим) при a=0 , то есть, неравенства 0·x+b<0 , заключается в рассмотрении числового неравенства b<0 и выяснении, верное оно или нет.

    На чем это основано? Очень просто: на определении решения неравенства . Каким образом? Да вот каким: какое бы значение переменной x мы не подставили в исходное линейное неравенство, мы получим числовое неравенство вида b<0 (так как при подстановке любого значения t вместо переменной x мы имеем 0·t+b<0 , откуда b<0 ). Если оно верное, то это означает, что любое число является решением исходного неравенства. Если же числовое неравенство b<0 оказывается неверным, то это говорит о том, что исходное линейное неравенство не имеет решений, так как не существует ни одного значения переменной, которое обращало бы его в верное числовое равенство.

    Сформулируем приведенные рассуждения в виде алгоритма решения линейных неравенств 0·x+b<0 (≤, >, ≥) :

    • Рассматриваем числовое неравенство b<0 (≤, >, ≥) и
      • если оно верное, то решением исходного неравенства является любое число;
      • если же оно неверное, то исходное линейное неравенство не имеет решений.

    А теперь разберемся с этим на примерах.

    Пример.

    Решите неравенство 0·x+7>0 .

    Решение.

    Для любого значения переменной x линейное неравенство 0·x+7>0 обратится в числовое неравенство 7>0 . Последнее неравенство верное, следовательно, любое число является решением исходного неравенства.

    Ответ:

    решением является любое число или (−∞, +∞) .

    Пример.

    Имеет ли решения линейное неравенство 0·x−12,7≥0 .

    Решение.

    Если подставить вместо переменной x любое число, то исходное неравенство обратиться в числовое неравенство −12,7≥0 , которое неверное. А это значит, что ни одно число не является решением линейного неравенства 0·x−12,7≥0 .

    Ответ:

    нет, не имеет.

    В заключение этого пункта разберем решения двух линейных неравенств, оба коэффициента которых равны нулю.

    Пример.

    Какое из линейных неравенств 0·x+0>0 и 0·x+0≥0 не имеет решений, а какое – имеет бесконечно много решений?

    Решение.

    Если вместо переменной x подставить любое число, то первое неравенство примет вид 0>0 , а второе – 0≥0 . Первое из них неверное, а второе – верное. Следовательно, линейное неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений, а именно, его решением является любое число.

    Ответ:

    неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений.

    Методом интервалов

    Вообще, метод интервалов изучается в школьном курсе алгебры позже, чем проходится тема решение линейных неравенств с одной переменной. Но метод интервалов позволяет решать самые разные неравенства, в том числе и линейные. Поэтому, остановимся на нем.

    Сразу заметим, что метод интервалов целесообразно применять для решения линейных неравенств с отличным от нуля коэффициентом при переменной x . В противном случае вывод о решении неравенства быстрее и удобнее сделать способом, разобранным в конце предыдущего пункта.

    Метод интервалов подразумевает

    • введение функции, отвечающей левой части неравенства, в нашем случае – линейной функции y=a·x+b ,
    • нахождение ее нулей, которые разбивают область определения на промежутки,
    • определение знаков, которые имеют значения функции на этих промежутках, на основе которых делается вывод о решении линейного неравенства.

    Соберем эти моменты в алгоритм , раскрывающий как решать линейные неравенства a·x+b<0 (≤, >, ≥) при a≠0 методом интервалов:

    • Находятся нули функции y=a·x+b , для чего решается a·x+b=0 . Как известно, при a≠0 оно имеет единственный корень, который обозначим x 0 .
    • Строится , и на ней изображается точка с координатой x 0 . Причем, если решается строгое неравенство (со знаком < или >), то эту точку делают выколотой (с пустым центром), а если нестрогое (со знаком ≤ или ≥), то ставят обычную точку. Эта точка разбивает координатную прямую на два промежутка (−∞, x 0) и (x 0 , +∞) .
    • Определяются знаки функции y=a·x+b на этих промежутках. Для этого вычисляется значение этой функции в любой точке промежутка (−∞, x 0) , и знак этого значения и будет искомым знаком на промежутке (−∞, x 0) . Аналогично, знак на промежутке (x 0 , +∞) совпадает со знаком значения функции y=a·x+b в любой точке этого промежутка. Но можно обойтись без этих вычислений, а выводы о знаках сделать по значению коэффициента a : если a>0 , то на промежутках (−∞, x 0) и (x 0 , +∞) будут знаки − и + соответственно, а если a>0 , то + и −.
    • Если решается неравенство со знаками > или ≥, то ставится штриховка над промежутком со знаком плюс, а если решаются неравенства со знаками < или ≤, то – со знаком минус. В результате получается , которое и является искомым решением линейного неравенства.

    Рассмотрим пример решения линейного неравенства методом интервалов.

    Пример.

    Решите неравенство −3·x+12>0 .

    Решение.

    Коль скоро мы разбираем метод интервалов, то им и воспользуемся. Согласно алгоритму, сначала находим корень уравнения −3·x+12=0 , −3·x=−12 , x=4 . Дальше изображаем координатную прямую и отмечаем на ней точку с координатой 4 , причем эту точку делаем выколотой, так как решаем строгое неравенство:

    Теперь определяем знаки на промежутках. Для определения знака на промежутке (−∞, 4) можно вычислить значение функции y=−3·x+12 , например, при x=3 . Имеем −3·3+12=3>0 , значит, на этом промежутке знак +. Для определения знака на другом промежутке (4, +∞) можно вычислить значение функции y=−3·x+12 , к примеру, в точке x=5 . Имеем −3·5+12=−3<0 , значит, на этом промежутке знак −. Эти же выводы можно было сделать на основании значения коэффициента при x : так как он равен −3 , то есть, он отрицательный, то на промежутке (−∞, 4) будет знак +, а на промежутке (4, +∞) знак −. Проставляем определенные знаки над соответствующими промежутками:

    Так как мы решаем неравенство со знаком >, то изображаем штриховку над промежутком со знаком +, чертеж принимает вид

    По полученному изображению делаем вывод, что искомым решением является (−∞, 4) или в другой записи x<4 .

    Ответ:

    (−∞, 4) или x<4 .

    Графическим способом

    Полезно иметь представление о геометрической интерпретации решения линейных неравенств с одной переменной. Чтобы его получить, давайте рассмотрим четыре линейных неравенства с одной и той же левой частью: 0,5·x−1<0 , 0,5·x−1≤0 , 0,5·x−1>0 и 0,5·x−1≥0 , их решениями являются соответственно x<2 , x≤2 , x>2 и x≥2 , а также изобразим график линейной функции y=0,5·x−1 .

    Несложно заметить, что

    • решение неравенства 0,5·x−1<0 представляет собой промежуток, на котором график функции y=0,5·x−1 располагается ниже оси абсцисс (эта часть графика изображена синим цветом),
    • решение неравенства 0,5·x−1≤0 представляет собой промежуток, на котором график функции y=0,5·x−1 находится ниже оси Ox или совпадает с ней (другими словами, не выше оси абсцисс),
    • аналогично решение неравенства 0,5·x−1>0 есть промежуток, на котором график функции выше оси Ox (эта часть графика изображена красным цветом),
    • и решение неравенства 0,5·x−1≥0 является промежутком, на котором график функции выше или совпадает с осью абсцисс.

    Графический способ решения неравенств , в частности линейных, и подразумевает нахождение промежутков, на которых график функции, соответствующей левой части неравенства, располагается выше, ниже, не ниже или не выше графика функции, соответствующей правой части неравенства. В нашем случае линейного неравенства функция, отвечающая левой части, есть y=a·x+b , а правой части – y=0 , совпадающая с осью Ox .

    Учитывая приведенную информацию, несложно сформулировать алгоритм решения линейных неравенств графическим способом :

    • Строится график функции y=a·x+b (можно схематически) и
      • при решении неравенства a·x+b<0 определяется промежуток, на котором график ниже оси Ox ,
      • при решении неравенства a·x+b≤0 определяется промежуток, на котором график ниже или совпадает с осью Ox ,
      • при решении неравенства a·x+b>0 определяется промежуток, на котором график выше оси Ox ,
      • при решении неравенства a·x+b≥0 определяется промежуток, на котором график выше или совпадает с осью Ox .

    Пример.

    Решите неравенство графически.

    Решение.

    Построим эскиз графика линейной функции . Это прямая, которая убывает, так как коэффициент при x – отрицательный. Еще нам понадобится координата точки его пересечения с осью абсцисс, она является корнем уравнения , который равен . Для наших нужд можно даже не изображать ось Oy . Так наш схематический чертеж будет иметь такой вид

    Так как мы решаем неравенство со знаком >, то нас интересует промежуток, на котором график функции выше оси Ox . Для наглядности выделим эту часть графика красным цветом, а чтобы легко определить соответствующий этой части промежуток, подсветим красным цветом часть координатной плоскости, в которой расположена выделенная часть графика, так, как на рисунке ниже:

    Интересующий нас промежуток представляет собой часть оси Ox , оказавшуюся подсвеченной красным цветом. Очевидно, это открытый числовой луч . Это и есть искомое решение. Заметим, что если бы мы решали неравенство не со знаком >, а со знаком нестрогого неравенства ≥, то в ответ пришлось бы добавить , так как в этой точке график функции совпадает с осью Ox .y=0·x+7 , что то же самое y=7 , задает на координатной плоскости прямую, параллельную оси Ox и лежащую выше нее. Следовательно, неравенство 0·x+7<=0 не имеет решений, так как нет промежутков, на которых график функции y=0·x+7 ниже оси абсцисс.

    А графиком функции y=0·x+0 , что то же самое y=0 , является прямая, совпадающая с осью Ox . Следовательно, решением неравенства 0·x+0≥0 является множество всех действительных чисел.

    Ответ:

    второе неравенство, его решением является любое действительное число.

    Неравенства, сводящиеся к линейным

    Огромное количество неравенств с помощью равносильных преобразований можно заменить равносильным линейным неравенством, другими словами, свести к линейному неравенству. Такие неравенства называют неравенствами, сводящимися к линейным .

    В школе почти одновременно с решением линейных неравенств рассматривают и несложные неравенства, сводящиеся к линейным. Они представляют собой частные случаи целых неравенств , а именно в их левой и правой части находятся целые выражения, которые представляют собой или линейные двучлены , или преобразуются к ним путем и . Для наглядности приведем несколько примеров таких неравенств: 5−2·x>0 , 7·(x−1)+3≤4·x−2+x , .

    Неравенства, которые подобны по виду указанным выше, всегда можно свести к линейным. Это можно сделать путем раскрытия скобок, приведения подобных слагаемых, перестановки слагаемых местами и переноса слагаемых из одной части неравенства в другую с противоположным знаком.

    Например, чтобы свести неравенство 5−2·x>0 к линейному, достаточно переставить слагаемые в его левой части местами, имеем −2·x+5>0 . Для сведения второго неравенства 7·(x−1)+3≤4·x−2+x к линейному нужно немного больше действий: в левой части раскрываем скобки 7·x−7+3≤4·x−2+x , после этого приводим подобные слагаемые в обеих частях 7·x−4≤5·x−2 , дальше переносим слагаемые из правой части в левую 7·x−4−5·x+2≤0 , наконец, приводим подобные слагаемые в левой части 2·x−2≤0 . Подобным образом и третье неравенство можно свести к линейному неравенству.

    Из-за того, что подобные неравенства всегда можно свести к линейным, некоторые авторы даже называют их тоже линейными. Но все же будем их считать сводящимися к линейным.

    Теперь становится понятно, почему подобные неравенства рассматривают вместе с линейными неравенствами. Да и принцип их решения абсолютно такой же: выполняя равносильные преобразования, их можно привести к элементарным неравенствам, представляющим собой искомые решения.

    Чтобы решить неравенство подобного вида можно его предварительно свести к линейному, после чего решить это линейное неравенство. Но рациональнее и удобнее поступать так:

    • после раскрытия скобок собрать все слагаемые с переменной в левой части неравенства, а все числа – в правой,
    • после чего привести подобные слагаемые,
    • а дальше – выполнить деление обеих частей полученного неравенства на коэффициент при x (если он, конечно, отличен от нуля). Это даст ответ.

    Пример.

    Решите неравенство 5·(x+3)+x≤6·(x−3)+1 .

    Решение.

    Сначала раскроем скобки, в результате придем к неравенству 5·x+15+x≤6·x−18+1 . Теперь приведем подобные слагаемые: 6·x+15≤6·x−17 . Дальше переносим слагаемые с левую часть, получаем 6·x+15−6·x+17≤0 , и снова приводим подобные слагаемые (что приводит нас к линейному неравенству 0·x+32≤0 ) и имеем 32≤0 . Так мы пришли к неверному числовому неравенству, откуда делаем вывод, что исходное неравенство не имеет решений.

    Ответ:

    нет решений.

    В заключение отметим, что существует и масса других неравенств, сводящихся к линейным неравенствам, или к неравенствам рассмотренного выше вида. Например, решение показательного неравенства 5 2·x−1 ≥1 сводится к решению линейного неравенства 2·x−1≥0 . Но об этом будем говорить, разбирая решения неравенств соответствующего вида.

    Список литературы.

    • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
    • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
    • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
    • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
    • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

    1. Понятие неравенства с одной переменной

    2. Равносильные неравенства. Теоремы о равносильности неравенств

    3. Решение неравенств с одной переменной

    4. Графическое решение неравенств с одной переменной

    5. Неравенства, содержащие переменную под знаком модуля

    6. Основные выводы

    Неравенства с одной переменной

    Предложения 2х + 7 > 10-х, х 2 +7х < 2,(х + 2)(2х-3)> 0 называют неравенствами с одной переменной.

    В общем виде это понятие определяют так:

    Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) > g(х) или f(х) < g(х) называется неравенством с одной переменной. Мно­жество X называется областью его определения.

    Значение переменной x из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решени­ем. Решить неравенство - это значит найти множество его решений.

    Так, решением неравенства 2 x + 7 > 10 -х, х ? R является число x = 5, так как 2·5 + 7 > 10 - 5 - истинное числовое неравенство. А множест­во его решений - это промежуток (1, ∞), который находят, выполняя преобразование неравенства: 2 x + 7 > 10- x => 3 x >3 => x >1.

    Равносильные неравенства. Теоремы о равносильности неравенств

    В основе решения неравенств с одной переменной лежит понятие равносильности.

    Определение.Два неравенства называются равносильными, если их множества решений равны.

    Например, неравенства 2 x + 7 > 10 и 2 x > 3 равносильны, так как их множества решений равны и представляют собой промежуток (2/3, ∞).

    Теоремы о равносильности неравенств и следствия из них аналогич­ны соответствующим теоремам о равносильности уравнений. При их доказательстве используются свойства истинных числовых неравенств.

    Теорема 3. Пусть неравенство f(х) > g(х) задано на множестве X и h (x ) - выражение, определенное на том же множестве. Тогда неравенства f(х) > g(х) и f(х)+ h(x) > g(х) + h(x) равносильны на множестве X.

    Из этой теоремы вытекают следствия, которые часто используются при решении неравенств:

    1) Если к обеим частям неравенства f(х) > g(х) прибавить одно и то же число d, то получим неравенство f(х) + d > g(х)+ d, равно­сильное исходному.

    2) Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части неравенства в другую, поме­няв знак слагаемого на противоположный, то получим неравенство, равносильное данному.

    Теорема 4. Пусть неравенство f(х) > g(х) задано на множестве X и h (х х из множества X выражение h(х) принимает положительные значения. Тогда неравенства f(х) > g(х) и f(х)· h(x) > g(х) · h(x) равносильны на множестве X.

    f(х) > g(х) умножить на одно и то же положительное число d, то по­лучим неравенство f(х)·d > g(х) ·d, равносильное данному.

    Теорема 5. Пусть неравенство f(х) > g(х) задано на множестве X и h (х ) - выражение, определенное на том же множестве, и для всех х их множества X выражение h (х ) принимает отрицательные значения. Тогда неравенства f(х) > g(х) и f(х)· h(x) > g(х)· h(x) равносильны на множестве X .

    Из этой теоремы вытекает следствие: если обе части неравенства f(х) > g(х) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f(х)·d > g(х) ·d, равносильное данному.

    Решение неравенств с одной переменной

    Решим неравенство 5х - 5 < 2х - 16, х ? R , и обоснуем все преоб­разования, которые мы будем выполнять в процессе решения.

    Решением неравенства х < 7 является промежуток (-∞, 7) и, сле­довательно, множеством решений неравенства 5х - 5 < 2х + 16 яв­ляется промежуток (-∞, 7).

    Упражнения

    1. Установите, какие из следующих записей являются неравенства­ми с одной переменной:

    а) -12 - 7х < 3x + 8; г) 12х + 3(х - 2);

    б) 15(x + 2)>4; д) 17-12·8;

    в) 17-(13 + 8) < 14-9; е) 2х 2 + 3x -4> 0.

    2. Является ли число 3 решением неравенства 6(2х + 7) < 15(х + 2), х ? R ? А число 4,25?

    3. Равносильны ли на множестве действительных чисел следующие пары неравенств:

    а) -17х < -51 и х > 3;

    б) (3x -1)/4 >0 и 3х -1>0;

    в) 6-5x >-4 и х <2?

    4. Какие из следующих высказываний истинны:

    а) -7 х < -28 => x >4;

    б) x < 6 => x < 5;

    в) х < 6 => х < 20?

    5. Решите неравенство 3(x - 2) - 4(х + 1) < 2(х - 3) - 2 и обоснуйте все преобразования, которые будете при этом выполнять.

    6. Докажите, что решением неравенства 2(х + 1) + 5 > 3 - (1 - 2х ) является любое действительное число.

    7. Докажите, что не существует действительного числа, которое являлось бы решением неравенства 3(2 - х ) - 2 > 5 - 3х .

    8. Одна сторона треугольника равна 5 см, а другая 8 см. Какой может быть длина третьей стороны, если периметр треугольника:

    а) меньше 22 см;

    б) больше 17 см?

    ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕН­НОЙ. Для графического решения неравенства f (х) > g (х) нужно построить гра­фики функций

    у = f (х) = g (х) и выбрать те проме­жутки оси абсцисс, на которых график функции у = f (х) расположен выше графика функции у = g (х).

    Пример 17.8. Решите графически неравенство х 2 - 4 > 3х.

    У - х* - 4

    Решение. Построим в одной системе координат графи­ки функций

    у = х 2 - 4 и у = Зх (рис. 17.5). Из рисунка видно, что графики функций у = х 2 - 4 расположен выше графика функции у = 3х при х < -1 и х > 4, т.е. множество решений исходного неравенства есть множество

    (- ¥; -1) È (4; + оо).

    Ответ: х Î (- оо; -1) и (4; + оо).

    Графиком квадратичной функции у = ах 2 + bх + с является парабола с ветвя­ми, направленными вверх, если а > 0, и вниз, если а < 0. При этом возможны три случая: парабола пересекает ось Ох (т.е. уравнение ах 2 + + с = 0 имеет два различных корня); парабола касается оси х (т.е. уравнение ах 2 + bх + с = 0 имеет один корень); парабола не пересекает ось Ох (т.е. уравнение ах 2 + + с = 0 не имеет корней). Таким образом, возможны шесть положений параболы, служа­щей графиком функции у = ах 2 + bх + с (рис. 17.6). Используя эти иллюстрации, можно решать квадратные неравенства.

    Пример 17.9. Решите неравенство: а) 2х г + 5х - 3 > 0; б) -Зх 2 - - 6 < 0.

    Решение, а) Уравнение 2х 2 + 5х -3 = 0 имеет два корня: х, = -3, х 2 = 0,5. Парабола, служащая графиком функции у = 2х 2 + 5х -3, показана на рис. а. Неравенство 2х 2 + 5х -3 > 0 выполняется при тех значениях х, при которых точки параболы лежат выше оси Ох: это будет при х < х х или при х > х г> т.е. при х < -3 или при х > 0,5. Значит, множество решений исходного неравенства есть множество (- ¥; -3) и (0,5; + ¥).

    б) Уравнение -Зх 2 + 2х- 6 = 0 не имеет действительных корней. Парабола, служащая графиком функции у = - 3х 2 - 2х - 6, показана на рис. 17.6 Неравенство -3х 2 - 2х - 6 < О выполняется при тех значениях х, при которых точки параболы лежат ниже оси Ох. По­скольку вся парабола лежит ниже оси Ох, то множество решений исходного неравенства есть множество R.

    НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ПЕРЕМЕННУЮ ПОД ЗНАКОМ МОДУЛЯ. При решении данных неравенств следует иметь в виду, что:

    | f(х) | =

    f(х) , если f(х) ³ 0,

    - f(х) , если f(х) < 0,

    При этом область допустимых значений неравенства следует разбить на ин­тервалы, на каждом из которых выражения, стоящие под знаком модуля, сохра­няют знак. Затем, раскрывая модули (с учетом знаков выражений), нужно решать неравенство на каждом интервале и полученные решения объединять в множество решений исходного неравенства.

    Пример 17.10. Решите неравенство:

    |х -1| + |2- х| > 3+х.

    Решение. Точки х = 1 и х = 2 делят числовую ось (ОДЗ неравенства (17.9) на три интервала: х < 1, 1 £ х £.2, х > 2. Решим данное неравенство на каждом из них. Если х < 1, то х - 1 < 0 и 2 – х > 0; поэтому |х -1| = - (х - I), |2 - х | = 2 - х. Значит, неравенство (17.9) принимает вид: 1- х + 2 - х > 3 + х, т.е. х < 0. Таким образом, в этом случае решениями неравенства (17.9) являются все отрицательные числа.

    Если 1 £ х £.2, то х - 1 ³ 0 и 2 – х ³ 0; поэтому | х- 1| = х - 1, |2 - х| = 2 – х. .Значит, имеет место система:

    х – 1 + 2 – х > 3 + х,

    Полученная система неравенств решений не имеет. Следовательно, на интервале [ 1; 2] множество решений неравенства (17.9) пусто.

    Если х > 2, то х - 1 >0 и 2 – х <0; поэтому | х - 1| = х- 1, |2-х| = -(2- х). Значит, имеет место система:

    х -1 + х – 2 > 3+х,

    х > 6 или

    Объединяя найденные решения на всех частях ОДЗ неравенства (17.9), получаем его решение - множество (-¥; 0) È (6; +оо).

    Иногда полезно воспользоваться геометрической интерпретацией модуля действительного числа, согласно которой | а | означает расстояние точки а коор­динатной прямой от начала отсчета О, а | а - b | означает расстояние между точка­ми а и b на координатной прямой. Кроме того, можно использовать метод возве­дения в квадрат обеих частей неравенства.

    Теорема 17.5. Если выражения f (х) и g (х) при любых х принимают толь­ко неотрицательные значения, то неравенства f (х) > g (х) и f (х) ² > g (х) ² равносильны.

    58. Основные выводы § 12

    В данном параграфе мы определили следующие понятия:

    Числовое выражение;

    Значение числового выражения;

    Выражение, не имеющее смысла;

    Выражение с переменной (переменными);

    Область определения выражения;

    Тождественно равные выражения;

    Тождество;

    Тождественное преобразование выражения;

    Числовое равенство;

    Числовое неравенство;

    Уравнение с одной переменной;

    Корень уравнения;

    Что значит решить уравнение;

    Равносильные уравнения;

    Неравенство с одной переменной;

    Решение неравенства;

    Что значит решить неравенство;

    Равносильные неравенства.

    Кроме того, мы рассмотрели теоремы о равносильности уравнений и неравенств, являющиеся основой их решения.

    Знание определений всех названных выше понятий и теорем о рав­носильности уравнений и неравенств - необходимое условие методи­чески грамотного изучения с младшими школьниками алгебраическо­го материала.

    Романишина Дина Соломоновна, учитель математики гимназии №2 г. Хабаровска

    1. Уравнения с одной переменной.

    Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

    Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

    Решить уравнение - значит найти все его корни или доказать, что корней нет.

    Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

    При решении уравнений используются следующие свойства:

    Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

    Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

    Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

    Если а¹0, то уравнение имеет единственное решение

    .

    Если а=0, b=0, то уравнению удовлетворяет любое значение х.

    Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.

    Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

    Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

    16х-15х=88-40-12

    Пример 2. Решить уравнения:

    х3-2х2-98х+18=0;

    Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

    3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2=

    . .

    Разложить на множители левую часть уравнения:

    х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

    с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

    Ответ: -3; - 4.

    Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

    Напомним определение модуля числа:

    Например: ½3½=3, ½0½=0, ½- 4½= 4.

    В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

    Таким образом,

    Аналогично

    а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х=

    , это число принадлежит множеству х£-1.

    b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

    с) Рассмотрим случай х>1.

    х+1+х-1=3, 2х=3, х=

    . Это число принадлежит множеству х>1.

    Ответ: х1=-1,5; х2=1,5.

    Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

    Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

    х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

    –2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

    0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

    х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

    Ответ: [-2; 0]

    Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

    В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

    Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

    Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

    Если а¹1, а¹-1, тогда уравнение имеет единственное решение

    .

    Ответ: если а=1, то х – любое число;

    если а=-1, то нет решений;

    если а¹±1, то

    .

    2. Системы уравнений с двумя переменными.

    Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему - значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

    При решении линейных систем используют метод подстановки и метод сложения.

    Пример 1. Решить систему уравнений:

    Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение

    во второе уравнение системы, получим ,

    Ответ: (2; 3).

    Пример 2. Решить систему уравнений:

    Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

    Ответ: (2; 1).

    Пример 3. Решить систему уравнений:

    Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

    Ответ: (х; 5-2х), х–любое.

    Пример 4. Решить систему уравнений:

    Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

    Ответ: система не имеет решений.

    Пример 5. Решить систему:

    Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем

    . При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то .

    Ответ: при a=-2система не имеет решения,

    при а¹-2 система имеет решение

    .

    Пример 6. Решить систему уравнений:

    Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

    2х-2у-2z=-12

    3х-3у-3z=-18

    наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим - 4z=-12, z=3. Итак получаем систему уравнений:

    х+у+z=6

    z=3, которая равносильна данной.

    Система такого вида называется треугольной.

    Ответ: (1; 2; 3).

    3. Решение задач с помощью уравнений и систем уравнений.

    Покажем на примерах, как можно решать задачи с помощью уравнений и систем уравнений.

    Пример 1. Сплав олова и меди массой 32 кг содержит 55% олова. Сколько чистого олова надо добавить в сплав, чтобы в новом сплаве щсодержалось 60% олова?

    Решение. Пусть масса олова, добавленная к исходному сплаву, составляет х кг. Тогда сплав массой (32+х)кг будет содержать 60% олова и 40% меди. Исходный сплав содержал 55% олова и 45% меди, т.е. меди в нем было 32·0,45 кг. Так как масса меди в исходном и новом сплавах одна и та же, то получим уравнение 0,45·32=0,4(32+х).

    Решив его, находим х=4, т.е. в сплав надо добавить 4 кг олова.

    Пример 2. Задумано двузначное число, у которого цифра десятков на 2 меньше цифры единиц. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 6. Какое число задумано?

    Решение. Пусть цифра единиц есть х, тогда цифра десятков равна х-2 (х>2), задуманное число имеет вид 10(х-2)+х=11х-20. Сумма цифр числа х-2+х=2х-2. Следовательно, разделив 11х-20 на 2х-2, получим в частном 4 и в остатке 6. Составляем уравнение: 11х-20=4(2х-2)+6, т.к. делимое равно делителю, умноженному на частное, плюс остаток. Решив это уравнение, получим х=6. Итак, было задумано число 46.