Найти значения выражения а если. Рациональные способы вычисления значений выражений


Итак, если числовое выражение составлено из чисел и знаков +, −, · и:, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.

Приведем решение примеров для пояснения.

Пример.

Вычислите значение выражения 14−2·15:6−3 .

Решение.

Чтобы найти значение выражения, нужно выполнить все указанные в нем действия в соответствии с принятым порядком выполнения этих действий. Вначале по порядку слева направо выполняем умножение и деление, получаем 14−2·15:6−3=14−30:6−3=14−5−3 . Теперь также по порядку слева направо выполняем оставшиеся действия: 14−5−3=9−3=6 . Так мы нашли значение исходного выражения, оно равно 6 .

Ответ:

14−2·15:6−3=6 .

Пример.

Найдите значение выражения .

Решение.

В данном примере нам сначала нужно выполнить умножение 2·(−7) и деление с умножением в выражении . Вспомнив, как выполняется , находим 2·(−7)=−14 . А для выполнения действий в выражении сначала , после чего , и выполняем : .

Подставляем полученные значения в исходное выражение: .

А как быть, когда под знаком корня находится числовое выражение? Чтобы получить значение такого корня, нужно сначала найти значение подкоренного выражения, придерживаясь принятого порядка выполнений действий. Например, .

В числовых выражениях корни следует воспринимать как некоторые числа, и корни целесообразно сразу заменить их значениями, после чего находить значение полученного выражения без корней, выполняя действия в принятой последовательности.

Пример.

Найдите значение выражения с корнями .

Решение.

Сначала найдем значение корня . Для этого, во-первых, вычислим значение подкоренного выражения, имеем −2·3−1+60:4=−6−1+15=8 . А во-вторых, находим значение корня .

Теперь вычислим значение второго корня из исходного выражения: .

Наконец, мы можем найти значение исходного выражения, заменив корни их значениями: .

Ответ:

Достаточно часто, чтобы стало возможно найти значение выражения с корнями, предварительно приходится проводить его преобразование. Покажем решение примера.

Пример.

Каково значение выражения .

Решение.

Мы не имеем возможности заменить корень из трех его точным значением, что не позволяет нам вычислить значение этого выражения описанным выше способом. Однако мы можем вычислить значение этого выражение, выполнив несложные преобразования. Применим формулу разности квадратов : . Учитывая , получаем . Таким образом, значение исходного выражения равно 1 .

Ответ:

.

Со степенями

Если основание и показатель степени являются числами, то их значение вычисляется по определению степени, например, 3 2 =3·3=9 или 8 −1 =1/8 . Встречаются также записи, когда основание и/или показатель степени являются некоторыми выражениями. В этих случаях нужно найти значение выражения в основании, значение выражения в показателе, после чего вычислить значение самой степени.

Пример.

Найдите значение выражения со степенями вида 2 3·4−10 +16·(1−1/2) 3,5−2·1/4 .

Решение.

В исходном выражении две степени 2 3·4−10 и (1−1/2) 3,5−2·1/4 . Их значения нужно вычислить до выполнения остальных действий.

Начнем со степени 2 3·4−10 . В ее показателе находится числовое выражение, вычислим его значение: 3·4−10=12−10=2 . Теперь можно найти значение самой степени: 2 3·4−10 =2 2 =4 .

В основании и показателе степени (1−1/2) 3,5−2·1/4 находятся выражения, вычисляем их значения, чтобы потом найти значение степени. Имеем (1−1/2) 3,5−2·1/4 =(1/2) 3 =1/8 .

Теперь возвращаемся к исходному выражению, заменяем в нем степени их значениями, и находим нужное нам значение выражения: 2 3·4−10 +16·(1−1/2) 3,5−2·1/4 = 4+16·1/8=4+2=6 .

Ответ:

2 3·4−10 +16·(1−1/2) 3,5−2·1/4 =6 .

Стоит заметить, что более распространены случаи, когда целесообразно провести предварительное упрощение выражения со степенями на базе .

Пример.

Найдите значение выражения .

Решение.

Судя по показателям степеней, находящихся в данном выражении, точные значения степеней получить не удастся. Попробуем упростить исходное выражение, может быть это поможет найти его значение. Имеем

Ответ:

.

Степени в выражениях зачастую идут рука об руку с логарифмами, но о нахождении значений выражений с логарифмами мы поговорим в одном из .

Находим значение выражения с дробями

Числовые выражения в своей записи могут содержать дроби . Когда требуется найти значение подобного выражения, дроби, отличные от обыкновенных дробей, следует заменить их значениями перед выполнением остальных действий.

В числителе и знаменателе дробей (которые отличны от обыкновенных дробей) могут находиться как некоторые числа, так и выражения. Чтобы вычислить значение такой дроби нужно вычислить значение выражения в числителе, вычислить значение выражения в знаменателе, после чего вычислить значение самой дроби. Такой порядок объясняется тем, что дробь a/b , где a и b – некоторые выражения, по сути представляет собой частное вида (a):(b) , так как .

Рассмотрим решение примера.

Пример.

Найдите значение выражения с дробями .

Решение.

В исходном числовом выражении три дроби и . Чтобы найти значение исходного выражения, нам сначала нужно эти дроби, заменить их значениями. Сделаем это.

В числителе и знаменателе дроби находятся числа. Чтобы найти значение такой дроби, заменяем дробную черту знаком деления, и выполняем это действие: .

В числителе дроби находится выражение 7−2·3 , его значение найти легко: 7−2·3=7−6=1 . Таким образом, . Можно переходить к нахождению значения третьей дроби.

Третья дробь в числителе и знаменателе содержит числовые выражения, поэтому, сначала нужно вычислить их значения, а это позволит найти значение самой дроби. Имеем .

Осталось подставить найденные значения в исходное выражение, и выполнить оставшиеся действия: .

Ответ:

.

Часто при нахождении значений выражений с дробями приходится выполнять упрощение дробных выражений , базирующееся на выполнении действий с дробями и на сокращении дробей.

Пример.

Найдите значение выражения .

Решение.

Корень из пяти нацело не извлекается, поэтому для нахождения значения исходного выражения для начала упростим его. Для этого избавимся от иррациональности в знаменателе первой дроби: . После этого исходное выражение примет вид . После вычитания дробей пропадут корни, что нам позволит найти значение изначально заданного выражения: .

Ответ:

.

С логарифмами

Если числовое выражение содержит , и если есть возможность избавиться от них, то это делается перед выполнением остальных действий. Например, при нахождении значения выражения log 2 4+2·3 , логарифм log 2 4 заменяется его значением 2 , после чего выполняются остальные действия в обычном порядке, то есть, log 2 4+2·3=2+2·3=2+6=8 .

Когда под знаком логарифма и/или в его основании находятся числовые выражения, то сначала находятся их значения, после чего вычисляется значение логарифма. Для примера рассмотрим выражение с логарифмом вида . В основании логарифма и под его знаком находятся числовые выражения, находим их значения: . Теперь находим логарифм, после чего завершаем вычисления: .

Если же логарифмы не вычисляются точно, то найти значение исходного выражения может помочь предварительное его упрощение с использованием . При этом нужно хорошо владеть материалом статьи преобразование логарифмических выражений .

Пример.

Найдите значение выражения с логарифмами .

Решение.

Начнем с вычисления log 2 (log 2 256) . Так как 256=2 8 , то log 2 256=8 , следовательно, log 2 (log 2 256)=log 2 8=log 2 2 3 =3 .

Логарифмы log 6 2 и log 6 3 можно сгруппировать. Сумма логарифмов log 6 2+log 6 3 равна логарифму произведения log 6 (2·3) , таким образом, log 6 2+log 6 3=log 6 (2·3)=log 6 6=1 .

Теперь разберемся с дробью . Для начала основание логарифма в знаменателе перепишем в виде обыкновенной дроби как 1/5 , после чего воспользуемся свойствами логарифмов, что позволит нам получить значение дроби:
.

Осталось лишь подставить полученные результаты в исходное выражение и закончить нахождение его значения:

Ответ:

Как найти значение тригонометрического выражения?

Когда числовое выражение содержит или и т.п., то их значения вычисляются перед выполнением остальных действий. Если под знаком тригонометрических функций стоят числовые выражения, то сначала вычисляются их значения, после чего находятся значения тригонометрических функций.

Пример.

Найдите значение выражения .

Решение.

Обратившись к статье , получаем и cosπ=−1 . Подставляем эти значения в исходное выражение, оно принимает вид . Чтобы найти его значение, сначала нужно выполнить возведение в степень, после чего закончить вычисления: .

Ответ:

.

Стоит отметить, что вычисление значений выражений с синусами, косинусами и т.п. зачастую требует предварительного преобразования тригонометрического выражения .

Пример.

Чему равно значение тригонометрического выражения .

Решение.

Преобразуем исходное выражение, используя , в данном случае нам потребуются формула косинуса двойного угла и формула косинуса суммы:

Проделанные преобразования помогли нам найти значение выражения.

Ответ:

.

Общий случай

В общем случае числовое выражение может содержать и корни, и степени, и дроби, и какие-либо функции, и скобки. Нахождение значений таких выражений состоит в выполнении следующих действий:

  • сначала корни, степени, дроби и т.п. заменяются их значениями,
  • дальше действия в скобках,
  • и по порядку слева направо выполняется оставшиеся действия - умножение и деление, а за ними – сложение и вычитание.

Перечисленные действия выполняются до получения конечного результата.

Пример.

Найдите значение выражения .

Решение.

Вид данного выражения довольно сложен. В этом выражении мы видим дробь, корни, степени, синус и логарифм. Как же найти его значение?

Продвигаясь по записи слева на право, мы натыкаемся на дробь вида . Мы знаем, что при работе с дробями сложного вида, нам нужно отдельно вычислить значение числителя, отдельно – знаменателя, и, наконец, найти значение дроби.

В числителе мы имеем корень вида . Чтобы определить его значение, сначала надо вычислить значение подкоренного выражения . Здесь есть синус. Найти его значение мы сможем лишь после вычисления значения выражения . Это мы можем сделать: . Тогда , откуда и .

Со знаменателем все просто: .

Таким образом, .

После подстановки этого результата в исходное выражение, оно примет вид . В полученном выражении содержится степень . Чтобы найти ее значение, сначала придется найти значение показателя, имеем .

Итак, .

Ответ:

.

Если же нет возможности вычислить точные значения корней, степеней и т.п., то можно попробовать избавиться от них с помощью каких-либо преобразований, после чего вернуться к вычислению значения по указанной схеме.

Рациональные способы вычисления значений выражений

Вычисление значений числовых выражений требует последовательности и аккуратности. Да, необходимо придерживаться последовательности выполнения действий, записанной в предыдущих пунктах, но не нужно это делать слепо и механически. Этим мы хотим сказать, что часто можно рационализировать процесс нахождения значения выражения. Например, значительно ускорить и упростить нахождение значения выражения позволяют некоторые свойства действий с числами.

К примеру, мы знаем такое свойство умножения: если один из множителей в произведении равен нулю, то и значение произведения равно нулю. Используя это свойство, мы можем сразу сказать, что значение выражения 0·(2·3+893−3234:54·65−79·56·2,2)· (45·36−2·4+456:3·43) равно нулю. Если бы мы придерживались стандартного порядка выполнения действий, то сначала нам бы пришлось вычислять значения громоздких выражений в скобках, а это бы заняло массу времени, и в результате все равно получился бы нуль.

Также удобно пользоваться свойством вычитания равных чисел: если от числа отнять равное ему число, то в результате получится нуль. Это свойство можно рассматривать шире: разность двух одинаковых числовых выражений равна нулю. Например, не вычисляя значения выражений в скобках можно найти значение выражения (54·6−12·47362:3)−(54·6−12·47362:3) , оно равно нулю, так как исходное выражение представляет собой разность одинаковых выражений.

Рациональному вычислению значений выражений могут способствовать тождественные преобразования . Например, бывает полезна группировка слагаемых и множителей , не менее часто используется вынесение общего множителя за скобки . Так значение выражения 53·5+53·7−53·11+5 очень легко находится после вынесения множителя 53 за скобки: 53·(5+7−11)+5=53·1+5=53+5=58 . Непосредственное вычисление заняло бы намного больше времени.

В заключение этого пункта обратим внимание на рациональный подход к вычислению значений выражений с дробями – одинаковые множители в числителе и знаменателе дроби сокращаются. Например, сокращение одинаковых выражений в числителе и знаменателе дроби позволяет сразу найти ее значение, которое равно 1/2 .

Нахождение значения буквенного выражения и выражения с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. То есть, речь идет о нахождении значения буквенного выражения для данных значений букв или о нахождении значения выражения с переменными для выбранных значений переменных.

Правило нахождения значения буквенного выражения или выражения с переменными для данных значений букв или выбранных значений переменных таково: в исходное выражение нужно подставить данные значения букв или переменных, и вычислить значение полученного числового выражения, оно и является искомым значением.

Пример.

Вычислите значение выражения 0,5·x−y при x=2,4 и y=5 .

Решение.

Чтобы найти требуемое значение выражения, сначала нужно подставить в исходное выражение данные значения переменных, после чего выполнить действия: 0,5·2,4−5=1,2−5=−3,8 .

Ответ:

−3,8 .

В заключение отметим, что иногда выполнение преобразований буквенных выражений и выражений с переменными позволяет получить их значения, независимо от значений букв и переменных. Например, выражение x+3−x можно упростить, после чего оно примет вид 3 . Отсюда можно сделать вывод, что значение выражения x+3−x равно 3 для любых значений переменной x из ее области допустимых значений (ОДЗ) . Еще пример: значение выражения равно 1 для всех положительных значений x , так областью допустимых значений переменной x в исходном выражении является множество положительных чисел, и на этой области имеет место равенство .

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.

Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?

В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия - в том же порядке, как и для обычных чисел. А именно:

  1. Сначала выполняется возведение в степень - избавьтесь от всех выражений, содержащих показатели;
  2. Затем - деление и умножение;
  3. Последним шагом выполняется сложение и вычитание.

Разумеется, если в выражении присутствуют скобки, порядок действий изменяется - все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.

Переведем все дроби из первого выражения в неправильные, а затем выполним действия:


Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем - деление. Заметим, что 14 = 7 · 2 . Тогда:

Наконец, считаем третий пример. Здесь есть скобки и степень - их лучше считать отдельно. Учитывая, что 9 = 3 · 3 , имеем:

Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно - знаменатель.

Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:

Многоэтажные дроби

До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.

Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:

Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:

Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:

Задача. Переведите многоэтажные дроби в обычные:

В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:

В последнем примере перед окончательным умножением дроби были сокращены.

Специфика работы с многоэтажными дробями

В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:

  1. В числителе стоит отдельное число 7, а в знаменателе - дробь 12/5;
  2. В числителе стоит дробь 7/12, а в знаменателе - отдельное число 5.

Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:

Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно - в несколько раз.

Если следовать этому правилу, то приведенные выше дроби надо записать так:

Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок - пара примеров, где действительно возникают многоэтажные дроби:

Задача. Найдите значения выражений:

Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:

Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:


Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.

Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем - частное.

Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.

Числовые выражения составляются из чисел, знаков арифметических действий и скобок. Если в таком выражении присутствуют переменные, оно будет называться алгебраическим. Тригонометрическим является выражение, в котором переменная содержится под знаками тригонометрических функций. Задачи на определение значений числового, тригонометрического, алгебраического выражений часто встречаются в школьном курсе математики.

Инструкция

Чтобы найти значение числового выражения, определите порядок действий в заданном примере. Для удобства обозначьте его карандашом над соответствующими знаками. Выполните все указанные действия в определенном порядке: действия в скобках, возведение в степень, умножение, деление, сложение, вычитание. Полученное число и будет значением числового выражения.

Пример. Найдите значение выражения (34 10+(489–296) 8):4–410. Определите порядок действий. Первое действие выполните во внутренних скобках 489–296=193. Затем, умножьте 193 8=1544 и 34 10=340. Следующее действие: 340+1544=1884. Далее выполните деление 1884:4=461 и затем вычитание 461–410=60. Вы нашли значение данного выражения.

Чтобы найти значение тригонометрического выражения при известном угле?, предварительно . Для этого примените соответствующие тригонометрические формулы. Вычислите заданные значения тригонометрических функций, подставьте их в пример. Выполните действия.

Пример. Найдите значение выражения 2sin 30? cos 30? tg 30? ctg 30?. Упростите данное выражение. Для этого воспользуйтесь формулой tg ? ctg ?=1. Получите: 2sin 30? cos 30? 1=2sin 30? cos 30?. Известно, что sin 30?=1/2 и cos 30?=?3/2. Следовательно, 2sin 30? cos 30?=2 1/2 ?3/2=?3/2. Вы нашли значение данного выражения.

Значение алгебраического выражения зависит от значения переменной. Чтобы найти значение алгебраического выражения при заданных переменных, упростите выражение. Подставьте вместо переменных определенные значения. Выполните необходимые действия. В итоге вы получите число, которое и будет значением алгебраического выражения при заданных переменных.

Пример. Найдите значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10. Упростите данное выражение, получите: a–2y. Подставьте соответствующие значения переменных и вычислите: a–2y=21–2 10=1. Это и есть значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10.

Обратите внимание

Существуют алгебраические выражения, не имеющие смысла при некоторых значениях переменных. Например, выражение x/(7–a) не имеет смысла, если a=7, т.к. при этом знаменатель дроби обращается в нуль.

Как правило, дети начинают изучать алгебру уже в младших классах. После освоения основных принципов работы с числами, они решают примеры с одной или несколькими неизвестными переменными. Найти значение выражения подобного плана может быть довольно трудно, однако если упростить его, используя знания начальной школы, все получится легко и быстро.

Что такое значение выражения

Числовым выражением называют алгебраическую запись, состоящую из чисел, скобок и знаков в том случае, если она имеет смысл.

Иными словами, если есть возможность найти значение выражения, значит запись не лишена смысла, и наоборот.

Примеры следующих записей являются правильными числовыми конструкциями:

  • 3*8-2;
  • 15/3+6;
  • 0,3*8-4/2;
  • 3/1+15/5;

Отдельное число также будет представлять собой числовое выражение, как число 18 из вышеуказанного примера.
Примеры неправильных числовых конструкций, которые не имеют смысла:

  • *7-25);
  • 16/0-;
  • (*-5;

Неправильные числовые примеры представляют собой лишь набор математических знаков и не имеют никакого смысла.


Как находить значение выражения

Поскольку в подобных примерах присутствуют арифметические знаки, можно сделать вывод, что они позволяют произвести арифметические вычисления. Чтобы просчитать знаки или, говоря иначе, найти значение выражения, необходимо выполнить соответствующие арифметические манипуляции.

В качестве примера можно рассмотреть следующую конструкцию: (120-30)/3=30. Число 30 будет являться значением числового выражения (120-30)/3.

Инструкция:


Понятие числового равенства

Числовым равенством называется ситуация, когда две части примера разделены знаком «=». То есть одна часть полностью равна (идентична) другой, пусть даже отображенной в виде других сочетаний символов и цифр.
Например, любую конструкцию типа 2+2=4 можно назвать числовым равенством, поскольку, даже поменяв части местами, смысл не изменится: 4=2+2. То же самое касается более сложных конструкций, включающих скобки, деление, умножение, действие с дробями и так далее.

Как находить значение выражения правильно

Чтобы верно найти значение выражения необходимо выполнять вычисления согласно определенному порядку действий. Этот порядок преподается еще на уроках математики, а позже – на занятиях алгебры в начальной школе. Он также известен как ступени арифметических действий.

Ступени арифметических действий:

  1. Первая ступень – выполняется сложение и вычитание чисел.
  2. Вторая ступень – выполняется деление и умножение.
  3. Третья ступень – числа возводятся в квадрат или куб.


Соблюдая следующие правила, вы всегда сможете верно определить значение выражения:

  1. Выполняйте действия, начиная с третьей ступени, заканчивая первой, если в примере нет скобок. То есть сперва возводите в квадрат или куб, затем делите или умножайте и только потом – складывайте и вычитайте.
  2. В конструкциях со скобками сперва выполняйте действия в скобках, а затем руководствуйтесь вышеописанным порядком. Если скобок несколько, также используйте порядок действий из первого пункта.
  3. В примерах в виде дроби сначала узнайте результат в числителе, затем – в знаменателе, после чего первый поделите на второй.

Найти значение выражения не составит труда, если усвоить элементарные знания начальных курсов алгебры и математики. Руководствуясь вышеописанной информацией, вы сможете решить любую задачу, даже повышенной сложности.

Узнать пароль от ВК, зная логин

Вы, как родители, в процессе обучения своего ребенка, не раз столкнетесь с необходимостью помощи в решении домашних задач по математике, алгебре и геометрии. И одно из базовых умений, которое необходимо усвоить — как найти значение выражения. Многие заходят в тупик, ведь сколько лет прошло с того момента, как мы учились в 3-5 классах? Многое уже забылось, а что-то не училось. Сами правила математических действий - просты и вы легко их вспомните. Начнем с самых основ, что такое математическое выражение.

Определение выражения

Математическое выражение - совокупность чисел, знаков действий (=, +,-, *, /), скобок, переменных. Кратко - это формула, значение которой нужно будет найти. Такие формулы как раз встречаются в курсе математики еще со школы, а потом преследуют и студентов, которые выбрали для себя специальности, связанные с точными науками. Математические выражения разделяются на тригонометрические, алгебраические и так далее, не будем забегать в самые «дебри».

  1. Делайте любые вычисления сначала на черновике, а после переписывайте в рабочую тетрадь. Таким образом вы избежите лишних перечеркиваний и грязи;
  2. Пересчитайте общее количество математических действий, которые нужно будет выполнить в выражении. Обратите внимание, что согласно правилам, вначале выполняются действия в скобках, потом деление и умножение и в самом конце вычитание и сложение. Рекомендуем выделить все действия карандашом и поставить цифры над действиями в порядке очередности их выполнения. В этом случае и вам и ребенку будет легче сориентироваться;
  3. Начинайте производить расчеты строго придерживаясь порядка выполнения действий. Пусть ребенок, если расчет простой, старается выполнять его в уме, если же это сложно, то ставьте карандашом цифру, соответствующую порядковому номеру выражения и выполняйте вычисление в письменном виде под формулой;
  4. Как правило, найти значение простого выражения не составляет труда, если все расчеты выполнены в соответствии с правилами и правильным порядком. Большинство сталкиваются с проблемой именно на данном этапе нахождения значения выражения, потому будьте внимательны и не допускайте ошибок;
  5. Запрещайте калькулятор. Сами математические формулы и задачи в жизни вашему ребенка может и не пригодятся, но не в этом цель изучения предмета. Главное - развитие логическое мышления. Если пользоваться калькуляторами, то смысл всего будет потерян;
  6. Ваша задача как родителя - не решать за ребенка задачи, а помогать ему в этом, направлять. Пусть он сам производит все вычисления, а вы следите за тем, чтобы он не допускал ошибок, объясняйте, почему нужно делать так, а не иначе.
  7. После того, как ответ на выражение найден, запишите его после знака «=»;
  8. Откройте последнюю страницу учебника по математике. Обычно, там есть ответы под каждое упражнение в книге. Не мешает свериться, верно ли все посчитано.

Найти значение выражения - с одной стороны, простая процедура, главное вспомнить основные правила, которые мы проходили в школьном курсе математики. Однако, с другой стороны, когда вам нужно помочь малышу справиться с формулами и решением задач, вопрос осложняется. Ведь вы теперь не ученик, а учитель и на ваших плечах лежит воспитание будущего Эйнштейна.

Надеемся, что наша статья помогла вам найти ответ на вопрос, как найти значение выражения, и вы с легкостью раскусите любую формулу!