Молекулярная самосборка. Частицы как поверхностно-активные вещества

Заместитель директора Форсайт-центра Института статистических исследований и экономики знаний НИУ ВШЭ Александр Чулок прочитал в ЦПКиО им. Горького лекцию, посвященную научно-техническому прогрессу и его влиянию на человечество. Помимо темы развития технологий, Чулок рассказал о возникновении новых рынков и смерти старых, а также о проблемах, связанных с этими процессами.

В ответ на вопрос «как сейчас угадать будущее?» вынужден вас огорчить: это практически невозможно. Однако будущее можно сформировать таким, каким мы хотим его видеть. Наступила экономика ожиданий, которая во многом обусловлена принципиально новыми потребностями, новыми подходами к работе с информацией. Теперь я кратко расскажу о том, какие ключевые изменения ждут нас в ближайшие 20 лет в основных секторах экономики.

Медицина и здравоохранение

Здоровье - это первое, что волнует человека. В России все более заметен тренд на заботу о своем физическом состоянии: все хотят быть подтянутыми, красивыми, спортивными и, конечно, здоровыми. В сфере здравоохранения сейчас наблюдается отчетливая тенденция к персонализации.

Покажу на таком примере. Медицинские разработки позволят адаптировать схему лечения под конкретного человека с опорой на расшифровку его генома (уже сейчас «базовый» набор стоит 100 евро, а что будет, когда стоимость упадет в десять раз?), анализ его окружения, того, как он живет, чем дышит. В перспективе вместо стандартных лекарств будут продаваться индивидуальные схемы лечения, согласно которым, скажем, вам нужно вставать в 6 утра, спать до 9, обязательно есть клубнику и ни в коем случае не находиться на солнце до 10 вечера в Турции, но если это будет солнце Египта - то тогда вопросов нет.


Александр Чулок
Фото: hse.ru

Отдельный вопрос - будут ли пациенты придерживаться необходимой схемы лечения? Большинство принимают таблетки, скажем, не пять дней, как положено, а три и бросают - помогло же, зачем дальше принимать? В случае с хроническими заболеваниями почти каждый второй игнорирует предписания врачей. Забыть о графике приема лекарств и оптимизировать их дозировку позволят имплантируемые микрочипы.

Надеюсь, мы увидим конец традиционной диспансеризации: не нужно будет идти в клинику сдавать анализы, за состоянием организма будет следить специальный наручный браслет. Уже существуют мобильные устройства, фиксирующие десятки разных биометрических показателей.

Готовы ли к таким изменениям большие фармакологические компании? Очевидно, им придется адаптироваться. Как и аптекам, которые в своем нынешнем виде тоже станут не нужны, ведь человек сможет напечатать любой препарат на домашнем 3D-принтере.

С развитием 3D-принтинга связан следующий тренд - замена органов. В прошлом году в Бельгии старушке заменили челюсть, напечатав ее на 3D-принтере. Новость тогда быстро облетела весь мир, однако в общей сложности операция обошлась под миллион евро. Через 20 лет у многих людей в организме появится какой-либо напечатанный орган. Сейчас уже печатают легкое, почку, глаз.

Уйдут в прошлое попытки «починить» то, что уже «сломалось», врачи не будут говорить, мол, вот заболеете, тогда и приходите. Медицина, которая сейчас развивается в США, Германии, Израиле, - это медицина профилактики. Ее базовая задача: предупреждать болезнь, а не лечить ее последствия.

Улучшение свойств человека - еще одна из бурно развивающихся тенденций в медицине. Сейчас происходит сращивание нано-, био-, инфо- и когнитивных технологий, позволяющих кардинальным образом усилить человека, оптимизировать его интеллектуальные и физические особенности буквально за гранью интуиции самого гениального конструктора. Несколько лет назад в швейцарском городе Люцерн состоялся съезд футурологов, которые говорили, что к 2045 году человек обретет бессмертие, а мысли будут передаваться от человека к человеку, что может привести к образованию новых сообществ.

Теперь представьте себе такую картину: 120-летний старичок, который ГТО сдает лучше тридцатилетнего, бегает кросс и у которого мозги работают в пять раз лучше, а опыта в десять раз больше. Работодатель возьмет его, а не молодого, которого еще многому надо обучать. Что же делать 30-летним «лоботрясам»? И это глобальный вызов. Многие страны об этом уже всерьез задумались.

Сейчас появилось много аналитики на основе анализа данных соцсетей, кто-то говорит об их контроле. Но как вы будете контролировать мысли? Например, если раньше в ряде европейских стран, когда вы попадали на запись, сделанную городской камерой, то могли требовать, чтобы вас оттуда вырезали, то сейчас что вы будете вырезать? Спутник? Интерфейс? Facebook или Mindbook?

Очевидно, что технологии будут все сильнее влиять на геополитическую обстановку: если страна не «впишется» в новую технологическую волну, не обеспечит своим гражданам высокое качество жизни, она рискует потерять наиболее активный, пульсирующий идеями креативный слой.

Информационно-телекоммуникационные системы

Мы наблюдаем стремительное тотальное проникновение информационно-телекоммуникационных технологий (ИКТ). Кто бы мог лет 70 назад представить, что мы будем разговаривать с помощью маленьких коробочек? Сейчас почти все ходят с мобильными телефонами, кто-то - со смартфонами в виде браслета. Расстояние между устройством и телом человека составляет 2-3 сантиметра. И оно сокращается, в будущем девайсы просто уйдут под кожу. А еще немного, и у нас появятся интерфейсы мозг-компьютер.


Фото: Jordi Boixareu / Zumapress / Global Look

Сейчас сложно представить, как поменяют наше мышление виртуальная реальность и дополненная реальность. Наш социум распадется - мы будем слушать лекцию, сидя в очках виртуальной реальности на даче, при этом находясь в виртуальной комнате или школе. Уже сейчас благодаря сервисам, таким как Coursera, можно смотреть отличные курсы практически по всем областям знаний. Причем пока вы просто слушаете вебинары, но в будущем появятся технологии, позволяющие быть внутри этой виртуальной комнаты.

Например, объем рынка технологий дополненной реальности в хирургии составляет около 5 миллиардов долларов, и это только одно их применение. Уже существуют прототипы шлемов, которые позволяют получать актуальную и полную информацию о строящемся объекте: кто его создал, сколько он стоит и какие у него могут быть проблемы. Это совсем другой уровень анализа, управления и контроля.

Приходит время полностью цифровых фабрик. Например, у компании Amazon.com на складах нет ни одного человека, практически за все процессы отвечают роботы. У нас лишь несколько редких примеров попыток создать такие производства. Очевидно, что эффект их распространения будет равносилен технологиям телеграфа для мира голубиной почты. Мир переходит на платформенные решения, это совсем иная парадигма производства, а мы, например, все пытаемся наладить в стране консолидированную дискуссию по 3D-принтерам, а за рубежом они уже давно продаются в специализированных магазинах, или дискутировать про солнечные батареи, а уже появились разработки прозрачной солнечной батареи. Следующий шаг - заменить ими окна и перейти к полностью энергонезависимому дому. А если он еще подключен к smart grid - умной распределенной энергетической системе, то еще и начнет отдавать энергию в сеть, благодаря чему достигается положительный баланс. Сколько вы платите за электроэнергию? А теперь представьте, что эти деньги будут платить вам.

Энергетика

Скорее всего, энергетика будущего будет автономна, умна, экологична и адаптивна под потребности человека. У многих есть внешние аккумуляторы, заряжающие мобильные устройства, но сейчас уже разработана пленка, позволяющая заряжать телефон за несколько минут. В будущем его батарейка будет служить не 3-4 дня, а месяц или два, годы.

Следующий тренд в энергетике - это все независимое. В Америке уже несколько десятилетий разрабатывается технология автономного солдата, заряжающего снаряжение просто при ходьбе. А теперь представьте, что вы находитесь в своеобразном «энергококоне», вы подключены через специальный костюм или устройство к общей распределительной энергосети. Можно будет обмениваться энергией напрямую. Представленный недавно домашний накопитель Tesla - это только первый ход. Он очень дорогой и пока не особо эффективный, но прорывы в энергетике ожидаются колоссальные.

В классических форсайтах принято изучать не только те тренды, которые, скорее всего, наступят, но и такие события, вероятность наступления которых минимальна, но если они произойдут, то от такого «джокера» мало никому не покажется. Одним из таких, увы, неприятных «джокеров» была авария на «Фукусиме», ее мало кто ожидал, а эффект был колоссальным. Сейчас многие анализируют эффекты от развития доступных технологий извлечения метана из газогидратов, сланцев, добычи нефти нетрадиционных месторождений. Но это все события в зоне нашего управленческого предвидения, а что если у нас будут созданы эффективные, дешевые, «зеленые», при этом миниатюрные источники энергии, например ядерные мини-реакторы? Их влияние на сложившиеся цепочки создания добавленной стоимости будут колоссальными.

Транспорт

Транспортные технологии обеспечат эффект сжатия пространства. К сожалению, российская инфраструктура пока выступает сильным барьером для развития этого тренда в нашей стране. А ведь так хотелось бы провести выходные на Камчатке или Байкале. Пока мы обдумываем планы по дорожному строительству, китайские скоростные поезда всерьез нацелились на преодоление барьера в 1000 километров в час, используя технологии магнитной левитации.

Современные транспортные средства, безусловно, будут функционировать не только на земле, но и в воздухе, причем некоторые могут выйти за пределы атмосферы. Многими странами уже ведутся разработки по созданию «космического лифта». Развитие тросовых систем, включая разработку «космического лифта», позволит изменять орбиты космических аппаратов, перемещать грузы между орбитальными станциями, осуществлять запуски малых космических аппаратов и доставку полезных грузов на орбиту. Ключевой барьер здесь - это сам трос, который должен выдерживать даже не лифт, а собственный вес. Волокно толщиной с волос должно выдерживать тонну (сейчас - 500-600 килограммов). Чтобы сделать такой трос, нужны нанотехнологии. Они произведут настоящую революцию во многих отраслях.

Производство, наука и образование

Сейчас мы пытаемся внедрять аддитивные технологии - 3D-печать, а на смену им придет молекулярная самосборка - это еще более продвинутая технология. На молекулярном уровне можно будет собирать все что угодно. Используя нанофабрики, можно будет создавать вещи, продукты, для производства молока в будущем корова будет не нужна. Эти технологии - «убийцы» 3D-принтеров.


Имплант челюсти, напечатанный на 3D-принтере
Фото: uhasselt.be

Ключевая проблема во всем умном (умных сетях, городах, домах, предприятиях и пр.) - это моделирование. И тут приходят на помощь наши математики. Здесь у нашей страны определенно есть шансы, чтобы добиться ведущей позиции на рынке. Однако мы наблюдаем интересную закономерность: как только исследователь наращивает уровень цитирования, зачастую меняется его аффилиация, принадлежность к тому или иному университету: если в его ранних работах указано, что человек из России, то в более поздних - бах! - уже какой-нибудь американский университет.

Таким путем шел и Китай. Китайцы выкупали профессоров по индексу цитирования вместе с их семьями, давали им зарплаты как в Америке. Они говорили им: «работайте, но права на созданную интеллектуальную собственность будут принадлежать КНР». Теперь есть китайские машины, китайские самолеты - все made in China.

Мы тратим на науку примерно 15 миллиардов долларов в год, а США - 450 миллиардов долларов. Если смотреть на распределение в мировой науке, то нас там совсем чуть-чуть. И такой момент. Есть метод, который называется «анализ исследовательских фронтов». Если другие ученые вдруг начинают активно цитировать исследователей, которые занимаются определенными областями, значит, именно в этих областях науки возможен прорыв. Но если за рубежом публикации, скажем, по медицине напрямую связаны с биохимией, химией, физикой, инжинирингом, то в публикациях российских ученых этих связей почти нет. У нас основная область науки - это астрономия.

В качестве ликбеза привожу материал Н.В. Реброва — студента национального Донецкого технического университата, который кстати в настоящее время "нацгвардия" Украины расстреливает из тяжёлых орудий по указанию еврейского Киева:

САМОСБОРКА В НАНОТЕХНОЛОГИЯХ

Среди различных перспективных подходов формирования наноструктур все большее значение приобретают нанотехнологии, использующие самоорганизацию. Предполагается, что самоорганизация позволит создавать наноструктуры из отдельных атомов как технология «снизу-вверх». Молекулярная самосборка в отличие от «нисходящего» подхода нанотехнологий, например, литографии, где желаемая наноструктура появляется из большей по размеру заготовки, является важной составляющей "восходящего" подхода, где желаемая наноструктура является результатом своеобразного программирования формы и функциональных групп молекул.

Какие наноструктуры можно строить, используя данные технологии? Говорится о разных материалах, так как эти технологии позволяют создавать устройства, формируя их из атомов и молекул, используя процессы самоорганизации так, как их использует природа. В природе действительно существуют подобные системы и осуществляются подобные процессы. Самым ярким примером является пример сборки сложнейших биологических объектов на основе информации, записанной в ДНК (см. рис. 1).

Рисунок 1 — Пример самосборки биологической структуры

Как было раньше? Мы брали, скажем, кусок железа и делали из него молоток, просто убирая все лишнее (технология «сверху-вниз»). Нанотехнология же в ближайшем будущем позволит делать изделия из материалов с нуля, причем не всегда будет нужно складывать атом к атому «вручную», мы сможем использовать явление самоорганизации, самосборки наноструктур и наноустройств. При этом достаточно трудно ожидать, что на наноуровне возможна искусственная манипуляция отдельными нанообъектами с целью «ручной» сборки материала. Это пока что нецелесообразно (медленно и требует выполнения большого объема работы). Поэтому естественным способом получения наноматералов может являться самоорганизация.

Самосборка (англ. self-assembly) — это термин для описания процессов, в результате которых неорганизованные системы благодаря специфическому, местному взаимодействию компонентов систем приходят к упорядоченному состоянию.

Самосборка бывает как статической, так и динамической. В случае статической самосборки организующаяся система приближается к состоянию равновесия, уменьшая свою свободную энергию. В случае же динамической самосборки более корректным является использование термина самоорганизация .

Самоорганизация в классических терминах может быть описана как спонтанная и обратимая организация молекулярных единиц в упорядоченную структуру с помощью нековалентных взаимодействий. Спонтанность означает, что взаимодействия, ответственные за образование самособранной системы, проявляются в локальных масштабах, другими словами, наноструктура строит саму себя.

При определённых условиях микро- или нанообъекты сами начинают выстраиваться в виде упорядоченных структур. Противоречия с фундаментальными законами природы здесь нет — система в данном случае неизолированная, и на нанообъекты оказывается какое-то внешнее воздействие. Однако данное воздействие направлено не на конкретную частицу, как происходит при сборке «сверху вниз», а на все сразу. Вам не нужно выстраивать требуемую структуру вручную, помещая нанообъекты в требуемые точки пространства один за другим — создаваемые условия таковы, что нанообъекты делают это сами и одновременно. Процессы, использующие создание таких особых условий, называются процессами самосборки, и уже сейчас они играют важнейшую роль во многих областях науки и техники.

Для самособирающихся компонентов все, что требуется от человека — это поместить достаточное их количество в пробирку и позволять им автоматически собраться в нужные конфигурации согласно их естественным свойствам.

На сегодняшний день синтезированы двумерные и трехмерные организованные массивы нанокристаллов Pt, Pd, Ag, Au, Fe, Co, сплавов Fe-Pt, Au-Ag, наноструктур CdS/CdSe, CdSe/CdTe, Pt/Fe, Pd/Ni и т.д. Кроме того, для анизотропных наночастиц удалось добиться формирования ориентационно-упорядоченных массивов. Однородные по размеру наночастицы можно «собрать» в пространственно-упорядоченные структуры, представляющие собой одномерные «нитки», двумерные плотно упакованные слои, трехмерные массивы или «малые» кластеры. Тип организации наночастиц и структура образующегося массива зависят от условий синтеза, диаметра частиц, природы внешнего воздействия на структуру.

Сегодня известны различные методы самосборки, позволяющие получать полезные упорядоченные структуры из микрочастиц. Для создания особых условий, при которых в конкретной системе происходит самосборка, могут быть использованы гравитационное, электрическое или магнитное поле, капиллярные силы, игра на смачиваемости-несмачиваемости компонентов системы и другие приемы. В настоящее время процессы самосборки начинают активно использоваться и в производстве.

Суть явления самосборки

В современной науке имеется огромный фактический материал экспериментальных наблюдений явления самосборки. Особенно впечатляющими являются наблюдения самосборки биологических объектов, в частности работы Клуга по сборке растительных вирусов, отмеченные нобелевской премией 1982 года. Экспериментальные исследования самосборки носят преимущественно констатирующий характер и дают обширные знания о том, как это происходит. Вопрос о том, почему это происходит именно так, а не иначе - является вызовом современному естествознанию.

Рассмотрим хорошо изученный сценарий сборки вируса бактериофага Т4, описанный во всех учебниках и являющийся классическим объектом изучения самосборки. Упрощённый вариант сценария изображён на Рис. 2. В сборке участвуют 54 типа белков, которые строго в определённой последовательности агрегируются в субагрегаты различных уровней и далее субагрегаты собираются в завершённую вирусную частицу, включающую более тысячи белковых молекул. Бессмысленно моделировать этот тонко согласованный, разветвлённый иерархический процесс средствами стохастических представлений о случайно сталкивающихся молекулах.


Рисунок 2 — Сценарий сборки бактериофага Т4

Несомненно, что процесс сборки вируса детерминирован и управляем и для полного понимания этого процесса необходимо определить средства детерминации и механизмы управления. Научное мышление второй половины ХХ века было очаровано созданием компьютера и открытием системы управления синтезом белков. Обе системы идеологически идентичны и являются воплощением принципа сосредоточенного управления. Носителем сосредоточенного управления является знаковая система - линейный императивный управляющий язык. Совершенно естественно, что первые попытки математического моделирования процессов самосборки и самовоспроизведения были предприняты в рамках теории автоматов, например фон Нейман. Однако данные экспериментальных наблюдений не подтверждают состоятельность таких моделей. Процессы самосборки не укладываются в схему сосредоточенного управления.

Данные экспериментов позволяют утверждать, что в процессе самосборки отсутствует управляющий элемент и ни в какой форме не обнаруживается знаковая система, описывающая порядок следования монтажных актов или порядок расположения элементов в структуре продуктов самосборки. Специфика феномена самосборки заключается в том, что процесс несомненно детерминирован, но механизм детерминации не вписывается в простой и понятный метод сосредоточенного управления.

Самосборка есть реализация метода распределённого управления, при котором управляющие функции реализованы во внутренней структуре элементов участвующих в процессе, а управляющая информация, детерминирующая процесс, распределена по всем элементам. Следовательно, носителем детерминации при распределённом управлении являются специфические знаковые системы кардинально отличающиеся от простейших императивных линейных языков, подобных компьютерным или системе ДНК-белок. Главная задача исследования самосборки это определение логики взаимоотношений элементов и поиск знаковых систем, носителей распределённого управления.

Рассмотрим гипотетический сценарий самосборки, отвечающий требованиям реализации распределённого управления. Некоторые шаги сценария изображены на Рис.3.



Рисунок 3 — Гипотетический сценарий взаимодействия элементов

Допустим, что в сборке простейшей конструкции, трубки, участвуют молекулы двух типов шар и амфора. Мы рассматриваем только логический аспект самосборки и пока не вовлекаем в описание физико-химические основы взаимодействия. Шар и амфора &mdash это абстракции, наделённые способностью к некоторой постулированной монтажной активности. В состав элемента вводится абстракция «кодовый замок». Монтажный акт возможен только при совпадении кодов замков. Амфора и шар имеют разные кодовые замки К1 и К2, поэтому на первом шаге сборки сцепляются два шара. В результате образуется субагрегат с новым кодовым замком К2. Далее к субагрегату пристыковывается амфора, имеющая кодовый замок К2 и образуется субагрегат «зуб» с кодовым замком К3. Далее из зубов как из секторов строятся диски, а диски собираются в трубку. Для того чтобы выстроить такой сценарий необходимо постулировать процедуру элементарного акта сборки.

Определим элементарный акт сборки как процедуру, состоящую из четырёх шагов:

.активирование кодового замка;

.поиск и сближение двух элементов с совпадающими кодами замков;

.срабатывание замков

.погашение их активности, образование нового кодового замка для продолжения процесса.

Таким образом, на каждом шаге сборки монтажные акты определяются состояниями кодовых замков, а выполнение монтажного акта завершается порождением нового кода и нового замка.

К настоящему моменту имеются математические инструменты, способные описывать логический аспект процессов самосборки. Потоковые продукционные системы соответствуют требованиям к знаковым системам, поддерживающим распределённое управление и могут на логическом уровне выполнять роль детерминантов процесса самосборки. Ближайшая следующая задача - это совместная работа с физхимиками и биологами по построению потоковых продукционных систем, моделирующих на логическом уровне реальные сценарии самосборки конкретных объектов. Далее последует поиск элементов потоковых продукционных систем в физико-химическом строении элементов участников самосборки. Наибольшая готовность для таких программ имеется в области исследования растительных вирусов. .

Если кто-то думает, что студент Донецкого университета Н.В. Ребров тут бред написал, привожу материал, который я читал ещё 20 лет назад и который я привёл в своей книге "Геометрия жизни" .

Об «автосборке» органических структур есть очень важное наблюдение советского академика В.А. Энгельгардта (1894-1984).

Вот что он пишет об этом явлении в статье «О некоторых атрибутах жизни: иерархия, интеграция, «узнавание». (Статья опубликована в сборнике: «Философия, естествознание, современность», Москва, «Мысль», 1981).

«Явления «узнавания» и вместе с тем интеграции в особенно отчётливой, почти зрительно воспринимаемой форме (если прибегнуть к помощи электронного микроскопа), выражаются в процессах так называемой самосборки супрамолекулярных структур, таких, как вирусы и фаги, рибосомы или обладающие сложным строением ферментные частицы. Уже детально изучено большое число процессов такого рода. Они по существу сводятся к тому, что если сложный, многокомпонентный объект теми или иными щадящими приёмами искусственно разложить на составные части, изолировать их друг от друга, а затем смешать в надлежащих соотношениях и создать благоприятные условия, то они самопроизвольно вновь соберутся в исходную целостность. Её полноценность легко и с предельной убедительностью доказывается тем, что восстанавливается не только её исходная морфологическая структура, но и её специфические биологические свойства, например каталитическая активность у ферментов, инфекционные свойства у вирусов и т.д.»

Как Вы все, друзья, понимаете, протекание описанных процессов «узнавания» и самосборки молекулярных структур в нечто «целое» и при том оживающее, одушевлённое (!), нельзя представлять без процессов информационно-энергетического взаимодействия микромира с макромиром . Как протекает такой процесс информационно-энергетического взаимодействия между макро — и микромиром, достаточно чётко описал советский учёный, профессор Александр Леонидович Чижевский (1897-1964), содатель новой науки — " Гелиобиологии" .

«Процесс развития органического мира не является процессом самостоятельным, автохтонным, замкнутым в самом себе, а представляет собой результат действия земных и космических факторов, из которых вторые являются главнейшими, так как они обуславливают состояние земной среды. В каждый данный момент органический мир находится под влиянием космической среды и самым чутким образом отражает в себе, в своих функциях перемены или колебания, имеющие место в космической среде. Мы легко можем представить эту зависимость, если вспомним, что даже небольшое изменение температуры нашего Солнца должно было бы повлечь самые сказочные, невероятные изменения во всём органическом мире. А таких важных факторов, как температурный, очень много: космическая среда несёт к нам сотни различных, постоянно изменяющихся и колеблющихся время от времени сил. Одни электромагнитные радиации, идущие от Солнца и звёзд, могут быть разделены на очень большое число категорий, отличающихся одна от другой длиною волны, количеством энергии, степенью проницаемости и многими другими свойствами..."

Мне остаётся лишь добавить: аналогично тому, как рождаются в Природе по принципу "самосборки" различные вирусы и фаги, точно также по принципу "самосборки" в океане мирового эфира , который древние мудрецы справедливо считали колыбелью жизни и средой распространения тепла и света, родилась вся жизнь вообще. При осмыслении этой информации я бы порекомендовал взять в расчёт то обстоятельство, что самозарождение сложных форм жизни на земле происходит время от времени и эти эволюционные процессы, судя по всему, связаны с катаклизмами глобального масштаба, например, такими, как смена полюсов Земли или падение на Землю гиганских астероидов. В природе ничего случайного не бывает, всё закономерно, следовательно, любой глобальный процесс обязательно связан с каким-то другим глобальным процессом . И когда что-то гибнет в планетарном или даже в Космическом масштабе, что-то другое рождается в это же время.

Молекулярная самосборка

Molecular Self-Assembly

Молекулярная самосборка

Процесс объединения молекул с образованием ковалентных связей как часть определенной химической процедуры, контролируемой стереохимическими параметрами реакции и конформационными характеристиками интермедиатов. Интересен граничный случай между молекулярной (ковалентной) и супрамолекулярной самосборками при образовании фуллеренов в парах углерода при высоких температурах, в частности C 60 и C70, и родственных веществ, таких, например, как протяженные углеродные нанотрубки. Хотя, строго говоря, это пример необратимого образования ковалентных связей, однако в таких экстремальных условиях возможно обратимое образование даже сильных ковалентных связей, что в некоторой степени роднит их с более слабыми супрамолекулярными взаимодействиями, реализующимися в обычных условиях.

Ковалентная самосборка фуллеренов и углеродных нанотрубок в экстремальных условиях.


. В.В.Арсланов . 2009 .

Смотреть что такое "молекулярная самосборка" в других словарях:

    самосборка - Термин самосборка Термин на английском self assembly Синонимы Аббревиатуры Связанные термины биомиметические наноматериалы, водородная связь, капсид, нанослой, самособирающиеся монослои, супрамолекулярная химия, супрамолекулярный катализ, темплат …

    Molecular Self Assembly Молекулярная самосборка Процесс объединения молекул с образованием ковалентных связей как часть определенной химической процедуры, контролируемой стереохимическими параметрами реакции и конформационными… … Толковый англо-русский словарь по нанотехнологии. - М.

    Наноинженерия - (от нано и инженерия) научно практическая деятельность человека по конструированию, изготовлению и применению наноразмерных (наноструктурированных) объектов или структур, а также объектов или структур, созданных методами нанотехнологий. В… … Википедия

    Нанотехнология - (Nanotechnology) Содержание Содержание 1. Определения и терминология 2. : история возникновения и развития 3. Фундаментальные положения Сканирующая зондовая микроскопия Наноматериалы Наночастицы Самоорганизация наночастиц Проблема образования… … Энциклопедия инвестора

    СССР. Естественные науки - Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… …

    Фибрин - (от лат. fibra – волокно) высокомолекулярный белок, образующийся из Фибриногена плазмы крови под действием фермента Тромбина; имеет форму гладких или поперечноисчерченных волокон, сгустки которых составляют основу тромба при свёртывании… … Большая советская энциклопедия

    Рибосомы - внутриклеточные частицы, осуществляющие биосинтез белка; Р. обнаружены в клетках всех без исключения живых организмов: бактерий, растений и животных; каждая клетка содержит тысячи или десятки тысяч Р. Форма Р. близка к… … Большая советская энциклопедия

    Баев, Александр Александрович - Александр Александрович Баев Дата рождения: 28 декабря 1903 (10 января 1904)(1904 01 10) Место рождения: Чита, Российская империя Дата смерти: 31 декабря 1994 … Википедия

    самособирающиеся монослои - Термин самособирающиеся монослои Термин на английском self assembled monolayers Синонимы Аббревиатуры SAM Связанные термины амфифильный, ван дер ваальсово взаимодействие, нанослой Определение монослои амфифильных молекул, образовавшиеся на… … Энциклопедический словарь нанотехнологий

    супрамолекулярная химия - Термин супрамолекулярная химия Термин на английском supramolecular chemistry Синонимы Аббревиатуры Связанные термины биомиметика, ван дер ваальсово взаимодействие, водородная связь, гидрофобное взаимодействие, донорно акцепторное взаимодействие,… … Энциклопедический словарь нанотехнологий

Наночастица - это частица размером меньше 100 мкр. Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы размерами от 1 до 100 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дёшевы и могут быть механически гибкими. Удаётся добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками, нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определённые структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства. Нанообъекты делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом; двумерные объекты - плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания; одномерные объекты - вискеры(эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры).На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв. Нанотехноло́гия - междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами. Наноматериалы - материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих. Углеродные нанотрубки - протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей и обычно заканчивающиеся полусферической головкой. Фуллерены - молекулярные соединения, принадлежащие классу аллотропных форм углерода. Графен - монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете. Графен можно использовать, как детектор молекул. Нанолитография наиболее важный метод создания устройств с нанометровыми размерами. Этот метод может использоваться для создания электронных схем, схем памяти с большой ёмкостью, сенсоров.Наномедицина - слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры. Нанобиоэлектроника ) - раздел электроники и нанотехнологий, в которых используются биоматериалы и принципы переработки информации биологическими объектами в вычислительной технике для создания электронных устройств. Молекулярная самосборка - Создание произвольных последовательностей ДНК, которые могут быть использованы для создания требуемых белков или аминокислот.

Об этом открытии, которое представляет собой новый фундаментальный инструмент в области нанотехнологий, сообщается в августовском номере престижного журнала Science.
Дэррин Почан, доцент материаловедения и инжиниринга материалов Университета Делавэра, и Карен Вули, заслуженный профессор Джеймса С. Макдоннела в области гуманитарных и технических наук Университета Вашингтона в Сент-Луисе, возглавили работу исследовательского коллектива. Исследование проводилось за счет гранта Национального Научного фонда для Междисциплинарного коллектива по наноразмерным исследованиям (NIRT).

Дэррин Почан, доцент материаловедения и инжиниринга материалов Университета Делавэра.

Основным объектом исследований были блок-сополимеры, которые представляют собой синтетические молекулы, содержащие два или более химически различных сегмента, связанных в единое целое. Блок-сополимеры используются для производства целого ряда материалов, таких как пластики, резиновые подошвы для обуви, и, кроме того, в последнее время из них начали изготавливать переносные запоминающие устройства («флэш-накопители») для компьютеров.
«Блок-сополимер представляет собой длинноцепочечную молекулу, единица длины которой, или структурный элемент (блок), отличается в химическом плане от другого», - говорит Почан. - «В нашем случае, мы взяли один элемент, который любит воду, и другой, который ее не любит. Поэтому, когда их помещают в раствор, те блоки, которые не любят воду, стараются находиться как можно дальше от нее, и, таким образом, можно получить самые разнообразные формы, которые называются мицеллами».
Система, которую использовали ученые, состояла из три-блок-сополимера, составленного из полиакриловой кислоты, полиметилакрилата и полистирола, введенных в раствор тетрагидрофурана и воды, а также органических диаминов. Сама технология основана на способности двухвалентных органических противоположно заряженных ионов и растворяющих смесей заставлять блок-сополимеры организовываться по специальным схемам, создавая специфические змеевидные одномерные структуры.
Большая часть исследований проводилась с использованием микроскопов высокой мощности на Факультете Электронной Микроскопии Технического колледжа Университета Делавэра. Помощь исследовательскому коллективу оказывал техник Фрэнк Крисс.
Вули, которая является специалистом в области химии полимеров, и Почан, специалист по материаловедению, встречались на научно-исследовательских конференциях и обсуждали перспективы своих проектов. Она занималась проектированием мицелл сферической формы для использования при доставке лекарственных препаратов и в радиологии, однако, она заметила, что при различных условиях раствора у ее студентов получаются различные формы.

Изображения одномерных сборных структур, созданных исследовательским коллективом из Университетов Делавэра и Вашингтона в Сент-Луисе с помощью трансмиссионной просвечивающей электронной микроскопии.

Несмотря на то, что их лаборатории располагаются на расстоянии почти в 1500 км друг от друга, ученые утверждают, что их исследовательская работа была «прекрасным синергетическим сотрудничеством».
«В мире нанотехнологической самосборки необычайно заманчиво создать что-либо, что имеет не шарообразную форму», - отмечает Почан. - «Если ввести маленькие шарики с лекарственным препаратом в кровоток, органы человеческого организма и иммунная система избавятся от них в течение примерно суток. Если поместить молекулы в длинные и гибкие цилиндры, они могут оставаться в организме неделями», - замечает Почан.
По словам Почана, изменение формы мицелл позволяет доставлять лекарственный препарат в человеческом организме на протяжении длительного периода времени, потенциально обеспечивая отложенную доставку введенного одной инъекцией лекарственного препарата при химиотерапии.
«Заменив форму шара формой цилиндра, вы можете предположительно доставить два, или три, или четыре различных лекарственных препарата, введенных с помощью одной инъекции, в различные части организма: один в один участок, а другие в другие участки, и все с помощью одной самосборки», - говорит Почан.
Хотя исследования еще далеки от практических применений, открытия, сделанные коллективом, позволили получить новую фундаментальную технологию построения наноструктур «снизу вверх».

«Все это касается простого конструирования материалов и наноструктур», - говорит Почан. «Основной целью является проектирование молекул со всеми правилами и всей информацией, которая им нужна для того, чтобы образовать нужную вам форму и размер. Затем вы бросаете их в воду и смотрите, что из этого получится, надеясь, что это будет требуемая сложная наноструктура».
Забавно, но, когда Почан заканчивал аспирантуру много лет назад, он считал, что он покончил с блок-сополимерам.
«Я сейчас работаю на основе того, что сделано в годы аспирантуры в девяностых по каучукам и пластмассам», - рассказывает он. - «Тем не менее, если смотреть на блок-сополимеры как средства самосборки, то можно найти значительно больше потенциальных применений, чем у каучука, для багажника или пластмассовых напольных покрытий», - отмечает Почан.
«Мы можем использовать те же самые молекулы, но выстраивать их по-другому, так, чтобы получить что-нибудь полезное из области высоких технологий», - говорит он. «Примечательно, как возвращается мода на исследования, и новые применения находятся для «старых инструментов».