Найти радиус по дуге и секущей. Что такое окружность как геометрическая фигура: основные свойства и характеристики

Чтобы в общих чертах представить себе, что такое окружность, взгляните на кольцо или обруч. Можно также взять круглый стакан и чашку, поставить вверх дном на лист бумаги и обвести карандашом. При многократном увеличении полученная линия станет толстой и не совсем ровной, и края ее будут размытыми. Окружность как геометрическая фигура не имеет такой характеристики, как толщина.

Окружность: определение и основные средства описания

Окружность - это замкнутая кривая, состоящая из множества точек, расположенных в одной плоскости и равноудаленных от центра окружности. При этом центр находится в той же плоскости. Как правило, он обозначается буквой О.

Расстояние от любой из точек окружности до центра называется радиусом и обозначается буквой R.

Если соединить две любые точки окружности, то полученный отрезок будет называться хордой. Хорда, проходящая через центр окружности, - это диаметр, обозначаемый буквой D. Диаметр делит окружность на две равные дуги и по длине вдвое превышает размер радиуса. Таким образом, D = 2R, или R = D/2.

Свойства хорд

  1. Если через две любые точки окружности провести хорду, а затем перпендикулярно последней - радиус или диаметр, то этот отрезок разобьет и хорду, и дугу, отсеченную ею, на две равные части. Верно и обратное утверждение: если радиус (диаметр) делит хорду пополам, то он перпендикулярен ей.
  2. Если в пределах одной и той же окружности провести две параллельные хорды, то дуги, отсеченные ними, а также заключенные между ними, будут равны.
  3. Проведем две хорды PR и QS, пересекающиеся в пределах окружности в точке T. Произведение отрезков одной хорды всегда будет равно произведению отрезков другой хорды, то есть PT х TR = QT х TS.

Длина окружности: общее понятие и основные формулы

Одной из базовых характеристик данной геометрической фигуры является длина окружности. Формула выводится с использованием таких величин, как радиус, диаметр и константа "π", отражающая постоянство отношения длины окружности к ее диаметру.

Таким образом, L = πD, или L = 2πR, где L - это длина окружности, D - диаметр, R - радиус.

Формула длины окружности может рассматриваться как исходная при нахождении радиуса или диаметра по заданной длине окружности: D = L/π, R = L/2π.

Что такое окружность: основные постулаты

  • не иметь общих точек;
  • иметь одну общую точку, при этом прямая называется касательной: если провести радиус через центр и точку касания, то он будет перпендикулярен касательной;
  • иметь две общие точки, при этом прямая называется секущей.

2. Через три произвольные точки, лежащие в одной плоскости, можно провести не более одной окружности.

3. Две окружности могут соприкасаться только в одной точке, которая расположена на отрезке, соединяющем центры этих окружностей.

4. При любых поворотах относительно центра окружность переходит сама в себя.

5. Что такое окружность с точки зрения симметрии?

  • одинаковая кривизна линии в любой из точек;
  • относительно точки О;
  • зеркальная симметрия относительно диаметра.

6. Если построить два произвольных вписанных угла, опирающихся на одну и ту же дугу окружности, они будут равны. Угол, опирающийся на дугу, равную половине то есть отсеченную хордой-диаметром, всегда равен 90°.

7. Если сравнивать замкнутые кривые линии одинаковой длины, то получится, что окружность отграничивает участок плоскости наибольшей площади.

Окружность, вписанная в треугольник и описанная около него

Представление о том, что такое окружность, будет неполным без описания особенностей взаимосвязи этой с треугольниками.

  1. При построении окружности, вписанной в треугольник, ее центр всегда будет совпадать с точкой пересечения треугольника.
  2. Центр окружности, описанной около треугольника, располагается на пересечении срединных перпендикуляров к каждой из сторон треугольника.
  3. Если описать окружность около то ее центр будет находиться на середине гипотенузы, то есть последняя будет являться диаметром.
  4. Центры вписанной и описанной окружностей будут находиться в одной точке, если базой для построения является

Основные утверждения об окружности и четырехугольниках

  1. Вокруг выпуклого четырехугольника можно описать окружность лишь тогда, когда сумма его противоположных внутренних углов равняется 180°.
  2. Построить вписанную в выпуклый четырехугольник окружность можно, если одинакова сумма длин его противоположных сторон.
  3. Описать окружность вокруг параллелограмма можно, если его углы прямые.
  4. Вписать в параллелограмм окружность можно в том случае, если все его стороны равны, то есть он является ромбом.
  5. Построить окружность через углы трапеции можно, только если она равнобедренная. При этом центр описанной окружности будет располагаться на пересечении четырехугольника и срединного перпендикуляра, проведенного к боковой стороне.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Разбираемся в том что такое окружность и круг. Формула площади круга и длины окружности.

Мы каждый день встречаем множество предметов, по форме которые образовывают круг или напротив окружность. Иногда возникает вопрос, что такое окружность и чем она отличается от круга. Конечно же, мы все проходили уроки геометрии, но иногда не помешает освежить знания весьма простыми объяснениями.

Что такое длина окружности и площадь круга: определение

Итак, окружность является замкнутой кривой линией, которая ограничивает или же напротив, образует круг. Обязательное условие окружности — у нее есть центр и все точки равноудалены от него. Проще говоря, окружность это гимнастический обруч (или как его часто называют хула-хуп) на плоской поверхности.

Длина окружности это общая длина той самой кривой, которая образует окружность. Как известно вне зависимости от размеров окружности соотношение ее диаметра и длины равно числу π = 3,141592653589793238462643.

Из этого следует, что π=L/D, где L — длина окружности, а D — диаметр окружности.

Если Вам известен диаметр, то длину можно найти по простой формуле: L= π* D

В случае если известен радиус: L=2 πR

Мы разобрались, что такое окружность и можем перейти к определению круга.

Круг — это геометрическая фигура, которая окружена окружностью. Или же, круг это фигура, рубеж которой состоит из большого количества точек равноудаленных от центра фигуры. Вся площадь, которая находится внутри окружности, включая ее центр, называется кругом.

Стоит заметить, что у окружности и круга, который находится в ней значения радиуса и диаметра одинаковые. А диаметр в свою очередь в два раза больше чем радиус.

Круг имеет площадь на плоскости, которую можно узнать при помощи простой формулы:

Где S — площадь круга, а R — радиус данного круга.

Чем круг отличается от окружности: объяснение

Основное отличие между кругом и окружностью — это то, что круг — геометрическая фигура, а окружность — замкнутая кривая. Также обратите внимание на отличия между окружностью и кругом:

  • Окружность это замкнутая линия, а круг — площадь внутри этой окружности;
  • Окружность это кривая линия на плоскости, а круг — пространство, сомкнутое в кольцо окружностью;
  • Сходство между окружностью и кругом: радиус и диаметр;
  • У круга и окружности единый центр;
  • В случае если заштриховывается пространство внутри окружности, оно превращается в круг;
  • У окружности есть длина, но ее нет у круга, и наоборот, у круга есть площадь, которой нет у окружности.

Круг и окружность: примеры, фото

Для наглядности предлагаем рассмотреть фото, на котором слева изображен круг, а справа окружность.

Формула длины окружности и площади круга: сравнение

Формула длины окружности L=2 πR

Формула площади круга S= πR²

Обратите внимание, что в обеих формулах присутствует радиус и число π. Данные формулы рекомендуется выучить наизусть, так как они простейшие и обязательно пригодятся в повседневной жизни и на работе.

Площадь круга по длине окружности: формула

S=π(L/2π)=L²/4π, где S — площадь круга, L — длина окружности.

Видео: Что такое круг, окружность и радиус

Окру́жность - это фигура, которая состоит из всех точек на плоскости, равноудаленных от данной точки. Эта точка называется центром окружности.

Окружность нулевого радиуса (вырожденная окружность) является точкой, иногда этот случай исключается из определения.

Энциклопедичный YouTube

    1 / 5

    Окружность и ее свойства (bezbotvy)

    Вписанная и описанная окружность - от bezbotvy

    Математика: подготовка к ОГЭ и ЕГЭ. Планиметрия. Окружности и их свойства

    Математика 26. Циркуль. Окружность и круг - Шишкина школа

    УРАВНЕНИЕ ОКРУЖНОСТИ. ЗАДАНИЕ 18 (С5). АРТУР ШАРИФОВ

    Субтитры

Обозначение

Если окружность проходит, например, через точки A, B, C, то её обозначают указанием этих точек в круглых скобках: (A, B, C). Тогда дугу окружности, проходящую через точки A, B, C, обозначают как дуга ABC (или дуга AC), а так же υ ABC (или υ AC).

Другие определения

  • Окружность диаметра AB A, B AB виден под прямым углом (Определение через угол, опирающийся на диаметр окружности).
  • Окружность с хордой AB - это фигура, состоящая из точек A, B и всех точек плоскости, из которых отрезок AB виден под постоянным углом с одной стороны, равным вписанному углу дуги AB , и под другим постоянным углом с другой стороны, равным 180 градусов минус вписанный угол дуги AB , указанный выше (Определение через вписанный угол).
  • Фигура состоящая из таких точек X , {\displaystyle X,} что отношение длин отрезков AX и BX постоянно: A X B X = c ≠ 1 , {\displaystyle {\frac {AX}{BX}}=c\neq 1,} является окружностью (Определение через окружность Аполлония).
  • Фигура, состоящая из всех таких точек, для каждой из которых сумма квадратов расстояний до двух данных точек равна заданной величине, большей половины квадрата расстояния между данными точками, также является окружностью (Определение через теорему Пифагора для произвольного прямоугольного треугольника, вписанного в окружность, с гипотенузой, являющейся диаметром окружности).
  • M внутри неё провести любые хорды AB , CD , EF и т. д., тогда справедливы равенства: A M ⋅ M B = C M ⋅ M D = E M ⋅ M F = … {\displaystyle AM\cdot {MB}=CM\cdot {MD}=EM\cdot {MF}=\dots } . Равенства всегда будут выполняться независимо от выбора точки M и направлений проведенных через неё хорд (Определение через пересекающиеся хорды).
  • Окружность - замкнутая, самонепересекающаяся фигура, обладающая следующим свойством. Если через произвольную точку M вне её провести две касательные до точек их касания с окружностью, например, A и B , тогда их длины всегда будут равны: M A = M B {\displaystyle MA=MB} . Равенство всегда будет выполняться независимо от выбора точки M (Определение через равные касательные).
  • Окружность - замкнутая, самонепересекающаяся фигура, обладающая следующим свойством. Отношение длины любой её хорды к синусу любого её вписанного угла , опирающегося на эту хорду, есть величина постоянная, равная диаметру этой окружности (Определение через теорему синусов).
  • Окружность - это частный случай эллипса , у которого расстояние между фокусами равно нулю (Определение через вырожденный эллипс).

Связанные определения для одной окружности

  • Геометрическое место точек плоскости, расстояние от которых до данной точки не больше, чем заданное ненулевое, называется кругом .
  • Радиус - не только величина расстояния, но и отрезок , соединяющий центр окружности с одной из её точек. Радиус всегда равен половине диаметра окружности.
  • Радиус всегда перпендикулярен к касательной прямой, проведенной к окружности в его общей точке с окружностью. То есть радиус является одновременно и нормалью к окружности.
  • Окружность называется единичной , если её радиус равен единице. Единичная окружность является одним из основных объектов тригонометрии .
  • Отрезок, соединяющий две точки окружности, называется её хордой . Хорда, проходящая через центр окружности, называется диаметром .
  • Любые две не совпадающие точки окружности делят её на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.
  • Длина единичной полуокружности обозначается через .
  • Прямая, имеющая с окружностью ровно одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
  • Касательная к окружности всегда перпендикулярна её радиусу (и диаметру), проведенному в точке касания, который является нормалью , проведенной в данной точке.
  • Прямая, проходящая через две различных точки окружности, называется секущей .

Определение треугольников для одной окружности

  • Треугольник ABC называется вписанным в окружность (A,B,C), если все три его вершины A, B и C лежат на этой окружности. При этом окружность называется описанной окружностью треугольника ABC (См. Описанная окружность).
  • Касательная к окружности, проведенная через любую вершину вписанного в неё треугольника антипараллельна стороне треугольника, противоположной данной вершине.
  • Треугольник ABC называется описанным около окружности (A",B",C"), если все три его стороны AB, BC и CA касаются этой окружности в некоторых точках соответственно C", A" и B". При этом окружность называется вписанной окружностью треугольника ABC (См. Вписанная окружность).

Определения углов для одной окружности

  • Угол, образуемый дугой окружности, равной по длине радиусу, принимается за 1 радиан .
  • Центральный угол - угол с вершиной в центре окружности. Центральный угол равен радианной/градусной мере дуги, на которую опирается (см. рис.).
  • Вписанный  угол - угол, вершина которого лежит на окружности, а стороны пересекают эту окружность. Вписанный угол равен половине градусной меры дуги, на которую опирается (см. рис.).
  • Внешний угол для Вписанного  угла - угол, образованный одной стороной и продолжением другой стороны вписанного угла (см. рис. угол θ коричневого цвета). Внешний угол для вписанного с другой стороны угла окружности имеет ту же величину θ .
  • Угол между окружностью и прямой - угол между прямой и касательной к окружности в точке пересечения прямой и окружности. Оба угла между пересекающимися окружностью и прямой равны.
  • Угол, опирающийся на диаметр окружности - угол вписанный в эту окружность, стороны которого содержат конца диаметра. Он всегда является прямым.

Связанные определения для двух окружностей

  • Две окружности, имеющие общий центр, называются концентрическими .
  • Две окружности, имеющие лишь одну общую точку, называются касающимися внешним образом, если их круги не имеют других общих точек, и внутренним образом, если их круги лежат один внутри другого.
  • Две окружности, имеющие две общие точки, называются пересекающимися . Их круги (ими ограниченные) пересекаются по области, называемой двойным круговым сегментом.
  • Углом между двумя пересекающимися (или касающимися) окружностями называется угол между их касательными, проведенными в общей точке пересечения (или касания).
  • Также углом между двумя пересекающимися (или касающимися) окружностями можно считать угол между их радиусами (диаметрами), проведенными в общей точке пересечения (или касания).
  • Поскольку для любой окружности её радиус (или диаметр) и касательная, проведенные через любую точку окружности, взаимно перпендикулярны, то радиус (или диаметр) можно считать нормалью к окружности, построенной в данной её точке. Следовательно, два типа углов, определенных в двух предыдущих двух пунктах, всегда будут равны между собой, как углы со взаимно перпендикуярными сторонами.
  • прямым углом , называются ортогональными . Окружности можно считать ортогональными , если они образуют прямой угол друг с другом.
  • Радикальная ось двух окружностей - геометрическое место точек , степени которых относительно двух заданных окружностей равны. Иными словами, равны длины четырех касательных, проведенных к двум данным окружностям из любой точки M данного геометрического места точек .

Определения углов для двух окружностей

  • Угол между двумя пересекающимися окружностями - угол между касательными к окружностям в точке пересечения этих окружностей. Оба угла между двумя пересекающимися окружностями равны.
  • Угол между двумя непересекающимися окружностями - угол между двумя общимикасательными к двум окружностям, образуемый в точке пересечения этих двух касательных. Точка пересечения этих двух касательных должна лежать между двумя окружностями, а не со стороны одной из них (этот угол не рассматривается). Оба вертикальных угла между двумя непересекающимися окружностями равны.

Ортогональность

  • Две окружности, пересекающиеся под прямым углом , называются ортогональными . Окружности можно считать ортогональными , если они образуют прямой угол друг с другом.
  • Две пересекающиеся в точках A и B окружности с центрами O и O" называются ортогональными , если являются прямыми углы OAO" и OBO". Именно это условие гарантирует прямой угол между окружностями. В этом случае перпендикулярны радиусы (нормали) двух окружностей, проведенные в точку их пересечения. Следовательно, перпендикулярны и касательные двух окружностей, проведенные в точку их пересечения. Касательная окружности перпендикулярна радиусу (нормали), проведенному в точку касания. Обычно угол между кривыми - это угол между их касательными, проведенными в точке их пересечения.
  • Возможно другое дополнительное условие. Пусть две пересекающиеся в точках A и B окружности имеют середины пресекающихся дуг в точках C и D, то есть дуга AС равна дуге СB, дуга AD равна дуге DB. Тогда эти окружности называются ортогональными , если являются прямыми углы СAD и СBD.

Связанные определения для трех окружностей

  • Три окружности называются взаимно касающимися (пресекающимися), если любые две из них касаются (пресекаются) друг друга.
  • В геометрии радикальный центр трёх окружностей - это точка пересечения трёх радикальных осей пар окружностей. Если радикальный центр лежит вне всех трёх окружностей, то он является центром единственной окружности (радикальной окружности ), которая пересекает три данные окружности ортогонально .

Лемма Архимеда

Доказательство

Пусть G {\displaystyle G} - гомотетия, переводящая малую окружность в большую. Тогда ясно, что A 1 {\displaystyle A_{1}} является центром этой гомотетии. Тогда прямая B C {\displaystyle BC} перейдет в какую-то прямую a {\displaystyle a} , касающуюся большой окружности, а A 2 {\displaystyle A_{2}} перейдет в точку на этой прямой и принадлежащей большой окружности. Вспомнив, что гомотетия переводит прямые в параллельные им прямые, понимаем, что a ∥ B C {\displaystyle a\parallel BC} . Пусть G (A 2) = A 3 {\displaystyle G(A_{2})=A_{3}} и D {\displaystyle D} - точка на прямой a {\displaystyle a} , такая, что - острый, а E {\displaystyle E} - такая точка на прямой a {\displaystyle a} , что ∠ B A 3 E {\displaystyle \angle BA_{3}E} - острый. Тогда, так как a {\displaystyle a} - касательная к большой окружности ∠ C A 3 D {\displaystyle \angle CA_{3}D} = {\displaystyle =} ∠ C B A 3 {\displaystyle \angle CBA_{3}} = ∠ B A 3 E = ∠ B C A 3 {\displaystyle =\angle BA_{3}E=\angle BCA_{3}} . Следовательно △ B C A 3 {\displaystyle \bigtriangleup BCA_{3}} - равнобедренный, а значит ∠ B A 1 A 3 = ∠ C A 1 A 3 {\displaystyle \angle BA_{1}A_{3}=\angle CA_{1}A_{3}} , то есть A 1 A 2 {\displaystyle A_{1}A_{2}} - биссектриса угла ∠ B A 1 C {\displaystyle \angle BA_{1}C} .

Теорема Декарта для радиусов четырех попарно касающихся окружностей

Теорема Декарта" утверждает, что радиусы любых четырёх взаимно касающихся окружностей удовлетворяют некоторому квадратному уравнению . Их иногда называют окружностями Содди .

Свойства

x 2 + y 2 = R 2 . {\displaystyle x^{2}+y^{2}=R^{2}.}

Уравнение окружности, проходящей через точки (x 1 , y 1) , (x 2 , y 2) , (x 3 , y 3) , {\displaystyle \left(x_{1},y_{1}\right),\left(x_{2},y_{2}\right),\left(x_{3},y_{3}\right),} не лежащие на одной прямой (с помощью определителя):

| x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 | = 0. {\displaystyle {\begin{vmatrix}x^{2}+y^{2}&x&y&1\\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1\end{vmatrix}}=0.} { x = x 0 + R cos ⁡ φ y = y 0 + R sin ⁡ φ , 0 ⩽ φ < 2 π . {\displaystyle {\begin{cases}x=x_{0}+R\cos \varphi \\y=y_{0}+R\sin \varphi \end{cases}},\;\;\;0\leqslant \varphi <2\pi .}

В декартовой системе координат окружность не является графиком функции , но она может быть описана как объединение графиков двух следующих функций:

y = y 0 ± R 2 − (x − x 0) 2 . {\displaystyle y=y_{0}\pm {\sqrt {R^{2}-(x-x_{0})^{2}}}.}

Если центр окружности совпадает с началом координат, функции принимают вид:

y = ± R 2 − x 2 . {\displaystyle y=\pm {\sqrt {R^{2}-x^{2}}}.}

Полярные координаты

Окружность радиуса R {\displaystyle R} с центром в точке (ρ 0 , ϕ 0) {\displaystyle \left(\rho _{0},\phi _{0}\right)} .

И круг - геометрические фигуры, взаимосвязанные между собой. есть граничная ломаная линия (кривая) круга ,

Определение. Окружность - замкнутая кривая, каждая точка которой равноудалена от точки, называемой центром окружности.

Для построения окружности выбирается произвольная точка О, принятая за центр окружности, и с помощью циркуля проводится замкнутая линия.

Если точку О центра окружности соединить с произвольными точками на окружности, то все полученные отрезки будут между собой равны, и называются такие отрезки радиусами, сокращенно обозначаются латинской маленькой или большой буквой «эр» (r или R ). Радиусов в окружности можно провести столько же, сколько точек имеет длина окружности.

Отрезок, соединяющий две точки окружности и проходящий через ее центр, называется диаметром. Диаметр состоит из двух радиусов , лежащих на одной прямой. Диаметр обозначается латинской маленькой или большой буквой «дэ» (d или D ).

Правило. Диаметр окружности равен двум ее радиусам .

d = 2r
D = 2R

Длина окружности вычисляется по формуле и зависит от радиуса (диаметра) окружности. В формуле присутствует число ¶, которое показывает во сколько раз длина окружности больше, чем ее диаметр. Число ¶ имеет бесконечное число знаков после запятой. Для вычислений принято ¶ = 3,14.

Длина окружности обозначается латинской большой буквой «цэ» (C ). Длина окружности пропорциональна ее диаметру. Формулы для расчета длины окружности по ее радиусу и диаметру:

C = ¶d
C = 2¶r

  • Примеры
  • Дано: d = 100 см.
  • Длина окружности: C = 3,14 * 100 см = 314 см
  • Дано: d = 25 мм.
  • Длина окружности: С = 2 * 3,14 * 25 = 157 мм

Секущая окружности и дуга окружности

Всякая секущая (прямая линия) пересекает окружность в двух точках и делит ее на две дуги. Величина дуги окружности зависит от расстояния между центром и секущей и измеряется по замкнутой кривой от первой точки пересечения секущей с окружностью до второй.

Дуги окружности делятся секущей на большую и малую, если секущая не совпадает с диаметром, и на две равные дуги, если секущая проходит по диаметру окружности.

Если секущая проходит через центр окружности, то ее отрезок, расположенный между точками пересечения с окружностью, есть диаметр окружности, или самая большая хорда окружности.

Чем дальше секущая расположена от центра окружности, тем меньше градусная мера меньшей дуги окружности и больше - большей дуги окружности, а отрезок секущей, называемый хордой , уменьшается по мере удаления секущей от центра окружности.

Определение. Кругом называется часть плоскости, лежащая внутри окружности.

Центр, радиус, диаметр окружности являются одновременно центром, радиусом и диаметром соответствующего круга.

Так как круг - это часть плоскости, то одним из его параметров является площадь.

Правило. Площадь круга (S ) равна произведению квадрата радиуса (r 2 ) на число ¶.

  • Примеры
  • Дано: r = 100 см
  • Площадь круга:
  • S = 3,14 * 100 см * 100 см = 31 400 см 2 ≈ 3м 2
  • Дано: d = 50 мм
  • Площадь круга:
  • S = ¼ * 3,14 * 50 мм * 50 мм = 1 963 мм 2 ≈ 20 см 2

Если в круге провести два радиуса к разным точкам окружности, то образуется две части круга, которые называется секторами . Если в круге провести хорду, то часть плоскости между дугой и хордой называется сегментом окружности .