Направление магнитных линий проводника с током. Кафедра Общей и технической физики

Всем доброго времени суток. В прошлой статье я рассказал о магнитном поле и немного остановился на его параметрах. Данная статья продолжает тему магнитного поля и посвящена такому параметру как магнитная индукция. Для упрощения темы я буду рассказывать о магнитном поле в вакууме, так как различные вещества имеют разные магнитные свойства, и как следствие необходимо учитывать их свойства.

Закон Био – Савара – Лапласа

В результате исследования магнитных полей создаваемых электрическим током, исследователи пришли к таким выводам:

  • магнитная индукция, создаваемая электрическим током пропорциональна силе тока;
  • магнитная индукция имеет зависимость от формы и размеров проводника, по которому протекает электрический ток;
  • магнитная индукция в любой точке магнитного поля зависит от расположения данной точки по отношению к проводнику с током.

Французские учёные Био и Савар, которые пришли к таким выводам обратились к великому математику П. Лапласу для обобщения и вывода основного закона магнитной индукции. Он высказал гипотезу, что индукция в любой точке магнитного поля, создаваемое проводником с током можно представить в виде суммы магнитных индукций элементарных магнитных полей, которые создаются элементарным участком проводника с током. Данная гипотеза и стала законом магнитной индукции, называемого законом Био – Савара – Лапласа . Для рассмотрения данного закона изобразим проводник с током и создаваемую им магнитную индукцию

Магнитная индукция dB, создаваемая элементарным участком проводника dl.

Тогда магнитная индукция dB элементарного магнитного поля, которое создается участком проводника dl , с током I в произвольной точке Р будет определяться следующим выражением

где I – сила тока, протекающая по проводнику,

r – радиус-вектор, проведённый от элемента проводника к точке магнитного поля,

dl – минимальный элемент проводника, который создает индукцию dB,

k – коэффициент пропорциональности, зависящий от системы отсчёта, в СИ k = μ 0 /(4π)

Так как является векторным произведением, тогда итоговое выражение для элементарной магнитной индукции будет выглядеть следующим образом

Таким образом, данное выражение позволяет найти магнитную индукцию магнитного поля, которое создается проводником с током произвольной формы и размеров при помощи интегрирования правой части выражения

где символ l обозначает, что интегрирование происходит по всей длине проводника.

Магнитная индукция прямолинейного проводника

Как известно простейшее магнитное поле создает прямолинейный проводник, по которому протекает электрический ток. Как я уже говорил в предыдущей статье, силовые линии данного магнитного поля представляют собой концентрические окружности расположенные вокруг проводника.

Для определения магнитной индукции В прямого провода в точке Р введем некоторые обозначения. Так как точка Р находится на расстоянии b от провода, то расстояние от любой точки провода до точки Р определяется как r = b/sinα. Тогда наименьшую длину проводника dl можно вычислить из следующего выражения

В итоге закон Био – Савара – Лапласа для прямолинейного провода бесконечной длины будет иметь вид

где I – ток, протекающий по проводу,

b – расстояние от центра провода до точки, в которой рассчитывается магнитная индукция.

Теперь просто проинтегрируем получившееся выражение по в пределах от 0 до π.

Таким образом, итоговое выражение для магнитной индукции прямолинейного провода бесконечной длины будет иметь вид

I – ток, протекающий по проводу,

b – расстояние от центра проводника до точки, в которой измеряется индукция.

Магнитная индукция кольца

Индукция прямого провода имеет небольшое значение и уменьшается при удалении от проводника, поэтому в практических устройствах практически не применяется. Наиболее широко используются магнитные поля созданные проводом, намотанным на какой либо каркас. Поэтому такие поля называются магнитными полями кругового тока. Простейшим таким магнитным поле обладает электрический ток, протекающий по проводнику, который имеет форму окружности радиуса R.

В данном случае практический интерес представляет два случая: магнитное поле в центре окружности и магнитное поле в точке Р, которое лежит на оси окружности. Рассмотрим первый случай.

В данном случае каждый элемент тока dl создаёт в центре окружности элементарную магнитную индукцию dB, которая перпендикулярна к плоскости контура, тогда закон Био-Савара-Лапласа будет иметь вид

Остается только проинтегрировать полученное выражение по всей длине окружности

где μ 0 – магнитная постоянная, μ 0 = 4π 10 -7 Гн/м,

I – сила тока в проводнике,

R – радиус окружности, в которое свернут проводник.

Рассмотрим второй случай, когда точка, в которой вычисляется магнитная индукция, лежит на прямой х , которая перпендикулярна плоскости ограниченной круговым током.

В данном случае индукция в точке Р будет представлять собой сумму элементарных индукций dB X , которые в свою очередь представляет собой проекцию на ось х элементарной индукции dB

Применив закон Био-Савара-Лапласа вычислим величину магнитной индукции

Теперь проинтегрируем данное выражение по всей длине окружности

где μ 0 – магнитная постоянная, μ 0 = 4π 10 -7 Гн/м,

I – сила тока в проводнике,

R – радиус окружности, в которое свернут проводник,

х – расстояние от точки, в которой вычисляется магнитная индукция, до центра окружности.

Как видно из формулы при х = 0, получившееся выражение переходит в формулу для магнитной индукции в центре кругового тока.

Циркуляция вектора магнитной индукции

Для расчёта магнитной индукции простых магнитных полей достаточно закона Био-Савара-Лапласа. Однако при более сложных магнитных полях, например, магнитное поле соленоида или тороида, количество расчётов и громоздкость формул значительно увеличится. Для упрощения расчётов вводится понятие циркуляции вектора магнитной индукции.

Представим некоторый контур l , который перпендикулярный току I . В любой точке Р данного контура, магнитная индукция В направлена по касательной к данному контуру. Тогда произведение векторов dl и В описывается следующим выражением

Так как угол достаточно мал, то векторов dl В определяется, как длина дуги

Таким образом, зная магнитную индукцию прямолинейного проводника в данной точке, можно вывести выражение для циркуляции вектора магнитной индукции

Теперь остаётся проинтегрировать получившееся выражение по всей длине контура

В нашем случае вектор магнитной индукции циркулирует вокруг одного тока, в случае же нескольких токов выражение циркуляции магнитной индукции переходит в закон полного тока, который гласит:

Циркуляция вектора магнитной индукции по замкнутому контуру пропорциональна алгебраической сумме токов, которые охватывает данный контур.

Магнитное поле соленоида и тороида

С помощью закона полного тока и циркуляции вектора магнитной индукции достаточно легко определить магнитную индукцию таких сложных магнитных полей как у соленоида и тороида.

Соленоидом называется цилиндрическая катушка, которая состоит из множества витков проводника, намотанных виток к витку на цилиндрический каркас. Магнитное поле соленоида фактически состоит из множества магнитных полей кругового тока с общей осью, перпендикулярной к плоскости каждого кругового тока.

Воспользуемся циркуляцией вектора магнитной индукции и представим циркуляцию по прямоугольному контуру 1-2-3-4 . Тогда циркуляция вектора магнитной индукции для данного контура будет иметь вид

Так как на участках 2-3 и 4-1 вектор магнитной индукции перпендикулярен к контуру, то циркуляция равна нулю. На участке 3-4 , который значительно удалён от соленоида, то его так же можно не учитывать. Тогда с учётом закона полного тока магнитная индукция в соленоиде достаточно большой длины будет иметь вид

где n – число витков проводника соленоида, которое приходится на единицу длины,

I – ток, протекающий по соленоиду.

Тороид образуется путём намотки проводника на кольцевой каркас. Данная конструкция эквивалентна системе из множества одинаковых круговых токов, центры которых расположены на окружности.

В качестве примера рассмотрим тороид радиуса R , на который намотано N витков провода. Вокруг каждого витка провода возьмём контур радиуса r , центр данного контура совпадает в центром тороида. Так как вектор магнитной индукции B направлен по касательной к контуру в каждой точке контура, то циркуляция вектора магнитной индукции будет иметь вид

где r – радиус контура магнитной индукции.

Контур проходя внутри тороида охватывает N витков провода с током I, тогда закон полного тока для тороида будет иметь вид

где n – число витков проводника, которое приходится на единицу длины,

r – радиус контура магнитной индукции,

R – радиус тороида.

Таким образом, используя закон полного тока и циркуляцию вектора магнитной индукции можно рассчитать сколь угодно сложное магнитное поле. Однако закон полного тока дает правильные результаты только лишь в вакууме. В случае расчёта магнитной индукции в веществе необходимо учитывать так называемые молекулярные токи. Об этом пойдёт речь в следующей статье.

Теория это хорошо, но без практического применения это просто слова.

Зависит ли величина индукции магнитного поля от той среды, в которой оно образовано? Для того чтобы ответить на этот вопрос, проделаем такой опыт. Определим сначала силу (см. рис. 117), с которой магнитное поле действует на проводник с током в воздухе (принципиально это надо делать в вакууме), а затем силу действия магнитного поля на данный проводник, например в воде, содержащей порошок окиси железа (на рисунке сосуд показан пунктиром). В среде из окиси железа магнитное поле действует на проводник с током с большей силой. В этом случае величина индукции магнитного поля больше. Есть вещества, например серебро, медь, в которых она меньше, чем в вакууме. Величина индукции магнитного поля зависит от среды, в которой оно образуется.

Величина, показывающая, во сколько раз индукция магнитного поля в данной среде больше или меньше, чем индукция магнитного поля в вакууме, называется магнитной проницаемостью среды. Если индукция магнитного поля среды В, а вакуума В 0 , то магнитная проницаемость среды

Магнитная проницаемость среды μ - величина безразмерная. Для разных веществ она различная. Так, для мягкой стали - 2180, воздуха - 1,00000036, меди - 0,999991 . Это объясняется тем, что различные вещества неодинаково намагничиваются в магнитном поле.


Выясним, от чего зависит индукция магнитного поля прямого проводника с током. Возле прямолинейного участка А витка провода (рис. 122) поместим индикатор С индукции магнитного поля. Включим ток. Магнитное поле участка А, действу на рамку индикатора, поворачивает ее, что вызывает отклонение стрелки от нулевого положения. Изменяя реостатом силу тока в рамке, замечаем, что во сколько раз усиливается, ток в проводнике, во столько же раз увеличивается и отклонение стрелки индикатора: В~I .

Оставляя силу тока неизменной, будем увеличивать расстояние между проводником и рамкой. По показанию индикатора замечаем, что индукция.магнитного поля обратно пропорциональна расстоянию от проводника до исследуемой точки поля: В~ I / R . Величина индукции магнитного поля зависит от магнитных, свойств среды - от ее магнитной проницаемости. Чем больше магнитная проницаемость, тем больше индукция магнитного поля: B~μ .

Теоретически и более точными экспериментами французские физики Био, Савар и Лаплас установили, что величина индукции магнитного поля прямого провода малого сечения в однородной среде с магнитной проницаемостью μ на расстоянии R от него равна


Здесь μ 0 - магнитная постоянная. Найдем ее числовое значение и наименование в системе СИ. Так как индукция магнитного поля в то же время равна то, приравняв эти две формулы, получим


Отсюда магнитная постоянная Из определения ампера мы знаем, что отрезки параллельных проводников длиной l = 1 м , находясь на расстоянии R = 1 м друг от друга, взаимодействуют с силой F = 2*10 -7 н, когда по ним идет ток I = 1 а. Исходя из этого, вычислим μ 0 (приняв μ = 1):

А теперь выясним, от чего зависит индукция магнитного поля внутри катушки с током. Соберем электрическую цепь (рис. 123). Поместив рамку индикатора индукции магнитного поля внутрь катушки, замкнем цепь. Увеличивая силу тока в 2, 3 и 4 раза, замечаем, что соответственно во столько же раз возрастает и индукция магнитного поля внутри катушки: В~I .

Определив индукцию магнитного поля внутри катушки, увеличим число витков, приходящихся на единицу ее длины. Для этого соединим последовательно две одинаковые катушки и одну из них вставим в другую. Реостатом установим прежнюю силу тока. При этой же длине катушки l число витков n в ней увеличилось в два раза и, как следствие этого, увеличилось в два раза число витков, приходящихся на единицу длины катушки.

Если к прямолинейному проводнику с током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки (рис. 67). Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными. Иными словами, если по проводнику проходит электрический ток, то вокруг проводника возникает магнитное поле. Магнитное поле можно рассматривать как особое состояние пространства, окружающего проводники с током.

Если продеть через картой толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные линии (рис. 68). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рис. 69). Это показывает, что направление магнитных линий меняется с изменением направления тока в проводнике.

Магнитное поле вокруг проводника с током обладает следующими особенностями: магнитные линии прямолинейного проводника имеют форму концентрических окружностей; чем ближе к проводнику, тем плотнее располагаются магнитные линии, тем больше магнитная индукция; магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; направление магнитных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелу по направлению тока (рис. 70), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Направление магнитных линий вокруг проводника с током можно определить по "правилу буравчика". Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных линий вокруг проводника (рис. 71).


Рис. 71. Определение направления магнитных линий вокруг проводника с током по "правилу буравчика"

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рис. 72).


Рис. 72. Определение направления отклонения магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

В постоянных магнитах магнитное поле также вызывается движением электронов, входящих в состав атомов и молекул магнита.

Интенсивность магнитного поля в каждой его точке определяется величиной магнитной индукции, которую принято обозначать буквой В. Магнитная индукция является векторной величиной, т. е. она характеризуется не только определенным значением, но и определенным направлением в каждой точке магнитного поля. Направление вектора магнитной индукции совпадает с касательной к магнитной линии в данной точке поля (рис. 73).

В результате обобщения опытных данных французские ученые Био и Савар установили, что магнитная индукция В (интенсивность магнитного поля) на расстоянии r от бесконечно длинного прямолинейного проводника с током определяется выражением


где r - радиус окружности, проведенной через рассматриваемую точку поля; центр окружности находится на оси проводника (2πr - длина окружности);

I - величина тока, протекающего по проводнику.

Величина μ а, характеризующая магнитные свойства среды, называется абсолютной магнитной проницаемостью среды.

Для пустоты абсолютная магнитная проницаемость имеет минимальное значение и ее принято обозначать μ 0 и называть абсолютной магнитной проницаемостью пустоты.


1 гн = 1 ом⋅сек.

Отношение μ а / μ 0 , показывающее, во сколько раз абсолютная магнитная проницаемость данной среды больше абсолютной магнитной проницаемости пустоты, называется относительной магнитной проницаемостью и обозначается буквой μ.

В Международной системе единиц (СИ) приняты единицы измерения магнитной индукции В - тесла или вебер на квадратный метр (тл, вб/м 2).

В инженерной практике магнитную индукцию принято измерять в гауссах (гс): 1 тл = 10 4 гс.

Если во всех точках магнитного поля вектора магнитной индукции равны по величине и параллельны друг другу, то такое поле называется однородным.

Произведение магнитной индукции В на величину площадки S, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции, или просто магнитным потоком, и обозначается буквой Φ (рис. 74):

В Международной системе в качестве единицы измерения магнитного потока принят вебер (вб).

В инженерных расчетах магнитный поток измеряют в максвеллах (мкс):

1 вб = 10 8 мкс.

При расчетах магнитных полей пользуются также величиной, называемой напряженностью магнитного поля (обозначается Н). Магнитная индукция В и напряженность магнитного поля Н связаны соотношением

Единица измерения напряженности магнитного поля Н - ампер на метр (а/м).

Напряженность магнитного поля в однородной среде, так же как и магнитная индукция, зависит от величины тока, числа и формы проводников, по которым проходит ток. Но в отличие от магнитной индукции напряженность магнитного поля не учитывает влияния магнитных свойств среды.

Электромагнитные явления

Электромагнитные явления отражают связь электрического тока с магнитным полем. Все их физические законы хорошо известны, и мы не будем стараться поправить их; наша цель иная: объяснить физическую природу этих явлений.

Одно нам уже ясно: ни электричество ни магнетизм не могут быть без электронов; и в этом уже проявляется электромагнетизм. Говорили мы и о том, что катушка с током порождает магнитное поле . Задержимся на последнем явлении и уточним - как оно происходит.

Будем смотреть на катушку с торца, и пусть электрический ток по ней идет против часовой стрелки. Ток представляет собой поток электронов, скользящий по поверхности проводника (только на поверхности - открытые присасывающие желоба). Поток электронов будет увлекать за собой прилегающий эфир, и он начнет также двигаться против часовой стрелки. Скорость прилегающего к проводнику эфира будет определяться скоростью электронов в проводнике, а она, в свою очередь, будет зависеть от перепада эфирного давления (от электрического напряжения на катушке) и от проходного сечения проводника. Увлекаемый током эфир будет затрагивать соседние слои, и они также будут двигаться внутри и вне катушки по кругу. Скорость закрученного эфира распределится следующим образом: наибольшее ее значение, разумеется, - в районе витков; при смещении к центру она уменьшается по линейному закону, так что в самом центре она окажется нулевой; при удалении от витков на периферию скорость также будет уменьшаться, но не по линейному, а по более сложному закону.

Закрученное током макрозавихрение эфира начнет ориентировать электроны таким образом, что все они повернутся до параллельности осей вращения с осью катушки; при этом внутри катушки они будут вращаться против часовой стрелки, а за ее переделами - по часовой; одновременно электроны будут стремиться к соосному расположению, то есть будут собираться в магнитные шнуры. Процесс ориентирования электронов займет какое-то время, и по завершению его внутри катушки возникает магнитный пучок с северным полюсом в нашу сторону, а за пределами катушки, наоборот, северный полюс окажется удаленным от нас. Таким образом, мы доказали справедливость известного в электротехнике правила винта или буравчика, устанавливающего связь между направлением тока и направлением рожденного им магнитного поля.

Магнитная сила (напряженность) в каждой точке магнитного поля определится изменением скорости эфира в этой точке, то есть производной от скорости по удалению от витков катушки : чем круче изменение скорости, тем больше напряженность. Если соотносить магнитную силу катушки с ее электрическими и геометрическими параметрами, то она имеет прямую зависимость от величины тока и обратную - от диаметра катушки. Чем больше ток и чем меньше диаметр, тем больше возможностей собрать электроны в шнуры определенного направления вращения и тем большей окажется магнитная сила катушки. О том, что напряженность магнитного поля может усиливаться или ослабляться средой, уже говорилось.



Процесс преобразования электричества постоянного тока в магнетизм - не обратим: если в катушку поместить магнит, то ток в ней не возникает. Энергия макрозавихрения, существующего вокруг магнита, настолько мала, что не в силах заставить смещаться электроны по виткам при самых малых сопротивлениях для них. Еще раз напомним, что в обратном процессе макрозавихрение эфира, выполняющее роль посредника, лишь ориентировало электроны, и не более того, то есть только управляло магнитным полем, а сила поля определялась количеством однонаправленных магнитных шнуров.

Поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами . Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная электродвижущая сила (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по "правилу буравчика" Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитная индукция

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I , синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r :

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

В абсолютной практической рационализованной системе единиц МКСА

где µ 0 – магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ 0 = 4 × π × 10 -7 (генри/метр);

генри (гн ) – единица индуктивности; 1 гн = 1 ом × сек .

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб ):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс ):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ 0 называется напряженностью магнитного поля и обозначается буквой H :

B = H × µ × µ 0 .

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H :

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр ):

1 эр = 79,6 а /м ≈ 80 а /м ≈ 0,8 а /см .

Напряженность магнитного поля H , как и магнитная индукция B , является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией .

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Ф = B × S .

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс ):

1 вб = 108 мкс .
1 мкс = 1 гс × 1 см 2.

Видео 1. Гипотеза Ампера

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм