Молекулярная физика. Плавление и кристаллизация


Вода является не только одним из самых необходимых, но и самых удивительных явлений на нашей планете.

Известно, что фактически все вещества, имеющие природное или искусственное происхождение способны находиться в разных агрегатных состояниях и менять их в зависимости от условий окружающей среды. И хотя ученые знают более десятка фазовых состояний, некоторые из которых можно получить только в пределах лаборатории, в природе чаще всего встречается только три подобных состояния: жидкое, твердое и газообразное. Вода может пребывать во всех трех этих состояниях, переходя из одного в другое в естественных условиях.

Вода, находящаяся в жидком состоянии имеет слабо связанные молекулы, которые пребывают в постоянном движении и пытаются сгруппироваться в структуру, но не могут сделать этого из-за тепла. В таком виде вода может принимать абсолютно любую форму, но не в состоянии самостоятельно ее удерживать. При нагревании молекулы начинают двигаться намного быстрее, они отдаляются друг от друга, а когда постепенно вода переходит в газообразное состояние, то есть превращается в водяной пар, связи между молекулами окончательно рвутся. При воздействии же на воду низких температур движение молекул сильно замедляется, молекулярные связи становятся очень прочными и молекулы, которым больше не мешает воздействие тепла, упорядочиваются в кристаллическую структуру, имеющую шестигранную форму. Все мы видели подобные шестигранники, выпадающие на землю в виде снежинок. Процесс превращения воды в лед называется кристаллизацией или застыванием. В твердом состоянии вода надолго может сохранять любую принятую ею форму.

Процесс кристаллизации воды начинается при температуре 0 градусов по шкале Цельсия, имеющей 100 единиц. Данная измерительная система используется во многих странах Европы и в СНГ. В Америке же температуру измеряют при помощи шкалы Фаренгейта, которая обладает 180 делениями. По ней вода переходит из жидкого состояния в твердое при 32 градусах.

Однако вода не всегда замерзает при этих температурах, так очень чистую воду можно переохладить до температуры — 40 °С и она не замерзнет. Дело в том, что в очень чистой воде нет примесей, служащих основанием для построения кристаллической структуры. Примесями, к которым крепятся молекулы, могут выступать частички пыли, растворенные соли и т.д.

Особенностью воды является тот факт, что в то время как при замерзании другие вещества сжимаются, она, преобразовавшись в лед, напротив, расширяется. Происходит это потому что, когда вода переходит из жидкого состояния в твердое, расстояние между ее молекулами немного увеличивается. И поскольку лед имеет меньшую плотность, чем вода, он плавает на ее поверхности.

Говоря о замерзании воды, нельзя не упомянуть и тот интересный факт, что горячая вода застывает быстрее холодной, как бы парадоксально это не звучало. Данное явление было известно еще во времена Аристотеля, но ни знаменитому философу, ни его последователям так и не удалось разгадать эту тайну и о феномене забыли на долгие годы. Вновь о нем заговорили лишь в 1963 году, когда школьник из Танзании Эрасто Мпемба обратил внимание, что при приготовлении мороженого быстрее застывает лакомство сделанное из подогретого молока. Мальчик рассказал об этом своему учителю физики, но тот поднял его на смех. Лишь в 1969 году познакомившись с профессором физики Деннисом Осборном, юноша он смог найти подтверждение своей догадки, после совместно проведенных экспериментов. С тех пор выдвигалось много гипотез относительно этого феномена, например, что горячая вода замерзает быстрее за счет своего быстрого испарения, которое приводит к уменьшению объема воды и, как следствие, более быстрому застыванию. Но ни одна из них так и не смогла объяснить природу данного явления.

не публикуется

(+) (нейтральный) (-)

Вы можете приложить к своему отзыву картинки.

Добавить... Загрузить всё Отменить загрузку Удалить

Добавить комментарий

Александра 24.08.2017 12:05
На тему того, что горячая вода застывает быстрее холодной, есть один парадокс. Этот парадокс называется эффектом Мпембы. https://ru.wikipedia.org/wiki/%D0%AD%D1%84%D1%84%D0%B5%D0%BA%D1%82_%D0%9C%D0%BF%D0%B5%D0%BC%D0%B1%D1%8B

11.03.2015 21:11
Серьёзно? Горячая вода замерзает быстрее чем холодная? Ха-ха-ха.
Бред полнейший.
Давайте вспомним с вами такое понятие из физики, как теплопроводность (Cp), и вспомним что это такое. А это количество теплоты, которое необходимо подвести к 1кг вещества, что бы нагреть его на 1 градус (цельсия / кельыина, разницы нет).
Логично что, что бы охладить на 1 градус 1 кг вещества, нужно отобрать у этого вещества энергию равную Cp.
То есть что бы охладить горячую воду нужно отобрать много больше энергии, чем охладить воду комнотной температуры. Быстрее не получится. А то что испарение и прочее, это лишь в малый промежуток температур происходит. Так как интенсивное испарение идёт при 100 градусах цельсия, затем испарения резко уменьшается.
Как итог, горячая вода никогда не замерзает быстрее холодной


Температура кристаллизации воды в этот промежуток времени соответствует давлению рр. Происходит сдвиг фазового равновесия и часть незамерзающей воды превращается в лед. Система вновь временно приобретает устойчивое при данной температуре состояние (участок 5 - 6), затем процесс повторяется t (участок 6 - 7), но величина давления р уменьшается до значения р и остается постоянной. Это свидетельствует о прекращении процесса релаксации.  

При определении температуры кристаллизации воды и раствора соли необходимо избегать переохлаждения.  


При отрицательных давлениях температура кристаллизации воды должна повышаться, но для достигнутых растяжений сдвиг температуры незначителен. Кроме того, у других веществ производная dTldps, относящаяся к равновесию жидкость - кристалл, имеет противоположный знак. В чистых веществах не существует особых предкристаллизационных явлений, поэтому понижение прочности может быть вызвано влиянием примесей, например выделением газовых пузырьков.  


В данной работе наиболее высокой температурой является температура кристаллизации воды. Для настройки термометр помещают в фарфоровый стакан со смесью измельченного льда и дистиллированной воды. Уровень ртути в капилляре должен находиться в пределах делений 3 5 - 4 5 град.  

Борьба со смерзанием грузов за счет применения-профилактических средств в виде добавок или покрытия ими внутренних поверхностей вагонов может идти путем изыскания веществ, снижающих температуру кристаллизации воды, подбора поверхностно-активных гидрофобных веществ и снижения степени дисперсности материалов, подвергающихся смерзанию. При выборе средств профилактики основным условием является то, что используемые реагенты должны обладать большим химическим сродством с частицами материала по сравнению с химическим сродством к нему воды. К гидрофобным относятся вещества, которые не обладают химическим сродством к воде.  

Труба (патрубок) с приваренными заглушками заполняется водой и охлаждается в естественных условиях или в холодильных установках. При температуре кристаллизации воды происходит увеличение объема и за счет этого в стенке трубы возникают напряжения. Величина напряжений регулируется количеством залитой воды. Такие испытания труб не требуют специального оборудования и практически безопасны. Трещина в такой трубе распространяется в постоянном поле напряжений в основном за счет энергии упругой деформации стенки. Именно эти разрушения характерны для лавинных разрушений реальных газопроводов. Кроме того, открывается возможность создания переменного напряжения по длине трубы за счет применения специальной конусной вставки, устанавливаемой внутри трубы. Это позволяет устанавливать значения критических напряжений в стенке для начала инициирования зарождения трещины и остановки распространяющейся трещины в любых заведомо фиксируемых зонах сварного соединения труб.  


Основную роль в возникновении обледенения карбюратора играют атмосферные условия, а используемый бензин, влияет на степень охлаждения топливо-воздушной смеси. Однако в бензин могут добавляться антиобле-денительные присадки, которые либо снижают температуру кристаллизации воды, либо, обладая поверхностно-активными свойствами, препятствуют оседанию льда на деталях карбюратора.  

Записывать показания термометра в течение 4 мин через каждые 20 с при периодическом перемешивании. Отметить на графике температуру, при которой наблюдается появление первых кристаллов льда, - это и есть температура кристаллизации воды. Иногда вода переохлаждается, и при появлении льда ее температура несколько повышается, а затем снова начинает падать.  

В этом случае в момент появления льда температура воды повышается. Температурой кристаллизации воды следует считать температуру, которая установится после такого скачка. Для этого выньте пробирку из прибора, нагрейте ее рукой до тех пор, пока кристаллы льда растворятся.  

Кривая 0В выражает равновесие в двухфазной системе вода - лед. При атмосферном давлении это равновесие устанавливается, как известно, при температуре 0 С. Так как при кристаллизации вода увеличивается в объеме, то повышение давления в соответствии с принципом Ле Шателье способствует плавлению льда и понижает температуру кристаллизации воды. В точке О пересекаются все три кривые, характеризующие равновесия в указанных двухфазных системах. Эта точка отвечает равновесию между всеми тремя фазами: лед - вода - пар и называется тройной точкой.  

Физические способы - термический (кипячение), дистилляция и вымораживание. Термическим способом удаляют соли временной жесткости. Дистиллированную воду, не содержащую солей, получают перегонкой на специальных дистилляционных установках. Вымораживание основано на различии температур кристаллизации воды и примеси.  

Процесс преобразования, а точнее, перехода вещества из субстанции жидкости в состояние твердого тела называется кристаллизация . Наиболее ярким примером подобной химической реакции является лед. Результат процесса называется кристаллом.

Чтобы запустить процесс, в растворе, над которым производится опыт, необходимо создать состояние перенасыщенности. Фазовый переход жидкости протекает следующим образом:

  1. Меняется уровень температуры жидкости.
  2. Удаляется часть растворителя.
  3. Происходит комбинирование двух предыдущих действий.
  4. Из получившихся расплавов происходит процесс кристаллизации.

Кристаллизация и методы получения кристаллов из жидкости

Существует два метода кристаллизации: изотермический и политермический.

При первом способе раствор подвергается интенсивному охлаждению, при этом начинают выделяться кристаллы, а количество жидкости растворителя остается прежним.

При изотермической кристаллизации, появление кристаллов происходит путем выпаривания. Процесс получил названия, поскольку вся реакция происходит при постоянной температуре, являющейся точкой кипения раствора. На практике, оба способа используются совместно. В этом случае, часть растворителя испаряется путем кипячения, при этом в это же время происходит охлаждение жидкости.

Есть еще один вариант кристаллизации, при котором в раствор добавляют вещества, обладающие хорошей способностью впитывать воду и уменьшающие восприимчивость содержащейся в жидкости соли к растворению. Вариант такого развития событий называется высаливанием. В этом случае используются препараты, способные «связать воду» (таким способом производится кристаллизация сульфата натрия, в процессе которой добавляется аммиак либо спирт), либо у них имеется одинаковый с используемой солью ион. Примером может служить химическая реакция, направленная на кристаллизацию медного купороса либо хлористого натрия.

Чтобы вырастить кристалл , начинают с мелкой частицы, называемой «зародышем». Иначе говоря, это своеобразный центр, вокруг которого, в процессе химической реакции начинает образовываться кристалл. В этом случае, процесс, при котором протекает образование зародышей, и сам процесс кристаллизации происходит в одно и то же время. В случае если это не так, например, зародыши образуются быстрее, появляется много слишком мелких кристалликов, а вот в обратном случае их получается мало, но большего размера.

Благодаря этому свойству, можно контролировать величину и скорость, с которой происходит кристаллизация. Осуществляется это с помощью следующих факторов:

  1. Раствор, должен быстро охлаждаться.
  2. Жидкости нельзя находиться в состоянии покоя.
  3. Нужна повышенная температура.
  4. Молекулярная масса кристаллов должна быть низкой.

Все вышеперечисленные нюансы способствуют появлению в результате продукции небольшого калибра, чтобы получить кристаллы большего размера требуется:

  1. Медленное охлаждение.
  2. Жидкость в состоянии покоя.
  3. Значительно пониженная температура.
  4. Высокая молекулярная масса.

Чтобы облегчить сам момент, когда начинают формироваться зародыши, в раствор вносят элементы кристаллического вещества, в виде мелкоизмельченного порошка. При этом сам процесс кристаллизации происходит за счет последующего ввода частиц того же элемента. Количество вводимого вещества, зависит от величины желаемого кристалла, например, для более крупного, используется небольшое количество затравочного материала.

Размеры кристаллов имеют значение при их дальнейшей обработке, например, большие кристаллы способны отдавать большое количество влаги в процессе мытья и фильтрации. Они быстрее сохнут, отстаиваются, легче отфильтровываются.

Поскольку основное назначение кристаллизации – получение конечного вещества, идеально чистого и без примесей, то обычно, полученные кристаллы подвергают процессы перекристаллизации, с удалением излишних примесей и повторной промывкой и сушкой.

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник:Ковалёв Павел Алексеевич
  • Руководитель:Шик Галина Яковлевна
Цель работы: провести опыты по кристаллизации воды и подготовить предложения по их проведению.

Вступление

Вода является не только одним из самых необходимых, но и самых удивительных явлений на нашей планете. Исключительно важна роль воды в возникновении и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды. Вода является важнейшим веществом для всех живых существ на Земле.

Введение

Большая часть поверхности Земли покрыта водой (океаны, моря, озёра, реки, льды). На Земле примерно 96,5 % воды приходится на океаны, 1,7 % мировых запасов составляют грунтовые воды, ещё 1,7 % – ледники и ледяные шапки Антарктиды и Гренландии, небольшая часть находится в реках, озёрах и болотах, и 0,001 % в облаках, которые образуются из взвешенных в воздухе частиц льда и жидкой воды.

Вода при нормальных условиях находится в жидком состоянии, однако при температуре в 0 °C она переходит в твердое состояние – лед и кипит (превращается в водяной пар) при температуре 100 °C.

Значения 0 °C и 100 °C были выбраны как соответствующие температурам таяния льда и кипения воды при создании температурной шкалы «по Цельсию».

Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного), а также в виде снега, инея, изморози. Под действием собственного веса лёд приобретает пластические свойства и текучесть.

Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды.

Общие запасы льда на Земле около 30 млн. км³. Основные запасы льда сосредоточены в полярных шапках (главным образом, в Антарктиде, где толщина слоя льда достигает 4 км).

В мировом океане вода солёная и это препятствует образованию льда, поэтому лёд образуется только в полярных и субполярных широтах, где зима долгая и очень холодная. Замерзают некоторые неглубокие моря, расположенные в умеренном поясе.

Кроме того, имеются данные о наличии льда на планетах Солнечной системы (например, на Марсе), их спутниках, на карликовых планетах и в ядрах комет.

Исследование свойств воды необходимо для человечества.

При этом процесс кристаллизации воды можно изучать в домашних условиях, а также на уроках в средней школе.

Актуальность работы использование на уроках физики, для знакомства учащихся со свойствами воды при кристаллизации.

Объектом исследования является кристаллизация воды.

Предмет исследования – изучения свойств воды при кристаллизации.

Цель работы провести опыты по кристаллизации воды и подготовить предложения по их проведению.

Главной задачей является изучение свойств воды при кристаллизации.

Для решения главной задачи необходимо:

Теоретическая значимость работы заключается в систематизации основных свойств воды и значения кристаллизации воды для флоры и фауны Земли.

Практическая значимость работы – изучение процесса кристаллизации воды во время проведение опытов, а также подготовка предложений по проведению опытов на уроках в средней школе.

1. Подготовка к исследованию

1.1 Анализ основных свойств воды

Вода является одним из самых удивительных веществ на планете Земля. Встретить воду можно практически везде в естественных условиях как на поверхности планеты, так и в ее недрах в трех возможных физических состояниях для веществ: жидкое, твердое, газообразное (то есть вода, лед, водяной пар).

Конечно, существуют вещества, которые можно получить в виде жидкости, твердого тела или газа. Однако, не существует подобного химического вещества, которое именно в естественных условиях встречается в указанных выше трех физических состояниях.

Свойства воды:

  1. Вода является веществом, которое не имеет ни цвета, ни запаха, ни вкуса.
  2. Вода является единственным на планете Земля известным науке веществом, встречающимся в природных условиях в трех физических состояниях: твердое тело, жидкость, газ.
  3. Вода является универсальным растворителем, имея возможность растворять большее количество солей, а также других веществ, чем какие-либо другие вещества.
  4. Вода с большим трудом поддается окислению. Вода - достаточно химически устойчива, то есть разложить ее на составные части или сжечь достаточно проблематично.
  5. Окислению водой поддаются практически все естественные металлы, так же под ее воздействием разрушаются особо твердые горные породы.
  6. Вода, как физическое вещество, характеризуется большим сродством сама с собой. Такое сродство у воды является самым большим среди всех жидкостей. Вследствие этого вода на поверхности размещается в виде капель сферической формы, поскольку сфера обладает наименьшей при заданном объеме поверхностью.
  7. Замерзание воды происходит не при температурных условиях ее наибольшей плотности (при 4 градусах Цельсия), а при нуле градусов Цельсия. Это свойства пресной воды. Однако, замерзание морской воды происходит при более низких температурах: минус 1,9 градусов Цельсия, при солености 35%.
  8. Вода обладает очень высокой теплоемкостью, относительно мало нагреваясь при этом. Также вода обладает достаточно высокой скрытой теплотой плавления (порядка 80 кал/г), а также испарения (порядка 540 кал/г). Вода способна поглощать значительные объемы дополнительного тепла. Температура же в процессе замерзания или при кипении остается неизменной.
  9. Дистиллированная вода практически не проводит электрический ток, однако наличие в воде даже небольшого количества солей значительно увеличивает ее токопроводящие свойства.

Свойства снега:

  1. При смешивании соли со снегом наблюдается два процесса: разрушение кристаллической структуры соли, которое происходит с поглощением тепла, и гидрация ионов. Последний процесс происходит с выделением тепла в окружающую среду. Для поваренной соли и хлористого кальция первый процесс превалирует над вторым. Поэтому при смешивании снега с этими солями происходит активный отбор тепла из окружающей среды. Ещё одна особенность соляных растворов состоит в том, что их точка замерзания ниже 0 градусов. Чтобы снег на тротуарах таял при температуре ниже 0 градусов, его посыпают этими солями.
  2. Снег обладает удивительным свойством – памятью. Он сохраняет следы. По следам можно, например, изучать физику. Чем крупнее животное, тем глубже от него след, следовательно, тем большее давление оно оказывает на снег. Следы собаки более глубокие, чем следы её щенков. Мыши, ласки оставляет неглубокие чёрточки. Природа снабдила копытных животных способностью раздвигать копыта и увеличивать площадь опоры. Это помогает им зимой при передвижение по заснеженному лесу и полям не так глубоко погружаться в снег.


1.2 Значение кристаллизации воды для флоры и фауны

Мы любим снег не только за то, что он дарит нам великолепные зимние пейзажи. У нашей любви к снегу немало рациональных причин. «Снег на полях - хлеб в закромах», «Зима без снега – лето без хлеба», – справедливо утверждают старинные русские пословицы. Снежный покров - это огромный запас влаги, столь необходимый полям, в то же время это своеобразное гигантское одеяло, защищающее поверхность земли от холодных ветров. Академик Б. И. Вернадский подчеркивал, что снежный покров - «не просто теплая покрышка озимых, это живительная покрышка», весной он дает талые воды, насыщенные кислородом. Известно, что количество азотистых соединений летом в почве пропорционально высоте сошедшего снежного покрова. Недаром снежная мелиорация рассматривается сегодня как одно из важнейших условий получения высоких и устойчивых урожаев.

Запасы снега существенно влияют на уровень воды в реках, определяют изменения климата на больших территориях.

Кроме того, снег является хорошим строительным материалом для различных построек на севере - от иглу (жилищ эскимосов) до больших складских помещений. Существует самая большая в мире гостиница, полностью сделанная изо льда и снега, находится она в шведской Лапландии в 200 километрах от Северного полярного круга.

Он служит основой зимних дорог и даже аэродромов.

Благодаря снегу мы каждый год любуемся сказочными зимними пейзажами, играем в снежки, строим снежные городки, крепости, катаемся на лыжах, санках, в снежном уборе приходит к нам прекрасный новогодний праздник.

Значение льда трудно недооценить. Лёд оказывает большое влияние на условия обитания и жизнедеятельности растений и животных, на разные виды хозяйственной деятельности человека. Покрывая воду сверху, лед играет в природе роль своего рода плавучего экрана, защищающего реки и водоемы от дальнейшего замерзания и сохраняющего жизнь подводному миру. Если бы плотность воды увеличивалась при замерзании, лед оказался бы тяжелее воды и начал тонуть, что привело бы к гибели всех живых существ в реках, озерах и океанах, которые замерзли бы целиком, превратившись в глыбы льда, а Земля стала ледяной пустыней, что неизбежно привело бы к гибели всего живого.

Лёд может вызывать ряд стихийных бедствий с вредными и разрушительными последствиями – обледенение летательных аппаратов, судов, сооружений, дорожного полотна и почвы, град, метели и снежные заносы, речные заторы с наводнениями, ледяные обвалы и др. Природный лёд используется для хранения и охлаждения пищевых продуктов, биологических и медицинских препаратов, для чего он специально производится и заготавливается.

1.3 Выбор и обоснование опытов для проведения исследования

Для проведения опытов с водой необходимо выбрать те, которые наиболее полно характеризуют и подтверждают свойства воды.

Проведенный анализ показал, что лучше всего это будет реализовано при выполнении следующих опытов:

  1. Замерзание соленой воды.
  2. Расширение воды при замерзании.
  3. Замерзание жидкости при внешнем воздействии снега.
  4. Замерзание мыльных пузырей.
  5. Срастание сосульки.
  6. Скрип сухого снега.
  7. Примерзание к поверхности.

2. Проведение исследования

2.1 Подготовка материальной части

Для проведения опытов были взяты:

  • предметы – кастрюля, стеклянная бутылка, пластиковая бутылка, одноразовые стаканы, тонкая медная проволока, трубочка;
  • вещества – снег, сосулька, соль, вода, мыльный раствор, сок.

2.2 Проведение опытов с описанием основных результатов

1. Замерзание соленой воды.

Налейте в две формочки воду – чистую и очень солёную. Вынесите формочки на мороз или поставьте в морозильную камеру. Вы заметите, что чистая пресная вода превратилась в лёд, а солёная замёрзнет при очень сильном морозе.

Замерзание воды происходит не при температурных условиях ее наибольшей плотности (при 4 градусах Цельсия), а при нуле градусов Цельсия. Это свойства пресной воды.

При этом, морской лед отличается от пресноводного в ряде отношений. У соленой воды температура замерзания понижается по мере увеличения солености. В диапазоне солености от 30 до 35 промилле точка замерзания меняется от -1.6 до -1.9 град. Образование морского льда можно рассматривать как замерзание пресной воды с вытеснением солей в ячейки морской воды внутри толщи льда. Когда температура достигает точки замерзания, образуются ледяные кристаллы, которые «окружают» не замерзшую воду.

2. Расширение воды при замерзании.

Наполните водой пластиковый стакан, пластиковую бутылку и стеклянную бутылку. Выставьте их на мороз. Замерзая, вода увеличивается в объёме, «вылезает» из стакана, стеклянную бутылку разрывает даже в том случае, когда она заполнена наполовину. Пластиковая бутылка остаётся без видимых изменений.

При замерзании вода обладает уникальными свойствами расширения. Благодаря таким свойствам лед на воде, которая находится в виде жидкости, плавает.

Зимой из-за этого свойства воды происходят аварии на водопроводах. В сильные морозы основная причина таких аварий – замерзание текучей воды. Происходит ее расширение, так что образующийся лед легко разрывает трубы, так как плотность льда – 917 кг/м3, а плотность воды – 1000 кг/м3, то есть объем увеличивается в 1,1 раза, что довольно существенно.

3. Замерзание жидкости при внешнем воздействии снега.

Налейте в пластиковый стакан (пробирку) сок и поставьте его в кастрюлю с солёным снегом. Сок замёрзнет, и очень скоро вы будете лакомиться фруктовым льдом.

При смешивании соли со снегом наблюдается разрушение кристаллической структуры соли, которое происходит с поглощением тепла. Поэтому при смешивании снега с солью происходит активный отбор тепла из сока и сок превращается в лед.

4. Замерзание мыльных пузырей.

Приготовьте мыльный раствор. Раствор на морозе держите в рукавице, чтобы он не замёрз. Выдувайте пузыри трубочкой для сока. Из-за разности температур изнутри пузыря и снаружи возникает большая подъёмная сила, мгновенно уносящая пузыри вверх. Тонкая мыльная плёнка на морозе быстро замерзает, превращая пузыри в ледяные шарики.

Таким образом, тончайшая пленка мыльного пузыря замерзает за считанные секунды.

5. Срастание сосульки.

Возьмите сосульку. Перекиньте через неё тонкую проволоку, концы которой утяжелите грузиками. Наблюдайте, как проволока растапливает лёд, проникает всё глубже в сосульку. Вода над сосулькой вновь замерзает.

Это подтверждает свойство поглощения тепла большей массой льда.

Лед нарастает снизу, сразу над проволокой, так как стекающая вниз талая вода замерзает при соприкосновении с холодными стенками сосульки.

6. Скрип сухого снега.

Насыпьте в тарелку сахарный песок горкой и начните давить его ложкой. Вы услышите характерный скрип. Намочите песок и вновь разотрите. Скрип исчез. В морозные дни звук распространяется на большие расстояния.

Снег скрипит только в мороз (ниже -5°C), и звук скрипа меняется в зависимости от температуры воздуха – чем крепче мороз, тем выше тон скрипа. При достаточном опыте можно оценивать температуру воздуха по звуку, который издает скрипящий снег. Скрип образуется из-за того, что при давлении разрушаются мельчайшие кристаллики снега. Причем каждый из них по отдельности очень мал, чтобы издавать звук, доступный уху человека, но вместе они ломаются довольно громко. Усиление морозов делает ледяные кристаллики более твердыми и хрупкими. При каждом шаге ледяные иглы ломаются. При температуре воздуха ниже -50°C скрип снега становится таким сильным, что его можно слышать через тройные стекла (этому способствует также большая плотность морозного воздуха).

7. Примерзание к поверхности.

Добавьте в кастрюлю со снегом поваренную соль в соотношении примерно 1 к 6. Тщательно размешайте смесь. Если теперь вы захотите переставить кастрюлю, то её придётся поднять вместе с табуретом.

Это также подтверждает поглощение тепла из окружающей среды.

При смешивании соли со снегом происходит образование раствора, сопровождающееся сильным охлаждением вследствие большого поглощения теплоты льдом при его плавлении и солью при ее растворении. Так, например, температура смеси из 29 грамм соли и 100 грамм льда понижается до – 21°С. А если взять 143 грамма соли и 100 грамм льда, то температура может быть понижена до – 55°С.

2.3 Предложения по проведению опытов

Опыты по изучению свойств воды целесообразно проводить на уроках в средней и начальной школе.

Для учеников средней школы возможно проведение опытов № 3, 6 и 7 на уроках под руководством учителя, а опыты № 4 и 5 – факультативно или самостоятельно в домашних условиях.


Заключение

Таким образом, исследование свойств воды необходимо для человечества.

Процесс кристаллизации воды можно изучать в домашних условиях, а также на уроках в средней и начальной школе.

В работе удалось решить следующие задачи:

  1. Повести анализ основных свойств воды.
  2. Изучить значение кристаллизации воды для флоры и фауны Земли.
  3. Определить основные опыты для проведения исследования.
  4. Провести опыты и описать основные результаты.
  5. Подготовить предложения по проведению опытов на уроках в средней школе.

Значимость работы по систематизации основных свойств воды и значения кристаллизации воды для флоры и фауны Земли подтвердилась.

Переход вещества из твердого кристаллического состояния в жидкое называется плавлением . Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.

Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристал лизацией. Температура, при которой вещество кристаллизуется, называется температурой кристалли зации.

Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.

На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K ). На нем по горизонтальной оси отложено время, а по вертикальной — температура.

Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С, или, как принято говорить, температура в начальный момент времени t нач = -40 °С (точка А на графике). При дальнейшем нагревании температура льда растет (на графике это участок АВ ). Увеличение температуры происходит до 0 °С — температуры плавления льда. При 0°С лед начинает плавиться, а его температура перестает расти. В течение всего времени плавления (т.е. пока весь лед не расплавится) температура льда не меняется, хотя горелка продолжает го-реть и тепло, следовательно, подводится. Процессу плавления соответствует горизонтальный учас-ток графика ВС. Только после того как весь лед расплавится и превратится в воду , температура снова начинает подниматься (участок CD ). После того, как температура воды достигнет +40 °С, горелку гасят и воду начинают охлаждать, т. е. тепло отводят (для этого можно сосуд с водой по-местить в другой, больший сосуд со льдом). Температура воды начинает снижаться (участок DE ). При достижении температуры 0 °С температура воды перестает снижаться, несмотря на то, что тепло по-прежнему отводится. Это идет процесс кристаллизации воды — образования льда (гори-зонтальный участок EF ). Пока вся вода не превратится в лед, температура не изменится. Лишь после этого начинает уменьшаться температура льда (участок FK ).

Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается. На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким. Средняя кинетическая энергия моле-кул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD ) означает увеличение кинетической энер-гии молекул воды вследствие подводимого горелкой тепла.

При охлаждении воды (участок DE ) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF ) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку. Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвер-девании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, пре-вращаясь в жидкость (участок ВС ). Внутренняя энергия у жидкости больше, чем у твердого тела. При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.

Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром , молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С . Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.

Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается. Это хорошо известно многим птицам. Неда-ром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера. Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.

Плавление аморфных веществ.

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача-ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повы-шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Теплота плавления.

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое. Теплота плавления равна тому количеству теплоты , которое выделяется при кристалли-зации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энер-гии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж .

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m , следует пользоваться той же формулой, но со знаком «минус»:

Теплота сгорания.

Теплота сгорания (или теплотворная способность , калорийность ) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обыч-ное топливо (уголь, нефть, бензин) содержит углерод . При горении атомы углерода соединяются с атомами кислорода , содержащегося в воздухе, в результате чего образуются молекулы углекислого газа . Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина , показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты Q , выделяющееся при сгорании m кг топлива, определяют по формуле:

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.