Неорганические полимеры в составе пленок. Аллотропные модификации углерода

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

ОПРЕДЕЛЕНИЕ

Полимеры — химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов) , молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

n CH 2 =CH 2 = -(-CH 2 -CH 2 -)-

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

m р-ра (C 6 H 6) = m(C 6 H 6)/(/100%)

Неорганические полимеры

Практический интерес представляют линейные неорганические полимеры, которые в наиб. степени подобны органическим - могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т.п. Такие неорганические полимеры могут быть термостойкими каучуками, стеклами, волокнообразующими и т.п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, силикаты.

Переработка неорганических полимеров в стекла, волокна, ситаллы, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимойдеполимеризацией. Поэтому используют обычно модифицирующие добавки, позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Силиконы

Вы уже раньше встречали неорганические полимеры; если не на этих страницах, то по крайней мере, в повседневной жизни вы, вероятно, уже видели где-нибудь силиконовыйполимер. Силиконы являются одним из наиболее часто встречающихся неорганических полимеров. Они выглядят вот так:

На самом деле их следует называть полисилоксанами. Связь между атомами кремния и кислорода очень прочная, но очень гибкая. Поэтому силиконы могут выдерживать высокие температуры, не разлагаясь при этом, но у них очень низкие температуры стеклования. Вам, наверное, прежде где-нибудь уже приходилось встречатьрезинуили замазку, сделанную из силиконов.

Полисиланы

Было потрачено немало времени для того, чтобы это произошло, но атомы кремния все-таки были выстроены в длинные полимерные цепочки. Уже где-то в 20-е или 30-е годы двадцатого века химики начали догадываться, что органические полимеры сделаны из длинных углеродных цепочек, но серьезные исследования полисиланов не были проведены вплоть до конца семидесятых годов.

Ранее, в 1949 году, в то самое время, когда писатель Курт Воннегут работал в отделе компании Дженерал Электрик по связям с общественностью, К. А. Буркхард (C.A. Burkhard) работал в отделе исследования и развития той же фирмы. Он изобрел полисилан под названием полидиметилсилан, но это вещество ни на что не годилось. Оно выглядело вот так:

Оно образовывало кристаллы, которые были столь прочными, что ничто не могло растворить их. Буркхард пытался нагреть их, но они не плавились при температурах ниже 250 o C, При более высокой температуре они разлагались, так и не расплавивишись. Это делало полидиметилсилан довольно бесполезным. Получено это вещество было при реакции металлического натрия с дихлордиметилсиланом вот так:

Это важно, поскольку в семидесятых годах двадцатого века некоторые ученые начали понимать, как делать маленькие молекулы из атомов кремния. Так, сами того не ожидая, они сделали нечто очень похожее на то, что ранее сделал Буркхард. Они заставили металлический натрий взаимодействовать с дихлордиметилсиланом, но они также добавили к этой смеси некоторое количество дихлорметилфенилсилана. И угадайте, что произошло? Я дам вам подсказку: они не получили нужные им структуры. То, что у них вышло, было вот таким сополимером:

Возможно, более понятно станет, если нарисовать этот сополимер вот таким образом:

Видите ли, эти фенильные группы начинают мешаться, когда полимер пытается кристаллизоваться, поэтому такому веществу в меньшей степени присущи кристаллические свойства, чем полидиметилсилану. Это значит, что оно растворимо и его можно обрабатывать, преобразовывать и изучать.

Ну, и на что же эти вещества годятся? Полисиланы интересны, поскольку они могут проводить электрический ток. Разумеется, не так хорошо, как медь, но гораздо лучше, чем вы могли бы ожидать от полимера, и это достойно исследования. Они также весьма термостойки, их можно нагревать почти до 300 oC. Но если вы нагреете их до гораздо более высоких температур, то вы можете получить из них карбид кремния, который является полезным абразивным материалом.

Полимеры германия и олова

Хорошо, если кремний может образовывать длинные полимерные цепочки, то что можно сказать о других химических элементах из четвертой группы таблицы Менделеева? Можно ли сделать полимеры из германия? Вы можете мне поверить, они существуют! Вы можете сделать полимерные цепочки не только из германия, но даже и из атомов олова! Такие полимеры называются, соответственно, германий-содержащие и олово-содержащие полимеры.

Полимеры олова уникальны, интересны, замечательны, просто необыкновенны, поскольку они являются единственными известными полимерами, основная цепь которых сделана целиком из атомов металлов. Как и полисиланы, полимеры германия и олова (полигерманы и полистанилены) изучаются на предмет их использования в качестве проводников электричества.

Полифосфазены

Мне очень жаль вам об этом сообщать, но элементы четвертой группы таблицы Менделеева у нас кончились. Так что последний неорганический полимер, который мы сегодня рассмотрим, дожен быть сделан из чего-нибудь другого. И это нечто - фосфор и азот. Как и полисилоксаны, полифосфазены сделаны из чередующихся атомов. В данном случае в основной цепочке у нас чередуются атомы фосфора и кремния, вот так:

Такая основная цепочка очень гибкая, как и основная цепочка полисилоксанов, поэтому полифосфазены являются хорошими эластомерами. Они также являются очень хорошими электрическими изоляторами.

Полифосфазены получают в две стадии:

Сначала мы берем пятихлористый фосфор и действуем на него хлоридом аммония для получения хлорированного полимера. Затем мы обрабатываем его спиртовой солью натрия, что дает нам эфирзамещенный полифосфазен.

На сегодняшний день существует огромное множество неорганических полимеров. Основная их часть представляет собой природные соединения, однако современные технологии позволяют искусственно получать неорганические полимеры. Как правило, их производство требует высокого давления и температуры, при этом, основой является чистое вещество, а способы остаются те же, что и при получении органических полимеров (например, полимеризация). Характерными свойствами неорганических полимеров является их устойчивость к химическим воздействиям и термическая стойкость. Кроме того, многие из этих полимеров представляют собой твердый, но достаточно хрупкий материал. Объяснением этому является пространственная кристаллическая структура или чрезмерное наличие ионов в химической связи. Среди самых известных неорганических полимерных материалов находится графит, минеральное стекло, керамика, алмазы, асбест, кварц, слюда.

Элементы химической таблицы могут образовывать различные полимерные цепи. Например, сера, селен и теллур образуют линейные цепи, которые в соответствии с ковалентностью атомов, сворачиваются в спирали. Те химические элементы, которые относятся к главной подгруппе III – V групп, могут формировать, как линейные цепи, так и плоские или пространственные структуры неорганических полимеров. Основу полимерных цепочек чаще всего составляют оксиды кремния, алюминия и ряда других металлов. Они формируют самую широкую группу неорганических полимерных материалов – силикаты и алюмосиликаты. Кроме того, они являются существенной частью земной коры. Структура молекулярной цепи силикатов может быть цепочечной, лестничной, слоистой и трехмерной. Каждая из этих структур придает неорганическим материалам определенные, характерные лишь для них, свойства. Например, лестничная структура предполагает наличие двух параллельных молекулярных цепочек, соединенных атомами кислорода. Именно эти связи обеспечивают наличие новых свойств, которые позволяют отнести полученные материалы к волокнистым (асбест). Еще одной чертой, характеризующей неорганические полимеры, является слоистая структура. Большие расстояния, находящиеся между слоями, обеспечивают соответствующим веществам (тальк, слюда) легкое расщепление. Если цепь содержит металлы, которые могут взаимодействовать с водой, то при этом процессе происходит еще большее увеличение имеющегося расстояния между слоями. Это может привести к разбуханию неорганического материала. Силикаты, обладающие трехмерной структурой, характеризуются хорошей водонепроницаемостью, твердостью и жесткостью. Как правило, отвечают таким характеристикам разновидности кварца: топаз, яшма, агат, горный хрусталь и другие.

Неорганические стекла и техническая керамика

Неорганические стекла.Ситаллы.Техническая керамика.Элементы технологиииприменение конструкционной керамики.

Химический состав стекол и их свойства.Классификация неорганических стекол.

В современном материаловедении все более видное место начинают занимать различные неорганические вещества. Многие из них используют в виде кристаллов: кварц (SiO2), корунд (a-AI2O3) и окрашенные кристаллы этого оксида - сапфир, рубин и др., а также рутил (ТiO2) , нитриды, сульфиды и т.д. Однако в гораздо больших масштабах эти же неорганические вещества используют ваморфном состоянии в виде стекол.

Наиболее распространены стекла на основе диоксида кремния - силикатные стекла. Широко используют также алюмо-силикатные, боро-силикатные стекла.

Неорганическое стекло - это химически сложный, аморфный, макроскопически изотропный материал, обладающий механическими свойствами хрупкого твердого тела. Стекло получается после охлаждения расплава смеси неорганических соединений (в основном оксидов). Их свойства одинаковы по всем направлениям, т.е. они изотропны. При нагреве они не плавятся при постоянной температуре, как кристаллы, а постепенно размягчаются в значительном диапазоне температур, переходя в жидкое состояние. Расплавление их при повышении температуры и отверждение при понижении температуры происходит обратимо. По структуре - это твердые растворы.

Среди причин аморфного состояниянеорганических стекол можно выделить две.

Первая причина заключается в том, что в области затвердевания расплав стекла имеет очень высокую вязкость (табл.6.3).

Таблица 6.3 - Вязкость некоторых веществ при температурах плавления

Вещество

h ×10, Н с/м2

Вторая причина вытекает из особенностей ковалентной связи, определяющей взаимодействие атомов в оксиде. Ковалентная связь обладает двумя важными свойствами: насыщенностью и направленностью. Согласно насыщенности химической связи каждый атом стекла в пространстве имеет в соответствии со своей валентностью строго определенное количество "партнеров" по взаимодействию. Например, кремний 4-х валентен. И его атом должен иметь в непосредственном окружении четыре атома кислорода (в кварцевом стекле) с которыми он связан полярной ковалентной связью. Причем эти связи могут образовываться не произвольно, а под определенным углом друг к другу (принцип направленности). Все это очень затрудняет формирование регулярной, кристаллической структуры. В высоковязкой среде в структуре стекла при охлаждении может образоваться только ближний порядок в расположении атомов.

Химический состав стекол и их свойства

Стекла, используемые в технике, в большинстве состоят из нескольких компонентов. По функциональному назначению все компоненты стекол можно разделить на три группы:стеклообразователи, модификаторы и компенсаторы.

Стеклообразователи являются основной составной частью стекла. Стеклообразователи - неорганические полимеры, имеющие сетчатую структуру. Поэтому стекла обладают некоторыми чертами полимерных структур и соответствующими физическими свойствами, характерными для полимерных материалов.

Чаще всего в качестве стеклообразователей используют SiO2 (силикатное стекло), Аl2О3 и SiO2 (алюмосиликатное), В2О3 и SiO2 (боросиликатное), В2О3, Аl2О3 и SiO2 (бороалюмосиликатное).

Модификаторы вводят в стекло для придания стеклам нужных свойств: для упрощения технологии, удешевления материала и т.д.

Например, при введении в кварц оксидов щелочных и щелочноземельных металлов уменьшается температура размягчения стекла, упрощается технология. Добавки оксидов хрома, железа, кобальта и др. придают нужный цвет стеклу. Оксиды тяжелых металлов, например, свинца, повышают коэффициент преломления.

Часто введение какой-то добавки улучшает одни свойства и ухудшает другие показатели материала. Тогда вводят добавки - компенсаторы, назначение которых подавить негативное проявление основных модификаторов.

Одним из важных свойств стекол является термостойкость. У большинства стекол термостойкость колеблется от 90 до 200оС, а у кварцевого стекла, самого прочного, термостойкого и не расширяющегося, достигает 800-1000оС.

Температурная зависимость прочности стекол имеет минимум при 200°С. Максимальная рабочая температура обычно не превышает 400-500оС, что примерно соответствует температуре стеклования. Кварцевое стекло допускает длительную эксплуатацию при 1100-1200°С (прочность повышена на 50 %) и кратковременное использование при нагреве до 1400-1500оС.

Термическое упрочнение (закалка) стекла осуществляется быстрым и равномерным его охлаждением, нагретого выше температуры стеклования в потоке воздуха или в маслах. Упрочнение стекла закалкой связано с появлением в стекле достаточно равномерно распределенных напряжений, которые в наружных слоях стекла вызывают напряжения сжатия, а во внутренних слоях - напряжения растяжения. Предел прочности стекла при сжатии примерно в 10-15 раз больше, чем предел прочности при растяжении.

Термохимическое упрочнение основано на закалке стекла и, кроме того, на изменении самой структуры и свойств его поверхностного слоя. Такое упрочнение производится быстрым охлаждением стекла, нагретого выше температуры стеклования, в подогретых полимерных кремнийорганических жидкостях. Дополнительное упрочнение объясняется образованием на поверхности стекла полимерных пленок.

Классификация неорганических стекол, их свойства, применение

Одним из самых распространенных высококачественных стекол, применяемых в авиационных конструкциях, является алюмоборосиликатное малощелочное стекло.

По назначению техническое стекла подразделяются на оптическое, лабораторное, электротехническое, транспортное, приборное, защитное, теплозвукоизоляционное, светотехническое, стекловолокно и др. Плотность неорганических стекол колеблется от 2200 кг/м3 у легких щелочных силикатных стекол (показатель преломления n= 1,44) до 5200…8000 кг/м3 у тяжелых, содержащих до 65% оксидов свинца, бария, висмута (n=1,9); светопрозрачность неокрашенных стекол составляет в видимой части спектра до 92%.

Химическая и гидролитическая стойкость стекол в кислых средах (кроме фосфорной кислоты Н2РО3 и плавиковой HF, полностью растворяющей стекло) довольно высока. В щелочных средах стойкость снижается. Силикатные стекла с содержанием 20-30%Na2O или LiO растворимы в горячей воде и образуют «жидкое стекло».

Недостатком закаленного стекла является чувствительность к ударам в края (у самой кромки) и в углах. При разрушении закаленное стекло покрывается густой сеткой трещин, сильно затрудняющих видимость.

Если два листа стекла склеить прозрачной гибкой и упругой полимерной пленкой, то получается так называемый триплекс. При разрушении его образовавшиеся осколки удерживаются на полимерной пленке, к которой они прикреплены, и не высыпаются.

Ситаллы, их свойства, применение

Выдающимися свойствами обладают новые конструкционные материалы - ситаллы (термин образован из слов стекло и кристалл), получаемые путем кристаллизации неорганических стекол на основе некоторых оксидов.

Ситаллы - это частично закристаллизованные стекла. Они получаются регулируемой кристаллизациейстекла при повышенных температурах. В ходе этого процесса в объеме материала формируются микрообласти кристаллического строения размером до 1 мкм. Концентрация таких областей в ситаллах может превышать 50% по объему.

По химическому составу ситаллы отличаются от стекол тем, что в них добавляют катализаторы (затравки) кристаллизации. В качестве катализаторов кристаллизации используют микрочастицы золота, серебра, платины, меди (сотые доли процента) или оксиды титана, циркония, цинка, хрома, ванадия и др.

По структуре ситаллы занимают промежуточное положение между обычными стеклами и керамикой.В связи с этим ситаллы иногда называют стеклокерамикой. Ситаллы - многокомпонентные, гетерогенные, многофазные системы, обладают очень высоким уровнем свойств: высокой механической прочностью, твердостью, химической и термической устойчивостью, малым термическим расширением и другими полезными свойствами. Например, ситалл, известный под названием "пирокерам", прочнее прокатанного стекла, высокоуглеродистой стали, легче алюминия, а по коэффициенту термического расширения и термостойкости не отличается от кварца.

При превращении стекла в ситалл начале стекло проходит стадию варки (температура Тm) , затем стекло формируется в изделие и охлаждается до температуры Тn - температуры образования центров кристаллизации. При этой температуре cтекло выдерживают около 1 ч. В результате в объеме материала образуются мелкие кристаллы и становится возможным повысить температуру до Tg. При температуре Tg происходит рост кристаллов, материал теряет прозрачность. Время выдержки стеклоизделия при Тg составляет 4-6 ч.

Микрокристаллические сплавы, полученные из стекол

Высокопрочные кристаллические сплавы из металлических стекол получают способом, похожим на процесс образования пирокерамик. Это сплавы на основе Fe, Ni, Cr, Mo, Co, W в различных комбинациях с металлоидами (преимущественно бором), содержание которых не превышает 12%, в аморфном состоянии хрупкие. Ленты из аморфного сплава, полученные струйным методом из расплава, могут легко превратиться в порошок, который затем подвергается горячей экструзии или газовому изостатическому прессованию и одновременно кристаллизуются с образованием микрокристалической структуры, стабилизированной мельчайшими частицами бора. Если в сплаве имеется углерод, можно провести упрочняющую термообработку. Такие сплавы очень тверды и износостойки и могут использоваться в качестве быстрорежущих сталей.

Техническая керамика

Керамика - это многокомпонентный, гетерогенный материал, получаемый спеканием высокодисперсных минеральных частиц, (глин, оксидов, карбидов, нитридов и др.). Если в состав керамики входят металлы, то этот вид керамики называют керметами.

Технологический процесс изготовления изделий из керамики складывается из нескольких стадий. Основные технологические операции при получении керамических материалов следующие: подготовка исходных компонентов в виде порошков, перемешивание компонентов, формование изделий, обжиг заготовки, концевые операции (механическая обработка, металлизация и др.).

Структура керамики

Множество видов структур керамических материалов можно разделить на две группы: макроизотропные и анизотропные.

Макроизотропные материалы. На атомарном или молекулярном уровнях - это анизотропные материалы, но размер надмолекулярных образований, зерен, невелик по сравнению с размерами керамического изделия. Можно обозначить четыре вида макроизотропных материалов.

1. Микрокристаллическая керамика. Примерами этой керамики могут служить различные сорта фарфора. Ситаллы имеют ту же структуру. На рис. 6.3 а точками обозначены микрокристаллические области, окруженные аморфной средой. Содержание кристаллической и аморфной фазы в материале могут быть различными, различно и размещение этих фаз в объеме материала. Материал же в целом изотропен. Эти материалы обладают высокой плотностью, хрупки.

а

в

Виды керамики:

а - микрокристаллическая, б - зернистая, в -пористая (TiС), г - армированная (ВТСП керамика системы Y-Ba-Cu-O).

2. Зернистая структура . Этот вид структуры является наиболее типичным для керамических материалов. Зерна в структуре керамики могут отличаться размерами, формой и свойствами. Распределение зерен разной природы в объеме материала, прочность сцепления частиц в материале также различны. Все эти факторы сложным образом влияют на свойства керамики. На практике в ограниченных рамках используют эмпирические уравнения вида:

,

где s - прочность; sо - константа, близкая к прочности монокристалла; k - константа; d - размер зерна.

3. Пористая структура . Вообще многие керамики пористы. Однако иногда поры создают специально: для снижения массы керамического изделия, для того, чтобы сделать его проницаемым для газа или жидкости и т.д.

Обычно прочность пористой керамики ниже прочности зернистой керамики. Форма пор также влияет на прочность материала. Пора может также обрывать развитие трещины при разрушении и распределять нагрузку в объеме материала.

4. Армированная структура. Этот вид керамики содержит вытянутые зерна высокой прочности. В объеме материалов эти зерна не ориентированы в каком-либо определенном направлении. Поэтому в макрообьеме материал ведет себя как изотропный. Прочность такой керамики, благодаря армированию, бывает очень высокой.

Анизотропная керамика. В этих материалах структурные элементы намеренно ориентированы в нужном направлении. К анизотропной керамике относятся слоистая керамика, волокнистая керамика, либо керамика с ориентированной структурой.

Элементы технологии керамических материалов

1 - Получение порошков. Существуют механические и физико-химические методы получения порошков. Первые из них связаны с дроблением материала. Вторые заключаются в процессах агломерации продуктов химического синтеза. Обычно используют порошки с частицами микронных размеров. Если необходима плотная упаковка частиц в материале, то применяют смесь частиц, имеющих разные размеры - полидисперсные порошки.

2 - Смешение компонентов и формование изделий.

3 - Спекание частиц происходит при обжиге отформованного изделия при высокой температуре (обычно от 900 до 2000оС). При спекании происходят такие процессы, как дегидратация компонентов, деструкция органических технологических примесей (полимеры, поверхностно активные вещества), диссоциация нестойких неорганических соединений, процессы окисления и восстановления, плавление некоторых компонентов, полиморфные превращения и т.д. В итоге, после охлаждения стекловидный, может быть, частично закристаллизованный расплав, связывает зерна более огнеупорного материала, образуя прочный монолит.

В процессе спекания происходит срастание частиц и уменьшение пористости материала вплоть до теоретической плотности. При повышении температуры поры меняют свою форму, становясь сферически­ми, и уменьшаются в размерах. На практике в керамике сохраняется некоторая остаточная пористость.

Степень и скорость спекания зависят от многих факторов: температуры, длительности процесса, дисперсности частиц, коэффициентов диффузии, вязкости и др. Очень сильное влияние на развитие процесса спекания и на структуру керамики оказывает расплав (жидкость) наиболее легкоплавкого компонента.

Применение конструкционной керамики

К основным областям применения керамических материалов относятся режущий инструмент, детали ДВС, ГТД и др.

Режущая кромка характеризуется высокой твердостью, износостойкостью, химической инертностью. По комплексу свойств керамический режущий инструмент превосходит традиционные режущие материалы, такие как быстрорежущие стали (БРС), твердые сплавы (ТС)

Керамика Al2O3

Температура размягчения

Температура начала

образования окалины

Неорганические полимеры

  • Неорганические полимеры - полимеры, не содержащие в повторяющемся звене связей C-C, но способные содержать органический радикал как боковые заместители.


Классификация полимеров

1. Гомоцепные полимеры

Углерод и халькогены (пластическая модификация серы).

Минеральное волокно асбест


Характеристика асбеста

  • Асбест (греч. ἄσβεστος, - неразрушимый) - собирательное название группы тонковолокнистых минералов из класса силикатов. Состоят из тончайших гибких волокон.

  • Ca2Mg5Si8O22(OH)2 -формула

  • Два основных типа асбестов - серпентин-асбест (хризотил-асбест, или белый асбест) и амфибол-асбесты


Химический состав

  • По химическому составу асбесты представляют собой водные силикаты магния, железа, отчасти кальция и натрия. К классу хризотил-асбестов относятся следующие вещества:

  • Mg6(OH)8

  • 2Na2O*6(Fe,Mg)O*2Fe2O3*17SiO2*3Н2О


Безопасность

  • Асбест практически инертен и не растворяется в жидких средах организма, но обладает заметным канцерогенным эффектом. У людей, занятых на добыче и переработке асбеста, вероятность возникновения опухолей в несколько раз больше, чем у основного населения. Чаще всего вызывает рак лёгких, опухоли брюшины, желудка и матки.

  • На основе результатов всесторонних научных исследований канцерогенных веществ, Международное агентство по изучению рака отнесло асбест к первой, наиболее опасной категории списка канцерогенов.


Применение асбеста

  • Производства огнеупорных тканей (в том числе для пошива костюмов для пожарных).

  • В строительстве (в составе асбесто-цементных смесей для производства труб и шифера).

  • В местах, где требуется снизить влияние кислот.


Роль неорганических полимеров в формировании литосферы


Литосфера

  • Литосфера - твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы.

  • Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5-10 км, а гранитный слой полностью отсутствует.



Химический состав

    Основными компонентами земной коры и поверхностного грунта Луны являются оксиды Si и Al и их производные. Такой вывод можно сделать исходя из существующих представлений о распространенности базальтовых пород. Первичным веществом земной коры является магма - текучая форма горной породы, содержащая наряду с расплавленными минералами значительное количество газов. При выходе на поверхность магма образует лаву, последняя застывая образует базальтовые породы. Основной химический компонент лавы - кремнезем, или диоксид кремния, SiO2 . Однако при высокой температуре атомы кремния могут легко замещаться на другие атомы, например алюминия, образуя различного рода алюмосиликаты. В целом литосфера представляет собой силикатную матрицу с включением других веществ, образовавшихся в результате физических и химических процессов, протекавших в прошлом в условиях высокой температуры и давления. Как сама силикатная матрица, так и включения в нее содержат по преимуществу вещества в полимерной форме, то есть гетероцепные неорганические полимеры.


Гранит

  • Гранит - кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд - биотита и мусковита. Граниты очень широко распространены в континентальной земной коре.

  • Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континентальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10-20 км). Кроме того, гранитный магматизм характерен для активных континентальных окраин,и в меньшей степени, для островных дуг.

  • Минеральный состав гранита:

  • полевые шпаты - 60-65 %;

  • кварц - 25-30 %;

  • темноцветные минералы (биотит, редко роговая обманка) - 5-10 %.


Базальт

  • Минеральный состав . Основная масса сложена микролитами плагиоклазов, клинопироксена, магнетита или титаномагнетита, а также вулканическим стеклом. Наиболее распространенным акцессорным минералом является апатит.

  • Химический состав . Содержание кремнезёма (SiO2) колеблется от 45 до 52-53 %, сумма щелочных оксидов Na2O+K2O до 5 %,в щелочных базальтах до 7 %. Прочие оксиды могут распределяться так: TiO2=1.8-2.3 %; Al2O3=14.5-17.9 %; Fe2O3=2.8-5.1 %; FeO=7.3-8.1 %; MnO=0.1-0.2 %; MgO=7.1-9.3 %; CaO=9.1-10.1 %; P2O5=0.2-0.5 %;


Кварц (Оксид кремния(IV), кремнезем)


Формула: SiO2

  • Формула: SiO2

  • Цвет: бесцветный, белый, фиолетовый, серый, жёлтый, коричневый

  • Цвет черты: белая

  • Блеск: стеклянный, в сплошных массах иногда жирный

  • Плотность: 2,6-2,65 г/см³

  • Твердость: 7





Химические свойства





Корунд (Al2O3 , глинозем)


Формула: Al2O3

  • Формула: Al2O3

  • Цвет: голубой, красный, жёлтый, коричневый, серый

  • Цвет черты: белая

  • Блеск: стеклянный

  • Плотность: 3,9-4,1 г/см³

  • Твердость: 9







Теллур


Теллур цепочечного строения

  • Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам.


Применение теллура

  • Производстве полупроводниковых материалов

  • Производство резины

  • Высокотемпературная сверхпроводимость


Селен


Селен цепочечного строения

Черный Серый Красный

Серый селен

    Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную решетку можно представить как несколько деформированный куб. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полтора раза меньше расстояния между цепями. Поэтому элементарные кубики искажены.


Применение серого селена

  • Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т.е. проводимость в нем создается главным образом не электронами, а «дырками».

  • Другое практически очень важное свойство селена-полупроводника – его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.


Красный селен

  • Красный селен представляет собой менее устойчивую аморфную модификацию.

  • Полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние.

  • Не имеет определенной температуры плавления.

  • Красный аморфный селен при повышении температуры (- 55) начинает переходить в серый гексагональный селен


Сера



Особенности строения

  • Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении.

  • Пластическая сера неустойчива и самопроизвольно превращаются в ромбическую.



Получение пластической серы


Применение серы

  • Получение серной кислоты;

  • В бумажной промышленности;

  • в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника);

  • в производстве красителей и светящихся составов;

  • для получения черного (охотничьего) пороха;

  • в производстве спичек;

  • мази и присыпки для лечения некоторых кожных заболеваний.


Аллотропные модификации углерода


Сравнительная характеристика


Применение аллотропных модификаций углерода

  • Алмаз – в промышленности: его используют для изготовления ножей, свёрл, резцов; в ювелирном деле. Перспектива – развитие микроэлектроники на алмазных подложках.

  • Графит – для изготовления плавильных тиглей, электродов; наполнитель пластмасс; замедлитель нейтронов в ядерных реакторах; компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином)

Полимеры – высокомолекулярные соединения, которые состоят из множества мономеров. Полимеры стоит отличать от такого понятия как олигомеры, в отличие от которых при добавлении еще одного номерного звена свойства полимера не меняются.

Связь между звеньями мономеров может осуществляться с помощью химических связей, в таком случае они называются реактопластами, или благодаря силе междумолекулярного воздействия, что характерно для так называемых термопластов.

Соединение мономеров при образовании полимера может происходить в результате реакции поликонденсации или полимеризации.

В природе встречается множество подобных соединений, наиболее известные из которых: белки, каучук, полисахариды и нуклеиновая кислота. Такие материалы называются органическими.

На сегодняшний день большое количество полимеров производятся синтетическим путем. Такие соединения называются неорганическими полимерами. Неорганические полимеры получают путем соединения природных элементов с помощью реакции поликонденсации, полимеризации и химического превращения. Это позволяет заменить дорогие или редкие природные материалы, или создать новые, не имеющие аналоги в природе. Главное условие, чтобы полимер не содержал в составе элементов органического происхождения.

Неорганические полимеры, благодаря своим свойствам, обрели широкую популярность. Спектр их использования достаточно широк, при этом постоянно находят новые сферы применения и разрабатываются новые виды неорганических материалов.

Основные характеристики

На сегодняшний день существует множество видов неорганических полимеров, как природных, так и синтетических, которые обладают различными составом, свойствами, сферой применения и агрегатного состояния.

Современный уровень развития химической промышленности позволяет производить неорганические полимеры в больших объемах. Чтобы получить такой материал нужно создать условия повышенного давления и высокой температуры. Сырьем для производства выступает чистое вещество, которое поддается процессу полимеризации.

Неорганические полимеры характерны тем, что обладают повышенной прочностью, гибкостью, тяжело поддаются воздействию химических веществ и устойчивы к высоким температурам. Но некоторые виды могут быть хрупкими и не обладать эластичностью, но при этом достаточно прочными. Наиболее известными из них считаются графит, керамика, асбест, минеральное стекло, слюда, кварц и алмаз.

Наиболее распространенные полимеры в основе имеют цепочки таких элементов, как кремний и алюминий. Это связано с распространенностью этих элементов в природе, особенно кремния. Наиболее известные среди них такие неорганические полимеры как силикаты и алюмосиликаты.

Свойства и характеристики разнятся не только в зависимости от химического состава полимера, но и от молекулярной массы, степени полимеризации, строения атомной структуры и полидисперсности.

Полидисперсность – это присутствие в составе макромолекул разной массы.

Большинство неорганических соединений характеризуются такими показателями:

  1. Эластичность. Такая характеристика, как эластичность, показывает возможность материала увеличится в размерах под воздействием сторонней силы и вернутся в изначальное состояние после снятия нагрузки. Например, каучук способен увеличиться в семь-восемь раз без изменения структуры и различных повреждений. Возврат формы и размеров возможен благодаря сохранению расположения макромолекул в составе, перемещаются лишь отдельные их сегменты.
  2. Кристаллическая структура. От расположения в пространстве составных элементов, что называется кристаллической структурой, и их взаимодействия зависят свойства и особенности материала. Исходя из этих параметров, полимеры разделяют на кристаллические и аморфные.

Кристаллические имеют стабильную структуру, в которой соблюдается определенное расположение макромолекул. Аморфные состоят из макромолекул ближнего порядка, которые только в отдельных зонах имеют стабильную структуру.

Структура и степень кристаллизации зависит от нескольких факторов, таких как температура кристаллизации, молекулярная масса и концентрированность раствора полимера.

  1. Стеклообразность. Это свойство характерно для аморфных полимеров, которые при снижении температуры или повышении давления обретают стеклообразную структуру. В таком случае прекращается тепловое движение макромолекул. Температурные интервалы, при которых происходит процесс стеклообразования, зависит от типа полимера, его структуры и свойств структурных элементов.
  2. Вязкотекучее состояние. Это свойство, при котором происходят необратимые изменения формы и объема материала под воздействием сторонних сил. В вязотекущем состоянии структурные элементы перемещаются в линейном направлении, что становится причиной изменения его формы.

Строение неорганических полимеров

Такое свойство очень важно в некоторых сферах промышленности. Наиболее часто его используют при переработки термопластов с помощью таких методов как литье под давлением, экструзия, вакуум-формирования и других. При этом полимер расплавляется при повышенных температурах и высоком давлении.

Виды неорганических полимеров

На сегодняшний день существуют определенные критерии, по которым классифицируются неорганические полимеры. Основные из которых:

  • природа происхождения;
  • виды химических элементов и их разнообразие;
  • количество мономерных звеньев;
  • строение полимерной цепи;
  • физические и химические свойства.

В зависимости от природы происхождения классифицируют синтетические и натуральные полимеры. Натуральные формируются в природных условиях без участия человека, а синтетические производятся и модифицируются в промышленных условиях для достижения необходимых свойств.

На сегодняшний день существует множество видов неорганических полимеров, среди которых выделяются наиболее широко используемые. К таким относится асбест.

Асбест – тонковолокнистый минерал, который относится к группе силикатов. Химический состав асбеста представлен силикатами магния, железы, натрия и кальция. Асбест обладает канцерогенными свойствами, поэтому очень опасен для здоровья человека. Он очень опасен для работников, занятых на его добычи. Но в виде готовых изделий он достаточно безопасен, так как не растворяется в различных жидкостях и не вступает с ними в реакцию.

Силикон – один из наиболее распространенных синтетических неорганических полимеров. Его легко встретить в повседневной жизни. Научное название силикона – полисилоксан. Его химический состав представляет собой связь кислорода и кремния, которая придает силикону свойства высокой прочности и гибкости. Благодаря этому, силикон способен выдержать высокие температуры и физические нагрузки не теряя прочности, сохраняя форму и структуру.

Полимеры углерода очень распространены в природе. Существует также множество видов, синтезирующихся человеком в промышленных условиях. Среди природных полимеров выделяется алмаз. Этот материал невероятно прочный и обладает кристально чистой структурой.

Карбин – это синтетический углеродный полимер, который обладает повышенными свойствами прочности, не уступающими алмазу и графену. Производится в виде черного морошка мелкокристаллической структуры. Обладает свойствами электропроводимости, которая увеличивается под воздействием света. Способен выдержать температуру в 5000 градусов не теряя свойств.

Графит – углеродный полимер, структура которого отличается плоскостной ориентацией. Из-за этого структура графита слоистая. Этот материал проводит электричество, тепло, но не пропускает свет. Его разновидностью является графен, который состоит из одного слоя молекул углерода.

Полимеры бора отличаются высокой твердостью, не сильно уступая алмазам. Способны выдержать температуру более 2000 градусов, что намного больше пограничной температуры алмаза.

Полимеры селена – довольно широкий ряд неорганических материалов. Наиболее известный из них – карбид селена. Карбид селена – прочный материал, имеющий вид прозрачных кристаллов.

Полисиланы обладают особыми свойствами, которые отличают их от других материалов. Этот вид проводит электричество и выдерживает температуру до 300 градусов.

Применение

Неорганические полимеры применяются практически во всех сферах нашей жизни. В зависимости от вида, они обладают различными свойствами. Главная их особенность в том, что искусственные материалы обладают улучшенными свойствами в сравнении с органическими материалами.

Асбест применяется в различных сферах, в основном, в строительстве. Из смесей цемента с асбестом производят шифер и различные типы труб. Также асбест применяют для снижения кислотного влияния. В легкой промышленности асбест применяется для пошива противопожарных костюмов.

Силикон применяется в различных сферах. Из него производят трубки для химической промышленной, элементы, используемые в пищевой промышленности, а также используют в строительстве в качестве герметика.

В целом, силикон один из наиболее функциональных неорганических полимеров.

Алмаз наиболее известен как ювелирный материал. Он очень дорогой благодаря своей красоте и сложности добычи. Но алмазы также используются в промышленности. Это материал необходим в режущих устройствах для распила очень прочных материалов. Он может использоваться в чистом виде как резец или в виде напыления на режущие элементы.

Графит широко используется в различных сферах, из него делают карандаши, он применяется в машиностроении, в атомной промышленности и в виде графитовых стержней.

Графен и карбин пока малоизучены, поэтому сфера их применения ограничена.

Полимеры бора используются для производства абразивных материалов, режущих элементов и . Инструменты из такого материала необходимы для обработки металла.

Карбид селена применяется для производства горного хрусталя. Его получают путем нагрева до 2000 градусов кварцевого песка и угля. Хрусталь используют для производства высококачественной посуды и предметов интерьера.

Классификация по способу получения (происхождения)

Классификация по горючести

Классификация по поведению при нагревании

Классификация полимеров по структуре макромолекул

КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

Синтез полимеров.

Полимером называют химическое вещество, имеющее большую молекулярную массу и состоящее из большого числа периодически повторяющихся фрагментов, связанных химическими связями. Указанные фрагменты называются элементарными звеньями.

Таким образом, признаки полимеров следующие: 1. очень большая молекулярная масса (десятки и сотни тысяч). 2. цепное строение молекул (чаще простые связи).

Следует отметить, что полимеры уже сегодня успешно конкурируют со всеми другими материалами, используемыми человечеством с древности.

Применение полимеров:

Полимеры биологического и медицинского назначения

Ионно - и электронно-обменные материалы

Тепло- и термостойкие пластики

Изоляторы

Строительные и конструкционные материалы

ПАВы и материалы, стойкие к агрессивной среде.

Быстрое расширение производства полимеров привело к тому, что их пожароопасность (а все они горят лучше, чем дерево) стала национальным бедствием для многих стран. При их горении и разложении образуются различные вещества, в основном токсичные для человека. Знать опасные свойства образующихся веществ необходимо для успешной борьбы с ними.

Классификация полимеров по составу основной цепи макромолекул (наиболее распространенная):

I . Карбоцепные ВМС – основные полимерные цепи построены только из углеродных атомов

II . Гетероцепные ВМС – основные полимерные цепи, помимо атомов углерода, содержат гетероатомы (кислород, азот, фосфор, серу и т.д.)

III . Элементоорганические полимерные соединения – основные цепи макромолекул содержат элементы, не входящие в состав природных органических соединений (Si, Al, Ti, B, Pb, Sb, Sn и др.)

Каждый класс подразделяется на отдельные группы в зависимости от строения цепи, наличия связей, количества и природы заместителей, боковых цепей. Гетероцепные соединения классифицируются, кроме того, с учетом природы и количества гетероатомов, а элементоорганические полимеры – в зависимости от сочетания углеводородных звеньев с атомами кремния, титана, алюминия и т.д.

а) полимеры с насыщенными цепями: полипропилен – [-CH 2 -CH-] n ,

полиэтилен – [-CH 2 -CH 2 -] n ; CH 3

б) полимеры с ненасыщенными цепями: полибутадиен – [-CH 2 -CH=CH-CH 2 -] n ;

в) галоген замещенные полимеры: тефлон – [-CF 2 -CF 2 -] n , ПВХ – [-CH 2 -CHCl-] n ;



г) полимерные спирты: поливиниловый спирт – [-CH 2 -CH-] n ;

д) полимеры производных спиртов: поливинилацетат – [-CH 2 -CH-] n ;

е) полимерные альдегиды и кетоны: полиакролеин – [-СН 2 -СН-] n ;

ж) полимеры карбоновых кислот: полиакриловая кислота – [-СН 2 -СН-] n ;

з) полимерные нитрилы: ПАН – [-СН 2 -СН-] n ;

и) полимеры ароматических углеводородов: полистирол – [-СН 2 -СН-] n .

а) простые полиэфиры: полигликоли – [-СН 2 -СН 2 -О-] n ;

б) сложные полиэфиры: полиэтиленгликольтерефталат –

[-О-СН 2 -СН 2 -О-С-С 6 Н 4 -С-] n ;

в) полимерные перекиси: полимерная перекись стирола – [-СН 2 -СН-О-О-] n ;

2. Полимеры, содержащие в основной цепи атомы азота:

а) полимерные амины: полиэтилендиамин – [-СН 2 –СН 2 –NН-] n ;

б) полимерные амиды: поликапролактам – [-NН-(СH 2) 5 -С-] n ;

3.Полимеры, содержащие в основной цепи одновременно атомы азота и кислорода – полиуретаны: [-С-NН-R-NН-С-О-R-О-] n ;

4.Полимеры, содержащие в основной цепи атомы серы:

а) простые политиоэфиры [-(СН 2) 4 – S-] n ;

б) политетрасульфиды [-(СН 2) 4 -S - S-] n ;

5.Полимеры, содержащие в основной цепи атомы фосфора,

например: O

[- P – O-CH 2 -CH 2 -O-] n ;

1.Кремнийорганические полимерные соединения

а) полисилановые соединения R R

б) полисилоксановые соединения

[-Si-O-Si-O-] n ;

в) поликарбосилановые соединения

[-Si-(-C-) n -Si-(-C-) n -] n ;

г) поликарбосилоксановые соединения

[-O-Si-O-(-C-) n -] n ;

2. Титанорганические полимерные соединения, например:

OC 4 H 9 OC 4 H 9

[-O – Ti – O – Ti-] n ;

OC 4 H 9 OC 4 H 9

3. Алюминийорганические полимерные соединения, например:

[-O – Al – O – Al-] n ;

Макромолекулы могут иметь линейную, разветвленную и пространственную трехмерную структуру.

Линейные полимеры состоят из макромолекул линейной структуры; такие макромолекулы представляют собой совокупность мономерных звеньев (-А-) , соединённых в длинные неразветвлённые цепи:

nA ® (…-A - A-…) m + (…- A - A -…) R + …., где (…- А - А -…) - макромолекулы полимера с различным молекулярным весом.

Разветвлённые полимеры характеризуются наличием основных цепях макромолекул боковых ответвлений, более коротких, чем основная цепь, но также состоящих из повторяющихся мономерных звеньев:

…- A – A – A – A – A – A – A- …

Пространственные полимеры с трёхмерной структурой характеризуются наличием цепей макромолекул, связанных между собой силами основных валентностей при помощи поперечных мостиков, образованных атомами (-В-) или группами атомов, например мономерными звеньями (-А-)

A – A – A – A – A – A – A –

A – A – A – A – A – A –

A – A – A – A – A – A -

Пространственными полимерами с частым расположением поперечных связей называют - сетчатые полимеры. Для трёхмерных полимеров понятие молекула теряет смысл, так как в них отдельные молекулы соединены между собой во всех направлениях, образуя огромные макромолекулы.

термопластичные - полимеры линейной или разветвлённой структуры, свойства которых обратимы при многократном нагревании и охлаждении;

термореактивные - некоторые линейные и разветвлённые полимеры, макромолекулы которых при нагревании в результате происходящих между ними химических взаимодействий соединяются друг с другом; при этом образуются пространственные сетчатые структуры за счёт прочных химических связей. После прогрева, термореактивные полимеры обычно становятся неплавкими и нерастворимыми – происходит процесс их необратимого отверждения.

Эта классификация весьма приближенная, так как воспламенение и горение материалов зависят не только от природы материала, но и от температуры источника зажигания, условий воспламенения, формы изделия или конструкций и т.д.

Согласно этой классификации полимерные материалы делят на горючие, трудногорючие и негорючие. Из сгораемых материалов выделяют трудновоспламеняемые, а из них и трудносгораемые - самозатухающие.

Примеры сгораемых полимеров: полиэтилен, полистирол, полиметилметакрилат, поливинилацетат, эпоксидные смолы, целлюлоза и т.д.

Примеры трудносгораемых полимеров: ПВХ, тефлон, фенолформальдегидные смолы, мочевиноформальдегидные смолы.

Природные (белки, нуклеиновые кислоты, природные смолы) (животного и

растительного происхождения);

Синтетические (полиэтилен, полипропилен и т. д.);

Искусственные (химическая модификация природных полимеров – эфиры

целлюлозы).

Неорганические: кварц, силикаты, алмаз, графит, корунд, карбин, карбид бора и т. д.

Органические: каучуки, целлюлоза, крахмал, органическое стекло и