Молекулярная масса бария равна. Применение в химической промышленности и цветной металлургии

Бария сульфат – это активное вещество, которое применяется в диагностических целях при некоторых заболеваниях пищеварительного тракта. Оно представляет собой рыхлый порошок белого цвета, не обладающий запахом и каким-либо вкусом, он нерастворим в органических растворителях, а также в щелочах и кислотах. Рассмотрю характеристики этого компонента. Поговорим о том для чего нужен бария сульфат для рентгеноскопии, применение в медицине этого вещества опишем, его свойства, что говорит инструкция расскажем.

Какое у Бария сульфат действие?

Бария сульфат – это рентгеноконтрастное вещество, оно используется с диагностической целью, так как хорошо повышает контрастность рентгеновского изображения при проведении соответствующих исследований, и не обладает токсичностью. Максимальная рентгеноконтрастность таких органов, как пищевод, желудок, а также и двенадцатиперстная кишка, достигается очень быстро, сразу же после введения его внутрь.

Что касается тонкого кишечника, то рентгеноконтрастность наступает примерно через 15 минут или через полтора часа, все будет зависеть от вязкости препарата и от скорости непосредственного опорожнения желудка. Максимальная визуализация дистальных отделов как тонкого, так и толстого кишечника будет зависть от положения тела пациента, а также от гидростатического давления.

Бария сульфат не всасывается из пищеварительного тракта, поэтому не попадает непосредственно в системный кровоток, конечно, если отсутствует перфорация органов ЖКТ. Выводится это вещество со стулом.

Какие у Бария сульфат показания к применению?

Назначается средство для рентгенографии ЖКТ, в особенности тонкого кишечника, а именно его верхних отделов.

Какие у Бария сульфат противопоказания к применению?

Среди противопоказаний к применению Бария сульфат можно отметить такие состояния:

Наличие гиперчувствительности к этому веществу;
Не назначают его при непроходимости толстой кишки;
При перфорации ЖКТ противопоказано использование бария;
При наличии бронхиальной астмы в анамнезе;
При обезвоживании организма;
При язвенном колите острой формы;
При аллергических реакциях.

Кроме перечисленного, это вещество не используют при наличии у пациента муковисцидоза, также противопоказанием считается острый дивертикулит.

Какие у Бария сульфат побочные действия?

Среди побочных проявления Бария сульфат инструкция по применению отмечает такие состояния: может развиться длительный запор тяжелого характера, не исключены спазмы в некоторых отделах кишечника, может присоединиться диарея.

Кроме этого развиваются анафилактоидные реакции, которые проявляются затрудненным дыханием, присоединяется болезненное вздутие живота, стеснённость в груди, боль в желудка и в кишечнике.

Если после первого проведенного рентгеноконтрастного исследования у пациента развились какие-либо побочные эффекты, обязательно следует сообщить об этом лечащему врачу.

Какие у Бария сульфат применение и дозировка?

Для проведения исследования верхних отделов пищеварительного тракта суспензию из бария сульфата принимают внутрь, чтобы провести двойное контрастирование необходимо добавить сорбит, а также цитрат натрия. Так называемая «бариевая кашица» в этом случае готовится так: 80 г порошка разводят в ста миллилитрах воды, после чего выполняют диагностическую процедуру.

Для рентгенодиагностики толстой кишки суспензию готовят из 750 г порошка Бария сульфат и литра воды, кроме этого 0,5% раствор танина вводят через клизму непосредственно в прямую кишку.

Накануне проведения диагностической процедуры не рекомендуется принимать твердую пищу. После исследования нужно употреблять достаточно большое количество жидкости, тем самым можно ускорить эвакуацию из кишечника сульфата бария.

Особые указания

Препараты, содержащие Бария сульфат (аналоги)

Препарат Бар-ВИПС содержит в своем составе Бария сульфат, он выпускается в порошке для приготовления диагностической суспензии для внутреннего приема. Это рентгеноконтрастное средство комплексного состава, обладает низкой токсичностью.

Следующий препарат – это Корибар-Д, он тоже производится в пасте, обладает выраженными адгезивными свойствами, обеспечивает качественное изображение рельефа слизистой пищеварительного тракта.

Микропак – его лекарственная форма тоже представлена пастой, из которой готовят суспензию, а также препарат производится в порошке. Следующее средство - Микропак Колон, при его применении можно получить четкое изображение микрорельефа.

Микропак Ораль, Микропак СТ, Микротраст эзофагус паста, Со 2-гранулят, Сульфобар, Фалибарит, Фалибарит ХДЕ, а также Адсобар, все эти перечисленные рентгеноконтрастные препараты также содержат в своем составе активное вещество Бария сульфат. Выпускаются они как в виде пасты, из которой готовят суспензию, так и в форме мелкодисперсного порошка.

Применяют рентгеноконтрастные средства с диагностической целью, чтобы выявить какую-либо патологию пищеварительного тракта, в частности пищевода, желудка, а также и всех отделов кишечника. Кроме этого Бария сульфат содержится в одноимённом препарате.

Заключение

Перед тем как проводить рентгеноконтрастное исследование, накануне необходимо воздержаться от употребления твердой, долго перевариваемой пищи. При этом подобное контрастное обследование должно назначаться лечащим доктором в соответствии с имеющимися показаниями.

Барий - элемент главной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 56. Обозначается символом Ba (лат. Barium ). Простое вещество - мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью.

История открытия бария

Барий был открыт в виде оксида BaO в 1774 г. Карлом Шееле. В 1808 году английский химик Гемфри Дэви электролизом влажного гидроксида бария с ртутным катодом получил амальгаму бария; после испарения ртути при нагревании он выделил металлический барий.

В 1774 г. шведский химик Карл Вильгельм Шееле и его друг Юхан Готлиб Ган исследовали один из самых тяжелых минералов – тяжелый шпат BaSO 4 . Им удалось выделить неизвестную раньше «тяжелую землю», которую потом назвали баритом (от греческого βαρυς – тяжелый). А через 34 года Хэмфри Дэви, подвергнув электролизу мокрую баритовую землю, получил из нее новый элемент – барий. Следует отметить, что в том же 1808 г., несколько раньше Дэви, Йене Якоб Берцелиус с сотрудниками получил амальгамы кальция, стронция и бария. Так появился элемент барий.

Древние алхимики прокаливали BaSO 4 с деревом или древесным углем и получали фосфоресцирующие «болонские самоцветы». Но химически эти самоцветы не BaO, а сернистый барий BaS.

Происхождение названия

Своё название получил от греческого barys - «тяжёлый», так как его оксид (BaO) был охарактеризован, как имеющий необычно высокую для таких веществ плотность.

Нахождение бария в природе

В земной коре содержится 0,05% бария. Это довольно много – значительно больше, чем, скажем, свинца, олова, меди или ртути. В чистом виде в земле его нет: барий активен, он входит в подгруппу щелочноземельных металлов и, естественно, в минералах связан достаточно прочно.

Основные минералы бария – уже упоминавшийся тяжелый шпат BaSO 4 (чаще его называют баритом) и витерит BaCOз, названный так по имени англичанина Уильяма Витеринга (1741...1799), который открыл этот минерал в 1782 г. В небольшой концентрации соли бария содержатся во многих минеральных водах и морской воде. Малое содержание в этом случае плюс, а не минус, ибо все соли бария, кроме сульфата, ядовиты.

Типы месторождений бария

По минеральным ассоциациям баритовые руды делятся на мономинеральные и комплексные. Комплексные подразделяются на барито-сульфидные (содержат сульфиды свинца, цинка, иногда меди и железного колчедана, реже Sn, Ni, Au, Ag), барито-кальцитовые (содержат до 75 % кальцита), железо-баритовые (содержат магнетит, гематит, а в верхних зонах гетит и гидрогетит) и барито-флюоритовые (кроме барита и флюорита, обычно содержат кварц и кальцит, а в виде небольших примесей иногда присутствуют сульфиды цинка, свинца, меди и ртути).

С практической точки зрения наибольший интерес представляют гидротермальные жильные мономинеральные, барито-сульфидные и барито-флюоритовые месторождения. Промышленное значение имеют также некоторые метасоматические пластовые месторождения и элювиальные россыпи. Осадочные месторождения, представляющие собой типичные химические осадки водных бассейнов, встречаются редко и существенной роли не играют.

Как правило, баритовые руды содержат другие полезные компоненты (флюорит, галенит, сфалерит, медь, золото в промышленных концентрациях), поэтому они используются комплексно.

Изотопы бария

Природный барий состоит из смеси семи стабильных изотопов: 130 Ba, 132 Ba, 134 Ba, 135 Ba, 136 Ba, 137 Ba, 138 Ba. Последний является самым распространенным (71,66 %). Известны и радиоактивные изотопы бария, наиболее важным из которых является 140 Ba. Он образуется при распаде урана, тория и плутония.

Получение бария

Металл можно получить разными способами, в частности при электролизе расплавленной смеси хлористого бария и хлористого кальция. Можно получать барий и восстанавливая его из окиси алюмотермическим способом. Для этого витерит обжигают с углем и получают окись бария:

BaCO 3 + C → BaO + 2CO.

Затем смесь BaO с алюминиевым порошком нагревают в вакууме до 1250°C. Пары восстановленного бария конденсируются в холодных частях трубы, в которой идет реакция:

3BaO + 2Al → Al 2 O 3 + 3Ba.

Интересно, что в состав запальных смесей для алюмотермии часто входит перекись бария BaO 2 .

Получить окись бария простым прокаливанием витерита трудно: витерит разлагается лишь при температуре выше 1800°C. Легче получать BaO, прокаливая нитрат бария Ba(NO 3) 2:

2Ba (NO 3) 2 → 2BaO + 4NO 2 + O 2 .

И при электролизе и при восстановлении алюминием получается мягкий (тверже свинца, но мягче цинка) блестящий белый металл. Он плавится при 710°C, кипит при 1638°C, его плотность 3,76 г/см 3 . Все это полностью соответствует положению бария в подгруппе щелочноземельных металлов.

Известны семь природных изотопов бария. Самый распространенный из них барий-138; его больше 70%.

Барий весьма активен. Он самовоспламеняется от удара, легко разлагает воду, образуя растворимый гидрат окиси бария:

Ba + 2H 2 O → Ba (OH) 2 + H 2 .

Водный раствор гидрата окиси бария называют баритовой водой. Эту «воду» применяют в аналитической химии для определения CO 2 в газовых смесях. Но это уже из рассказа о применении соединений бария. Металлический же барий практического применения почти не находит. В крайне незначительных количествах его вводят в подшипниковые и типографские сплавы. Сплав бария с никелем используют в радиолампах, чистый барий – только в вакуумной технике как геттер (газопоглотитель).

Металлический барий получают из оксида восстановлением алюминием в вакууме при 1200-1250°С:

4BaO + 2Al = 3Ba + BaAl 2 O 4 .

Очищают барий перегонкой в вакууме или зонной плавкой.

Получение титана бария. Получить его сравнительно просто. Витерит BaCO 3 при 700...800°C реагирует с двуокисью титана ТЮ 2 , получается как раз то, что нужно:

BaCO 3 + TiO 2 → BaTiO 3 + CO 2 .

Осн. пром. метод получения металлического бария из ВаО - восстановление его порошком А1: 4ВаО + 2А1 -> ЗВа + ВаО*А1 2 О 3 . Процесс проводят в реакторе при 1100-1200 °С в атмосфере Аг или в вакууме (последний способ предпочтителен). Молярное соотношение ВаО:А1 составляет (1,5-2):1. Реактор помещают в печь так, чтобы температура его "холодной части" (в ней конденсируются образующиеся пары бария) была около 520°С Перегонкой в вакууме барий очищают до содержания примесей менее 10~ 4 % по массе, а при использовании зонной плавки - до 10~ 6 %.

Небольшие кол-ва бария получают также восстановлением ВаВеО 2 [синтезируемого сплавлением Ва(ОН) 2 и Ве(ОН) 2 ] при 1300°С титаном, а также разложением при 120°С Ba(N 3) 2 , образующегося при обменных р-циях солей бария с NaN 3 .

Ацетат Ва(ООССН 3), - бесцв. кристаллы; т. пл. 490°С (с разл.); плотн. 2,47 г/см 3 ; раств. в воде (58,8 г в 100 г при 0°С). Ниже 25 °С из водных р-ров кристаллизуется тригидрат, при 25-41 °С - моногидрат, выше 41 °С- безводная соль. Получают взаимод. Ва(ОН) 2 , ВаСО 3 или BaS с СН 3 СО 2 Н. Применяют как протраву при крашении шерсти и ситца.

Манганат(VI) ВаМnО 4 - зеленые кристаллы; не разлагается до 1000°С. Получают прокаливанием смеси Ba(NO 3) 2 с МnО 2 . Пигмент (касселева, или марганцовая, зелень), обычно используемый для фресковой живописи.

Хромат(VI) ВаСrO 4 - желтые кристаллы; т. пл. 1380°С; - 1366,8 кДж/моль; раств. в неорг. к-тах, не раств. в воде. Получают взаимод. водных р-ров Ва(ОН) 2 или BaS с хроматами(VI) щелочных металлов. Пигмент (баритовый желтый) для керамики. ПДК 0,01 мг/м 3 (в пересчете на Сг0 3). Пирконат ВаZrО 3 -бесцв. кристаллы; т. пл. ~269°С; - 1762 кДж/моль; раств. в воде и водных р-рах щелочей и NH 4 HCO 3 , разлагается сильными неорг. к-тами. Получают взаимод. ZrO 2 с ВаО, Ва(ОН) 2 или ВаСО 3 при нагревании. Цирконат Ва в смеси с ВаТiO 3 -пьезоэлект-рик.

Бромид ВаВr 2 - белые кристаллы; т. пл. 847°С; плотн. 4,79 г/см 3 ; -757 кДж/моль; хорошо раств. в воде, метаноле, хуже - в этаноле. Из водных р-ров кристаллизуется дигидрат, превращающийся в моногидрат при 75°С, в безводную соль - выше 100°С В водных р-рах взаимод. с СО 2 и О 2 воздуха, образуя ВаСО 3 и Вr 2 . Получают ВаВr 2 взаимод. водных р-ров Ва(ОН) 2 или ВаСО 3 с бромистоводородной к-той.

Иодид ВаI 2 - бесцв. кристаллы; т. пл. 740°С (с разл.); плотн. 5,15 г/см 3 ; . -607 кДж/моль; хорошо раств. в воде и этаноле. Из горячих водных р-ров кристаллизуется дигидрат (обезвоживается при 150°С), ниже 30 °С - гексагидрат. Получают ВаI 2 взаимод. водных р-ров Ва(ОН) 2 или ВаСО 3 с иодистоводородной к-той.

Физические свойства бария

Барий - серебристо-белый ковкий металл. При резком ударе раскалывается. Существуют две аллотропные модификации бария: до 375 °C устойчив α-Ba с кубической объемно-центрированной решеткой (параметр а = 0,501 нм), выше устойчив β-Ba.

Твердость по минералогической шкале 1,25; по шкале Мооса 2.

Хранят металлический барий в керосине или под слоем парафина.

Химические свойства бария

Барий - щёлочноземельный металл. Интенсивно окисляется на воздухе, образуя оксид бария BaO и нитрид бария Ba 3 N 2 , а при незначительном нагревании воспламеняется. Энергично реагирует с водой, образуя гидроксид бария Ba(ОН) 2:

Ba + 2Н 2 О = Ba(ОН) 2 + Н 2

Активно взаимодействует с разбавленными кислотами. Многие соли бария нерастворимы или малорастворимы в воде: сульфат бария BaSO 4 , сульфит бария BaSO 3 , карбонат бария BaCO 3 , фосфат бария Ba 3 (PO 4) 2 . Сульфид бария BaS, в отличие от сульфида кальция CaS, хорошо растворим в воде.

Прир. барий состоит из семи стабильных изотопов с мае. ч. 130, 132, 134-137 и 138 (71,66%). Поперечное сечение захвата тепловых нейтронов 1,17-10 28 м 2 . Конфигурация внеш. электронной оболочки 6s 2 ; степень окисления + 2, редко + 1; энергия ионизации Ва°->Ва + ->Ва 2+ соотв. 5,21140 и 10,0040 эВ; электроотрицательность по Полингу 0,9; атомный радиус 0,221 нм, ионный радиус Ва 2+ 0,149 нм (координационное число 6).

Легко вступает в реакцию с галогенами, образуя галогениды.

При нагревании с водородом образует гидрид бария BaH 2 , который в свою очередь с гидридом лития LiH дает комплекс Li.

Реагирует при нагревании с аммиаком:

6Ba + 2NH 3 = 3BaH 2 + Ba 3 N 2

Нитрид бария Ba 3 N 2 при нагревании взаимодействует с CO, образуя цианид:

Ba 3 N 2 + 2CO = Ba(CN) 2 + 2BaO

С жидким аммиаком дает темно-синий раствор, из которого можно выделить аммиакат , имеющий золотистый блеск и легко разлагающийся с отщеплением NH 3 . В присутствии платинового катализатора аммиакат разлагается с образованием амида бария:

Ba(NH 2) 2 + 4NH 3 + Н 2

Карбид бария BaC 2 может быть получен при нагревании в дуговой печи BaO с углем.

С фосфором образует фосфид Ba 3 P 2 .

Барий восстанавливает оксиды, галогениды и сульфиды многих металлов до соответствующего металла.

Применение бария

Сплав бария с А1 (сплав альба, 56% Ва) - основа геттеров (газопоглотителей). Для получения собственно геттера барий испаряют из сплава высокочастотным нагревом в вакуумированной колбе прибора, в результате на холодных частях колбы образуется т. наз. бариевое зеркало (или диффузное покрытие при испарении в среде азота). Активной частью подавляющего большинства термоэмиссионных катодов является ВаО. Барий используют также как раскислитель Си и Рb, в кач-ве присадки к антифрикц. сплавам, черным и цветным металлам, а также к сплавам, из к-рых изготавливают типографские шрифты для увеличения их твердости. Сплавы бария с Ni служат для изготовления электродов запальных свечей в двигателях внутр. сгорания и в радиолампах. 140 Ва (T 1/2 12,8 дней) - изотопный индикатор, используемый при исследовании соединений бария.

Металлический барий, часто в сплаве с алюминием используется в качестве газопоглотителя (геттера) в высоковакуумных электронных приборах.

Антикоррозионный материал

Барий добавляется совместно с цирконием в жидкометаллические теплоносители (сплавы натрия, калия, рубидия, лития, цезия) для уменьшения агрессивности последних к трубопроводам, и в металлургии.

Фторид бария применяется в виде монокристаллов в оптике (линзы, призмы).

Пероксид бария используется для пиротехники и как окислитель. Нитрат бария и хлорат бария используется в пиротехнике для окрашивания пламени (зеленый огонь).

Хромат бария применяется при получении водорода и кислорода термохимическим способом (цикл Ок-Ридж, США).

Оксид бария совместно с оксидами меди и редкоземельных металлов применяется для синтеза сверхпроводящей керамики работающей при температуре жидкого азота и выше.

Оксид бария применяется для варки специального сорта стекла - применяемого для покрытия урановых стержней. Один из широкораспространенных типов таких стекол имеет следующий состав - (оксид фосфора - 61 %, ВаО - 32 %, оксид алюминия - 1,5 %, оксид натрия - 5,5 %). В стекловарении для атомной промышленности применяется так же и фосфат бария.

Фторид бария используется в твердотельных фторионных аккумуляторных батареях в качестве компонента фторидного электролита.

Оксид бария используется в мощных медноокисных аккумуляторах в качестве компонента активной массы (окись бария-окись меди).

Сульфат бария применяется в качестве расширителя активной массы отрицательного электрода при производстве свинцово-кислотных аккумуляторов.

Карбонат бария BaCO 3 добавляют в стекольную массу, чтобы повысить коэффициент преломления стекла. Сернокислый барий применяют в бумажной промышленности как наполнитель; качество бумаги во многом определяется ее весом, барит BaSO 4 утяжеляет бумагу. Эта соль обязательно входит во все дорогие сорта бумаги. Кроме того, сульфат бария широко используется в производстве белой краски литопона – продукта реакции растворов сернистого бария с сернокислым цинком:

BaS + ZnSO 4 → BaSO 4 + ZnS.

Обе соли, имеющие белый цвет, выпадают в осадок, в растворе остается чистая вода.

При бурении глубинных нефтяных и газовых скважин используется в качестве буровой жидкости взвесь сернокислого бария в воде.

Еще одна бариевая соль находит важное применение. Это титанат бария BaTiO 3 – один из самых главных сегнетоэлектриков (сегнетоэлектрики же поляризуются сами по себе, без воздействия внешнею поля. Среди диэлектриков они выделяются так же, как ферромагнитные материалы среди проводников. Способность к такой поляризация сохраняется только при определенной температуре. Поляризованные сегнетоэлектрики отличаются большей диэлектрической проницаемостью), считающихся очень ценными электротехническими материалами.

В 1944 г. этот класс пополнился титанатом бария, сегнетоэлектрические свойства которого были открыты советским физиком Б.М. Вулом. Особенность титаната бария состоит в том, что он сохраняет сегнетоэлектрические свойства в очень большом интервале температуры – от близкой к абсолютному нулю до +125°C.

Барий нашёл применение и в медицине. Его сернокислую соль применяют при диагностике желудочных заболеваний. BaSO 4 смешивают с водой и дают проглотить пациенту. Сульфат бария непрозрачен для рентгеновских лучей, и поэтому те участки пищеварительного тракта, по которым идет «бариевая каша», остаются на экране темными. Так врач получает представление о форме желудка и кишок, определяет место, где может возникнуть язва.

Влияние бария на организм человека

Пути поступления в организм.
Основным путем поступления бария в организм человека является пища. Так, некоторые морские обитатели способны накапливать барий из окружающей воды, причем в концентрациях в 7-100 (а для некоторых морских растений до 1000) раз, превышающих его содержание в морской воде. Некоторые растения (соевые бобы и помидоры, например) также способны накапливать барий из почвы в 2-20 раз. Однако в районах, где концентрация бария в воде высока, питьевая вода также может внести вклад в суммарное потребление бария. Поступление бария из воздуха незначительно.

Опасность для здоровья.
В ходе научных эпидемиологических исследований, проведенных под эгидой ВОЗ, не нашли подтверждения данные о связи между смертностью от сердечно-сосудистых заболеваний и содержанием бария в питьевой воде. В краткосрочных исследованиях на добровольцах не было выявлено вредного эффекта на сердечно-сосудистую систему при концентрациях бария до 10 мг/л. Правда, при опытах на крысах, при употреблении последними воды даже с невысоким содержанием бария, наблюдалось повышение систолического кровяного давления. Это свидетельствует о потенциальной опасности повышения кровяного давления и у людей при длительном употреблении воды, содержащий барий (такие данные есть у USEPA).
Данные USEPA также свидетельствуют о том, что даже разовое употребление воды, содержание бария в которой значительно превосходит максимально допустимые значения, может привести к мышечной слабости и болям в брюшной области. Необходимо, правда, учесть, что норматив по барию, установленный стандартом качества USEPA (2.0 мг/л) значительно превосходит величину, рекомендованную ВОЗ (0.7 мг/л). Российскими санитарными нормами установлено еще более жесткое значение ПДК по барию в воде - 0.1 мг/л. Технологии удаления из воды: ионный обмен, обратный осмос, электродиализ.

БАРИЙ (Barium, Ba ) - химический элемент II группы периодической системы элементов Д. И. Менделеева, подгруппы щелочноземельных металлов; атомный номер 56; атомный вес (масса) 137,34. Природный барий состоит из смеси семи стабильных изотопов с массовыми числами 130, 132, 134, 135, 136, 137 и 138. Наиболее распространен изотоп 138Ba. Барий и его соединения широко применяют в медицинской практике. Барий добавляют в материалы, применяемые для защиты от γ-излучения; сульфат бария используют как рентгеноконтрастное вещество при рентгеноскопии. Токсичность растворимых солей бария и пыли, содержащей барий, определяет профессиональную вредность бария и его соединений. Барий открыт в 1774 году Шееле (С. W. Scheele). Содержание в земной коре 5x10 -2 вес.%. В природе встречается только в виде соединений. Наиболее важные минералы - барит, или тяжелый шпат (BaSO 4), и витерит (BaCO 3).

Барий - мягкий серебристо-белый металл. Плотность 3,5, t°пл 710- 717°, t°кип 1634-1640°. Химически весьма активен. Во всех своих устойчивых соединениях двухвалентен. На воздухе быстро окисляется, покрываясь пленкой, содержащей окись бария (BaO), перекись бария (BaO 2) и нитрид бария (Ba 3 N 2). При нагревании на воздухе и при ударе легко воспламеняется. Хранят барий в керосине. С кислородом барий образует окись бария, которая при нагревании на воздухе до t° 500° превращается в перекись бария, последнюю применяют для получения перекиси водорода: BaO 2 + H 2 SO 4 ⇆ BaS0 4 + H 2 O 2 . Барийреагирует с водой, вытесняя водород: Ba + 2H 2 O = Ba(OH) 2 + H 2 . Легко реагирует с галогенами и серой, образуя соли. Соли бария, образованные с ионами Cl - , Br - , I - , NO 3 , легко растворимы в воде, а с ионами F - , SO 4 -2 , CO 3 -2 практически нерастворимы. Летучие соединения бария окрашивают бесцветное пламя газовой горелки в желтоватозеленый цвет. Это свойство используют для качественного определения бария. Количественно барий определяют весовым методом, осаждая его серной кислотой в виде сульфата бария (BaSO 4).

В незначительных количествах барий обнаруживается в тканях живого организма, в наиболее высоких концентрациях - в радужной оболочке глаз.

Профессиональные вредности

Барий и его соединения широко применяются в промышленности (в производстве стекла, бумаги, резины, керамики, в металлургии, при получении пластмасс, в производстве дизельного топлива, в электровакуумной промышленности и др.) и сельском хозяйстве.

В организм барий поступает через органы дыхания и желудочно-кишечный тракт (вдыхание и заглатывание пыли); выделяется через желудочно-кишечный тракт, в меньшей степени - почками и слюнными железами. При длительной работе в условиях воздействия бариевой пыли и несоблюдении правил промышленной санитарии возможен пневмокониоз (см.), который часто осложняется острыми воспалениями легких и бронхов.

У лиц, работающих на производстве, где имеет место образование пыли углекислого бария, кроме случаев развития пневмокониоза с диффузным усилением легочного рисунка и уплотнением корней легких, могут наблюдаться сдвиги, свидетельствующие об общетоксическом действии углекислого бария (нарушение процессов кроветворения, функции сердечно-сосудистой системы, обменных процессов и др.).

Растворимые соли бария ядовиты; вызывают менингоэнцефалит, действуют на гладкую и сердечную мускулатуру.

В случае острого отравления наблюдается обильное слюнотечение, жжение во рту и пищеводе, боли в желудке, колики, тошнота, рвота, понос, повышенное кровяное давление, судороги, возможны параличи, резкая синюшность лица и конечностей (конечности холодные), обильный холодный пот, общая мышечная слабость. Имеет место расстройство походки и речи вследствие паралича мышц глотки и языка, одышка, головокружение, расстройство зрения. В случаях тяжелого отравления смерть наступает внезапно в течение первых суток.

Хроническое отравление выражается в сильной слабости, одышке; наблюдается воспаление слизистой оболочки рта, насморк, конъюнктивиты, понос, кровоизлияния в желудке, повышение кровяного давления, учащение сердцебиения, неправильный пульс, расстройство мочеиспускания, выпадение волос на голове и бровях (у рабочих, имеющих дело с солями бария).

При остром отравлении солями бария, несмотря на выделение основной массы их, происходит отложение незначительных количеств в органах (в печени, мозге, железах внутренней секреции). Больше всего барий обнаруживается в костях (до 65% от всосавшейся дозы). При этом он частично превращается в нерастворимый сульфат бария.

Первая помощь при отравлении

Немедленное обильное промывание желудка раствором сульфата натрия (глауберова соль) - 1 столовая ложка на 1 л воды; прием слабительного и последующее питье 10% раствора сульфата натрия по 1 столовой ложке через каждые 5 минут. Одновременно (с целью нейтрализации) давать медленно пить белковую воду или молоко.

Показаны рвотные средства для удаления из желудка образовавшегося там под влиянием соляной кислоты желудочного сока нерастворимого сульфата бария; сердечные средства (кофеин, камфора, лобелин) по показаниям, тепло на ноги.

Профилактика профессиональных отравлений соединениями бария сводится к автоматизации и механизации процессов, герметизации оборудования, устройству вытяжной вентиляции. Особенно важное значение имеет соблюдение мер личной гигиены, направленных на предупреждение попадания солей в органы дыхания и желудочно-кишечный тракт, проведение тщательного медицинского контроля за состоянием здоровья рабочих путем периодических осмотров с участием врачей-специалистов.

Предельно допустимые концентрации в воздухе производственных помещений для BaSO 4 - 4 мг/м 3 , для BaCO 3 -1 мг/м 3 .

Барий в судебно-медицинском отношении

Растворимые соли бария, например, попадая в пищу, воду или в сульфат бария, используемый при рентгеноскопии, могут вызывать отравления. Известны криминальные и производственные случаи отравления солями бария. Для экспертизы важны клинические данные: возбуждение, слюнотечение, жжение и боли в пищеводе или в желудке, частая рвота, понос, расстройство мочеиспускания и т. д. Смерть наступает внезапно спустя 4-10 часов после попадания бария в организм. При вскрытии: во внутренних органах застойное полнокровие, кровоизлияния в мозгу, желудочно-кишечном тракте, жировое перерождение печени. При отравлениях барий откладывается в костях и костном мозге (65%), скелетных мышцах, печени, почках, желудочно-кишечном тракте.

Судебно-химическое доказательство отравлений соединениями бария основано на обнаружении его микрохимическими реакциями и количественном определении по осадку сульфата бария весовым методом или комплексонометрическим титрованием.

Библиогр.: Войнар А. И. Биологическая роль микроэлементов в отэгаттизме животных и человека, М., 1960; Некрасов Б. В. Основы общей химии, т. 2, М., 1973; P e ми Г. Курс неорганической химии, пер. с нем., т. 1, М., 1972; Barium, Gmelins Handb, anorgan. Chem., Syst.-Num. 30, Weinheim, 1960; Mel-lor J. W. Comprehensive treatise on inorganic and theoretical chemistry, v. 3, p. 619, L. a. o., 1946.

Профессиональные вредности - Apбузников К. В. К вопросу об отравлении хлористым барием, в кн.: Пробл, клин, невропат., под ред. JI. М. Шендеровича, с. 338, Красноярск, 1966; К а к а у-ридзе Э. М. иНарсия А. Г. О фиб-розирующем действии барита в эксперименте, Сб. трудов Науч.-исслед. ин-та гиг. труда и проф. заболев., т. 5, с. 29, Тбилиси, 1958; Kuruc М. а. В e 1 £ k V. Hromad-n£ otrava chloridom b&rnatym, Prakt. Lek. (Praha), v. 50, p. 751, 1970; Lewi Z. a. Bar-Khayim Y. Food poisoning from barium carbonate, Lancet, v. 2, E. 342, 1964; W e n d e E. Pneumokoniose ei Baryt- und Lithopone-arbeitern, Arch. Gewerbepath. Gewerbehyg., Bd 15, S. 171, 1956.

Б. сульфат - Сергеев П. B. Рентгеноконтрастные средства, М., 1971; В а г k e В. Rontgenkontrastmittel, Lpz., 1970; Knoefel P. К. Radiopaque diagnostic agents, Springfield-Oxford, 1961; Svoboda M. Kontrastni l&tky pfi vi-setrov£ni rentgenem, Praha, 1964.

Б. в судебно-медииинском отношении - Крылова А. H. Применение трилона Б при определениях бария в биологическом материале, Аптеч. дело, JSS 6, с. 28, 1957; она же, Определение бария в биологическом материале комп-лексонометрическим методом, Фармация, № 4, с. 63, 1969; Харитонов О. И. К токсикологии хлористого бария, Фарм, и токсикол., т. 20, Jsfe 2, с. 68, 1957; ШвайковаМ. Д. Судебная химия, с. 215, М., 1965; T г u h a u t R. e t B e γ-γο d F. Recherches sur la toxicologie du baryum, Ann. pharm. frang., t. 20, p. 637, 1962, bibliogr.

E. А. Максимюк; A. H. Крылова (суд.), Л. С. Розенштраух (фарм.), Г. И. Румянцев (проф.).

В 1774 г. шведский химик Карл Вильгельм Шееле и его друг Юхан Готлиб Ган исследовали один из самых тяжелых минералов - тяжелый шпат BaSO 4 . Им удалось выделить неизвестную раньше «тяжелую землю», которую потом назвали баритом (от греческого }