Метод трапеций для вычисления кратных интегралов. Численное интегрирование

Как вычислить определенный интеграл
по формуле трапеций и методом Симпсона?

Численные методы – достаточно большой раздел высшей математики и серьезные учебники по данной теме насчитывают сотни страниц. На практике, в контрольных работах традиционно предлагаются для решения некоторые задачи по численным методам, и одной из распространенных задач является – приближенное вычисление определенных интегралов . В этой статье я рассмотрю два метода приближенного вычисления определенного интеграла – метод трапеций и метод Симпсона .

Что нужно знать, чтобы освоить данные методы? Прозвучит забавно, но можно вообще не уметь брать интегралы. И даже вообще не понимать, что такое интегралы. Из технических средств потребуется микрокалькулятор. Да-да, нас ждут рутинные школьные расчёты. А еще лучше – закачайте мой калькулятор-полуавтомат для метода трапеций и метода Симпсона . Калькулятор написан в Экселе и позволит в десятки раз уменьшить время решения и оформления задач. Для экселевских чайников прилагается видеомануал! К слову, первая видеозапись с моим голосом.

Сначала зададимся вопросом, а зачем вообще нужны приближенные вычисления? Вроде бы можно найти первообразную функции и использовать формулу Ньютона-Лейбница, вычислив точное значение определенного интеграла. В качестве ответа на вопрос сразу рассмотрим демонстрационный пример с рисунком.

Вычислить определенный интеграл

Всё было бы хорошо, но в данном примере интеграл не берётся – перед вами неберущийся, так называемый интегральный логарифм . А существует ли вообще этот интеграл? Изобразим на чертеже график подынтегральной функции :

Всё нормально. Подынтегральная функция непрерывна на отрезке и определенный интеграл численно равен заштрихованной площади. Да вот только одна загвоздка – интеграл не берётся. И в подобных случаях на помощь как раз приходят численные методы. При этом задача встречается в двух формулировках:

1) Вычислить определенный интеграл приближенно, округляя результат до определённого знака после запятой . Например, до двух знаков после запятой, до трёх знаков после запятой и т.д. Предположим, получился приближенный ответ 5,347. На самом деле он может быть не совсем верным (в действительности, скажем, более точный ответ 5,343). Нашазадача состоит лишь в том , чтобы округлить результат до трёх знаков после запятой.

2) Вычислить определенный интеграл приближенно, с определённой точностью . Например, вычислить определённый интеграл приближенно с точностью до 0,001. Что это значит? Это значит, мы должны отыскать такое приближенное значение, которое по модулю (в ту или другую сторону) отличается от истины не более чем на 0,001.

Существуют несколько основных методов приближенного вычисления определенного интеграла, который встречается в задачах:

Отрезок интегрирования разбивается на несколько частей и строится ступенчатая фигура, которая по площади близка к искомой площади:

Не судите строго за чертежи, точность не идеальна – они лишь помогают понять суть методов.

Идея аналогична. Отрезок интегрирования разбивается на несколько промежуточных отрезков, и график подынтегральной функции приближается ломаной линией:

Таким образом, наша площадь (синяя штриховка) приближается суммой площадей трапеций (красный цвет). Отсюда и название метода. Легко заметить, что метод трапеций даёт значительно лучшее приближение, чем метод прямоугольников (при одинаковом количестве отрезков разбиения). И, естественно, чем больше более мелких промежуточных отрезков мы рассмотрим, тем будет выше точность. Метод трапеций время от времени встречается в практических заданиях, и в данной статье будет разобрано несколько примеров.

Метод Симпсона (метод парабол) . Это более совершенный способ – график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков – столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.

Чертеж строить не вижу смысла, поскольку визуально приближение будет накладываться на график функции (ломаная линия предыдущего пункта – и то практически совпала).

Задача на вычисление определенного интеграла по формуле Симпсона – самая популярное задание на практике. И методу парабол будет уделено значительное внимание.

Как вычислить определенный интеграл методом трапеций?

Сначала формула в общем виде. Возможно, она будет не всем и не сразу понятна… да Карлссон с вами – практические примеры всё прояснят! Спокойствие. Только спокойствие.

Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на равных отрезков:
. При этом, очевидно: (нижний предел интегрирования) и (верхний предел интегрирования). Точки также называют узлами .

Тогда определенный интеграл можно вычислить приближенно по формуле трапеций :
, где:
шаг ;
– значения подынтегральной функции в точках .

Пример 1

Вычислить приближенно определенный интеграл по формуле трапеций. Результаты округлить до трёх знаков после запятой.

а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.

Решение:
а) Специально для чайников я привязал первый пункт к чертежу, который наглядно демонстрировал принцип метода. Если будет трудно, посматривайте на чертёж по ходу комментариев, вот его кусок:

По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения: . Параметр , напоминаю, также называют шагом .

Сколько будет точек (узлов разбиения)? Их будет на одну больше , чем количество отрезков:

Ну а общая формула трапеций сокращается до приятных размеров:

Для расчетов можно использовать обычный микрокалькулятор:

Обратите внимание, что, в соответствии с условием задачи, все вычисления следует округлять до 3-го знака после запятой .

Окончательно:

С геометрической точки зрения мы вычислили сумму площадей трёх трапеций (см. рис. выше) .

б) Разобьём отрезок интегрирования на 5 равных частей, то есть . Зачем это нужно? Чтобы Фобос-Грунт не падал в океан – увеличивая количество отрезков, мы увеличиваем точность вычислений.

Если , то формула трапеций принимает следующий вид:

Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.

При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:

В первой строке записываем «счётчик»

Как формируется вторая строка, думаю, всем видно – сначала записываем нижний предел интегрирования , остальные значения получаем, последовательно приплюсовывая шаг .

По какому принципу заполняется нижняя строка, тоже, думаю, практически все поняли. Например, если , то . Что называется, считай, не ленись.

В результате:

Ну что же, уточнение, и серьёзное, действительно есть! Если для 3 отрезков разбиения приближённое значение составило, то для 5 отрезков . Таким образом, с большой долей уверенности можно утверждать, что, по крайне мере .

Пример 2

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до двух знаков после запятой (до 0,01).

Решение: Почти та же задача, но немного в другой формулировке. Принципиальное отличие от Примера 1 состоит в том, что мы не знаем , НА СКОЛЬКО отрезков разбивать отрезок интегрирования, чтобы получить два верных знака после запятой. Иными словами, мы не знаем значение .

Существует специальная формула, позволяющая определить количество отрезков разбиения, чтобы гарантированно достигнуть требуемой точности, но практике она часто трудноприменима. Поэтому выгодно использовать упрощенный подход.

Сначала отрезок интегрирования разбивается на несколько больших отрезков, как правило, на 2-3-4-5. Разобьем отрезок интегрирования, например, на те же 5 частей. Формула уже знакома:

И шаг, естественно, тоже известен:

Но возникает еще один вопрос, до какого разряда округлять результаты ? В условии же ничего не сказано о том, сколько оставлять знаков после запятой. Общая рекомендация такова: к требуемой точности нужно прибавить 2-3 разряда . В данном случае необходимая точность 0,01. Согласно рекомендации, после запятой для верности оставим пять знаков (можно было и четыре):

В результате:
, обозначим приближение через .

После первичного результата количество отрезков удваивают . В данном случае необходимо провести разбиение на 10 отрезков. И когда количество отрезков растёт, то в голову приходит светлая мысль, что тыкать пальцами в микрокалькулятор уже как-то надоело. Поэтому еще раз предлагаю закачать и использовать мой калькулятор-полуавтомат (ссылка в начале урока).

Для формула трапеций приобретает следующий вид:

В бумажной версии запись можно спокойно перенести на следующую строчку.

Вычислим шаг разбиения:

Результаты расчётов сведём в таблицу:


При чистовом оформлении в тетрадь длинную таблицу выгодно превратить в двухэтажную.

В результате:

Теперь вычислим расхождение между приближениями:

Здесь используем знак модуля, поскольку нас интересует абсолютная разность , а не какой результат больше, а какой – меньше.

Что касается дальнейших действий, то лично мне на практике встречалось 2 пути решения:

1) Первый способ – это «сравнение в лоб». Поскольку полученная оценка погрешности больше , чем требуемая точность:, то необходимо ещё раз удвоить количество отрезков разбиения до и вычислить уже . С помощью экселевского калькулятора готовый результат можно получить в считанные секунды: . Теперь снова оцениваем погрешность: . Полученная оценка меньше , чем требуемая точность: , следовательно, вычисления закончены. Осталось округлить последний (наиболее точный) результат до двух знаков после запятой и дать ответ.

2) Другой, более эффективный способ основан на применении так называемого правила Рунге , согласно которому мы ошибаемся в оценке определённого интеграла на самом деле не более чем на . В нашей задаче: , таким образом, надобность в вычислении отпадает. Однако за скорость решения в данном случае пришлось расплатиться точностью: . Тем не менее, такой результат приемлем, поскольку наш «лимит на ошибку» как раз и составляет одну сотую.

Что выбрать? Ориентируйтесь на вашу методичку или предпочтения преподавателя.

Ответ: с точностью до 0,01 ( при использовании правила Рунге) .

Пример 3

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до 0,001.

Перед вами опять неберущийся интеграл (почти интегральный косинус). В образце решения на первом шаге проведено разбиение на 4 отрезка, то есть . Полное решение и примерный образец чистового оформления в конце урока.

Как вычислить определенный интеграл по формуле Симпсона?

Если вы искали на данной страничке только метод Симпсона, то настоятельно рекомендую сначала прочитать начало урока и просмотреть хотя бы первый пример. По той причине, что многие идеи и технические приемы будут схожими с методом трапеций.

И снова, начнём с общей формулы
Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на чётное количество равных отрезков. Чётное количество отрезков обозначают через .

На практике отрезков может быть:
два :
четыре :
восемь :
десять :
двадцать :
Другие варианты не припоминаю.

Внимание! Число понимается как ЕДИНОЕ ЧИСЛО. То есть, НЕЛЬЗЯ сокращать, например, на два, получая . Запись лишь обозначает , что количество отрезков чётно . И ни о каких сокращениях речи не идёт

Итак, наше разбиение имеет следующий вид:

Термины аналогичны терминам метода трапеций:
Точки называют узлами .

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид:
, где:
– длина каждого из маленьких отрезков или шаг ;
– значения подынтегральной функции в точках .

Детализируя это нагромождение, разберу формулу подробнее:
– сумма первого и последнего значения подынтегральной функции;
– сумма членов с чётными индексами умножается на 2;
– сумма членов с нечётными индексами умножается на 4.

Пример 4

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,001. Разбиение начать с двух отрезков

Интеграл, кстати, опять неберущийся.

Решение: Сразу обращаю внимание на тип задания – необходимо вычислить определенный интеграл с определенной точностью . Что это значит, уже комментировалось в начале статьи, а также на конкретных примерах предыдущего параграфа. Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков (значение «эн») чтобы гарантированно достичь требуемой точности. Правда, придётся находить четвертую производную и решать экстремальную задачу. Кто понял, о чём я, и оценил объем работы, тот улыбнулся. Однако здесь не до смеха, находить четвертую производную от такой подынтегральной функции будет уже не мегаботан, а клинический психопат. Поэтому на практике практически всегда используется упрощенный метод оценки погрешности.

Начинаем решать. Если у нас два отрезка разбиения , то узлов будет на один больше : . И формула Симпсона принимает весьма компактный вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:


Еще раз комментирую, как заполняется таблица:

В верхнюю строку записываем «счётчик» индексов

Во второй строке сначала пишем нижний предел интегрирования , а затем последовательно приплюсовываем шаг .

В третью строку заносим значения подынтегральной функции. Например, если , то . Сколько оставлять знаков после запятой? Действительно, в условии опять об этом ничего не сказано. Принцип тот же, что и в методе трапеций, смотрим на требуемую точность: 0,001. И прибавляем дополнительно 2-3 разряда. То есть, округлять нужно до 5-6 знаков после запятой.

В результате:

Первичный результат получен. Теперь удваиваем количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:


Таким образом:

Найдём абсолютное значение разности между приближениями:

Правило Рунге для метода Симпсона очень вкусное. Если при использовании метода средних прямоугольников и метода трапеций нам даётся «поблажка» в одну треть, то сейчас – аж в одну пятнадцатую:
, и точность здесь уже не страдает:

Но для полноты картины я приведу и «простецкое» решение, где придётся сделать дополнительный шаг: так как больше требуемой точности: , то необходимо еще раз удвоить количество отрезков: .

Формула Симпсона растёт, как на дрожжах:

Вычислим шаг:

И снова заполним расчетную таблицу:

Таким образом:

Заметьте, что здесь вычисления желательно уже расписать более подробно, поскольку формула Симпсона достаточно громоздка, и если сразу бУхнуть:
, то выглядеть сиё бухло будет как халтура. А при более детальной записи у преподавателя сложится благостное впечатление, что вы добросовестно стирали клавиши микрокалькулятора в течение доброго часа. Детальные вычисления для «тяжелых» случаев присутствуют в моём калькуляторе.

Оцениваем погрешность:

Погрешность меньше требуемой точности: . Осталось взять наиболее точное приближение , округлить его до трёх знаков после запятой и записать:

Ответ : с точностью до 0,001

Пример 5

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,0001. Разбиение начать с двух отрезков

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока.

В заключительной части урока рассмотрим еще пару распространенных примеров

Пример 6

Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Вычисления проводить с точностью до третьего знака после запятой.

Сегодня мы познакомимся с еще одним методом численного интегрирования, методом трапеций. С его помощью мы будем вычислять определенные интегралы с заданной степенью точности. В статье мы опишем суть метода трапеций, разберем, как выводится формула, сравним метод трапеции с методом прямоугольника, запишем оценку абсолютной погрешности метода. Каждый из разделов мы проиллюстрируем примерами для более глубокого понимания материала.

Yandex.RTB R-A-339285-1

Предположим, что нам нужно приближенно вычислить определенный интеграл ∫ a b f (x) d x , подынтегральная функция которого y = f (x) непрерывна на отрезке [ a ; b ] . Для этого разделим отрезок [ a ; b ] на несколько равных интервалов длины h точками a = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b . Обозначим количество полученных интервалов как n .

Найдем шаг разбиения: h = b - a n . Определим узлы из равенства x i = a + i · h , i = 0 , 1 , . . . , n .

На элементарных отрезках рассмотрим подынтегральную функцию x i - 1 ; x i , i = 1 , 2 , . . , n .

При бесконечном увеличении n сведем все случаи к четырем простейшим вариантам:

Выделим отрезки x i - 1 ; x i , i = 1 , 2 , . . . , n . Заменим на каждом из графиков функцию y = f (x) отрезком прямой, который проходит через точки с координатами x i - 1 ; f x i - 1 и x i ; f x i . Отметим их на рисунках синим цветом.

Возьмем выражение f (x i - 1) + f (x i) 2 · h в качестве приближенного значения интеграла ∫ x i - 1 x i f (x) d x . Т.е. примем ∫ x i - 1 x i f (x) d x ≈ f (x i - 1) + f (x i) 2 · h .

Давайте посмотрим, почему метод численного интегрирования, который мы изучаем, носит название метода трапеций. Для этого нам нужно выяснить, что с точки зрения геометрии означает записанное приближенное равенство.

Для того, чтобы вычислить площадь трапеции, необходимо умножить полусуммы ее оснований на высоту. В первом случае площадь криволинейной трапеции примерно равна трапеции с основаниями f (x i - 1) , f (x i) высотой h . В четвертом из рассматриваемых нами случаев заданный интеграл ∫ x i - 1 x f (x) d x приближенно равен площади трапеции с основаниями - f (x i - 1) , - f (x i) и высотой h , которую необходимо взять со знаком « - ». Для того, чтобы вычислить приближенное значение определенного интеграла ∫ x i - 1 x i f (x) d x во втором и третьем из рассмотренных случаев, нам необходимо найти разность площадей красной и синей областей, которые мы отметили штриховкой на расположенном ниже рисунке.

Подведем итоги. Суть метода трапеций заключается в следующем: мы можем представить определенный интеграл ∫ a b f (x) d x в виде суммы интегралов вида ∫ x i - 1 x i f (x) d x на каждом элементарном отрезке и в последующей приближенной замене ∫ x i - 1 x i f (x) d x ≈ f (x i - 1) + f (x i) 2 · h .

Формула метода трапеций

Вспомним пятое свойство определенного интеграла: ∫ a b f (x) d x = ∑ i = 1 n ∫ x i - 1 x i f (x) d x . Для того, чтобы получить формулу метода трапеций, необходимо вместо интегралов ∫ x i - 1 x i f (x) d x подставить их приближенные значения: ∫ x i - 1 x i f (x) d x = ∑ i = 1 n ∫ x i - 1 x i f (x) d x ≈ ∑ i = 1 n f (x i - 1) + f (x i) 2 · h = = h 2 · (f (x 0) + f (x 1) + f (x 1) + f (x 2) + f (x 2) + f (x 3) + . . . + f (x n)) = = h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) ⇒ ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Определение 1

Формула метода трапеций: ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Оценка абсолютной погрешности метода трапеций

Оценим абсолютную погрешность метода трапеций следующим образом:

Определение 2

δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · n · h 3 12 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 12 n 2

Графическая иллюстрация метода трапеций приведена на рисунке:

Примеры вычислений

Разберем примеры использования метода трапеций для приближенного вычисления определенных интегралов. Особое внимание уделим двум разновидностям заданий:

  • вычисление определенного интеграла методом трапеций для данного числа разбиения отрезка n;
  • нахождение приближенного значения определенного интеграла с оговоренной точностью.

При заданном n все промежуточные вычисления необходимо проводить с достаточно высокой степенью точности. Точность вычислений должна быть те выше, чем больше n .

Если мы имеем заданную точность вычисления определенного интеграла, то все промежуточные вычисления необходимо проводить на два и более порядков точнее. Например, если задана точность до 0 , 01 , то промежуточные вычисления мы проводим с точностью до 0 , 0001 или 0 , 00001 . При больших n промежуточные вычисления необходимо проводить с еще более высокой точностью.

Рассмотрим приведенное выше правило на примере. Для этого сравним значения определенного интеграла, вычисленного по формуле Ньютона-Лейбница и полученного по методу трапеций.

Итак, ∫ 0 5 7 d x x 2 + 1 = 7 a r c t g (x) 0 5 = 7 a r c t g 5 ≈ 9 , 613805 .

Пример 1

Вычислим по методу трапеций определенный интеграл ∫ 0 5 7 x 2 + 1 d x для n равным 10 .

Решение

Формула метода трапеций имеет вид ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Для того, чтобы применить формулу, нам необходимо вычислить шаг h по формуле h = b - a n , определить узлы x i = a + i · h , i = 0 , 1 , . . . , n , вычислить значения подынтегральной функции f (x) = 7 x 2 + 1 .

Шаг разбиения вычисляется следующим образом: h = b - a n = 5 - 0 10 = 0 . 5 . Для вычисления подынтегральной функции в узлах x i = a + i · h , i = 0 , 1 , . . . , n будем брать четыре знака после запятой:

i = 0: x 0 = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 7 0 2 + 1 = 7 i = 1: x 1 = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 7 0 , 5 2 + 1 = 5 , 6 . . . i = 10: x 10 = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 7 5 2 + 1 ≈ 0 , 2692

Внесем результаты вычислений в таблицу:

i 0 1 2 3 4 5 6 7 8 9 10
x i 0 0 . 5 1 1 , 5 2 2 , 5 3 3 , 5 4 4 , 5 5
f (x i) 7 5 , 6 3 , 5 2 , 1538 1 , 4 0 , 9655 0 , 7 0 , 5283 0 , 4117 0 , 3294 0 , 2692

Подставим полученные значения в формулу метода трапеций: ∫ 0 5 7 d x x 2 + 1 ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) = = 0 , 5 2 · 7 + 2 · 5 , 6 + 3 , 5 + 2 , 1538 + 1 , 4 + 0 , 9655 + 0 , 7 + 0 , 5283 + 0 , 4117 + 0 , 3294 + 0 , 2692 = 9 , 6117

Сравним наши результаты с результатами, вычисленными по формуле Ньютона-Лейбница. Полученные значения совпадают до сотых.

Ответ: ∫ 0 5 7 d x x 2 + 1 = 9 , 6117

Пример 2

Вычислим по методу трапеций значение определенного интеграла ∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x с точностью до 0 , 01 .

Решение

Согласно условию задачи a = 1 ; b = 2 , f (x) = 1 12 x 4 + 1 3 x - 1 60 ; δ n ≤ 0 , 01 .

Найдем n , которое равно количеству точек разбиения отрезка интегрирования, с помощью неравенства для оценки абсолютной погрешности δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 . Сделаем мы это следующим образом: мы найдем значения n , для которых будет выполняться неравенство m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 ≤ 0 , 01 . При данных n формула трапеций даст нам приближенное значение определенного интеграла с заданной точностью.

Для начала найдем наибольшее значение модуля второй производной функции на отрезке [ 1 ; 2 ] .

f " (x) = 1 12 x 4 + 1 3 x - 1 60 " = 1 3 x 3 + 1 3 ⇒ f "" (x) = 1 3 x 3 + 1 3 " = x 2

Вторая производная функция является квадратичной параболой f "" (x) = x 2 . Из ее свойств мы знаем, что она положительная и возрастает на отрезке [ 1 ; 2 ] . В связи с этим m a x x ∈ [ a ; b ] f "" (x) = f "" (2) = 2 2 = 4 .

В приведенном примере процесс нахождения m a x x ∈ [ a ; b ] f "" (x) оказался достаточно простым. В сложных случаях для проведения вычислений можно обратиться к наибольшим и наименьшим значениям функции. После рассмотрения данного примера мы приведем альтернативный метод нахождения m a x x ∈ [ a ; b ] f "" (x) .

Подставим полученное значение в неравенство m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 ≤ 0 , 01

4 · (2 - 1) 3 12 n 2 ≤ 0 , 01 ⇒ n 2 ≥ 100 3 ⇒ n ≥ 5 , 7735

Количество элементарных интервалов, на которые разбивается отрезок интегрирования n является натуральным числом. Для поведения вычислений возьмем n равное шести. Такое значение n позволит нам достичь заданной точности метода трапеций при минимуме расчетов.

Вычислим шаг: h = b - a n = 2 - 1 6 = 1 6 .

Найдем узлы x i = a + i · h , i = 1 , 0 , . . . , n , определим значения подынтегральной функции в этих узлах:

i = 0: x 0 = 1 + 0 · 1 6 = 1 ⇒ f (x 0) = f (1) = 1 12 · 1 4 + 1 3 · 1 - 1 60 = 0 , 4 i = 1: x 1 = 1 + 1 · 1 6 = 7 6 ⇒ f (x 1) = f 7 6 = 1 12 · 7 6 4 + 1 3 · 7 6 - 1 60 ≈ 0 , 5266 . . . i = 6: x 10 = 1 + 6 · 1 6 = 2 ⇒ f (x 6) = f (2) = 1 12 · 2 4 + 1 3 · 2 - 1 60 ≈ 1 , 9833

Результаты вычислений запишем в виде таблицы:

i 0 1 2 3 4 5 6
x i 1 7 6 4 3 3 2 5 3 11 6 2
f x i 0 , 4 0 , 5266 0 , 6911 0 , 9052 1 , 1819 1 , 5359 1 , 9833

Подставим полученные результаты в формулу трапеций:

∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) = = 1 12 · 0 , 4 + 2 · 0 , 5266 + 0 , 6911 + 0 , 9052 + 1 , 1819 + 1 , 5359 + 1 , 9833 ≈ 1 , 0054

Для проведения сравнения вычислим исходный интеграл по формуле Ньютона-Лейбница:

∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x = x 5 60 + x 2 6 - x 60 1 2 = 1

Как видим, полученной точности вычислений мы достигли.

Ответ: ∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x ≈ 1 , 0054

Для подынтегральных функций сложного вида нахождение числа n из неравенства для оценки абсолютной погрешности не всегда просто. В этом случае будет уместен следующий метод.

Обозначим приближенное значение определенного интеграла, которое было получено по методу трапеций для n узлов, как I n . Выберем произвольное число n . По формуле метода трапеций вычислим исходный интеграл при одинарном (n = 10) и удвоенном (n = 20) числе узлов и найдем абсолютную величину разности двух полученных приближенных значений I 20 - I 10 .

Если абсолютная величина разности двух полученных приближенных значений меньше требуемой точности I 20 - I 10 < δ n , то мы прекращаем вычисления и выбираем значение I 20 , которое можно округлить до требуемого порядка точности.

Если абсолютная величина разности двух полученных приближенных значений больше требуемой точности, то необходимо повторить действия с удвоенным количеством узлов (n = 40) .

Такой метод требует проведения большого объема вычислений, поэтому разумно использовать вычислительную технику для экономии времени.

Решим с помощью приведенного выше алгоритма задачу. С целью экономии времени опустим промежуточные вычисления по методу трапеций.

Пример 3

Необходимо вычислить определенный интеграл ∫ 0 2 x e x d x по методу трапеций с точностью до 0 , 001 .

Решение

Возьмем n равное 10 и 20 . По формуле трапеций получим I 10 = 8 , 4595380 , I 20 = 8 , 4066906 .

I 20 - I 10 = 8 , 4066906 - 8 , 4595380 = 0 , 0528474 > 0 , 001 , что требует продолжения вычислений.

Возьмем n равное 40: I 40 = 8 , 3934656 .

I 40 - I 20 = 8 , 3934656 - 8 , 4066906 = 0 , 013225 > 0 , 001 , что также требует продолжения вычислений.

Возьмем n равное 80: I 80 = 8 , 3901585 .

I 80 - I 40 = 8 , 3901585 - 8 , 3934656 = 0 , 0033071 > 0 , 001 , что требует проведения еще одного удвоения числа узлов.

Возьмем n равное 160: I 160 = 8 , 3893317 .

I 160 - I 80 = 8 , 3893317 - 8 , 3901585 = 0 , 0008268 < 0 , 001

Получить приближенное значение исходного интеграла можно округлив I 160 = 8 , 3893317 до тысячных: ∫ 0 2 x e x d x ≈ 8 , 389 .

Для сравнения вычислим исходный определенный интеграл по формуле Ньютона-Лейбница: ∫ 0 2 x e x d x = e x · (x - 1) 0 2 = e 2 + 1 ≈ 8 , 3890561 . Требуемая точность достигнута.

Ответ: ∫ 0 2 x e x d x ≈ 8 , 389

Погрешности

Промежуточные вычисления для определения значения определенного интеграла проводят в большинстве своем приближенно. Это значит, что при увеличении n начинает накапливаться вычислительная погрешность.

Сравним оценки абсолютных погрешностей метода трапеций и метода средних прямоугольников:

δ n ≤ m a x x ∈ [ a ; b ] f "" (x) n · h 3 12 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 12 n 2 δ n ≤ m a x x ∈ [ a ; b ] f "" (x) n · h 3 24 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 24 n 2 .

Метод прямоугольников для заданного n при одинаковом объеме вычислительной работы дает вдвое меньшую погрешность. Это делает метод более предпочтительным в тех случаях, когда известны значения функции в средних отрезках элементарных отрезков.

В тех случаях, когда интегрируемые функции задаются не аналитически, а в виде множества значений в узлах, мы можем использовать метод трапеций.

Если сравнивать точность метода трапеций и метода правых и левых прямоугольников, то первый метод превосходит второй в точности результата.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

5.3 Метод трапеций

Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим образом. Из точек a = x 0 , x 1 , x 2 ,…, x n = b проведем ординаты до пересечения с кривой y = f(x). Концы ординат соединим прямолинейными отрезками.

Тогда площадь криволинейной трапеции приближенно можно считать равной площади фигуры, составленной из трапеций. Так как площадь трапеции, построенной на отрезке длины h = , равна h , то, пользуясь этой формулой для i = 0, 2, … , n – 1, получим квадратурную формулу трапеций:

I=»I тр =h= (5.7)

Оценка погрешности. Для оценки погрешности формулы трапеций воспользуемся следующей теоремой.

Теорема 5.2. Пусть функция f дважды непрерывно дифференцируема на отрезке . Тогда для формулы трапеций справедлива следующая оценка погрешности:

| I – I тр | £ h 2 , (5.8)

где M 2 = |f "(x)|.

Пример 5.2.

Вычислим значение интеграла по формуле трапеций (5.7) и сравним полученный результат с результатом примера 5.1.

Используя таблицу значений функции eиз примера 5.1 и производя вычисления по формуле трапеций (5.7), получим: I тр = 0.74621079.

Оценим погрешность полученного значения. В примере (5.1) получили оценку: | f "(x)| £ M 2 = 2. Поэтому по формуле (5.8)

I – I тр | £ (0.1) 2 » 1.7× 10 -3 .

Сравнивая результаты примеров 5.1 и 5.2, видим, что метод средних прямоугольников имеет меньшую погрешность, т.е. он более точный.

5.4 Метод Симпсона (метод парабол)

Заменим график функции y = f(x) на отрезке , i = 0, 2, … , n – 1, параболой, проведенной через точки (x i , f(x i)), (x,f(x)), (x i+ 1 , f(x i+ 1)), где x - середина отрезка . Эта парабола есть интерполяционный многочлен второй степени L 2 (x) с узлами x i , x, x i+ 1 . Нетрудно убедиться, что уравнение этой параболы имеет вид:

f(x) + (x – x) + (x - x) 2 , (5.9)

Проинтегрировав функцию (5.9) на отрезке , получим

I i = » = (f(x i) + 4f(x) + f(x i+ 1)). (5.10)

Суммируя выражение (5.10) по i = 0, 1, 2, … , n – 1, получим квадратурную формулу Симпсона (или формулу парабол):

I =» I С = (f(x 0) + f(x n) + 4 + 2). (5.11)

Оценка погрешности. Для оценки погрешности формулы Симпсона воспользуемся следующей теоремой.

Теорема 5.2. Пусть функция f имеет на отрезке непрерывную производную четвертого порядка f (4) (x). Тогда для формулы Симпсона (5.9) справедлива следующая оценка погрешности:

| I – I С | £ h 4 , (5.12)

где M 4 = | f (4) (x)|.

Замечание. Если число элементарных отрезков, на которые делится отрезок , четно, т.е. n = 2m, то параболы можно проводить через узлы с целыми индексами, и вместо элементарного отрезка длины h рассматривать отрезок длины 2h. Тогда формула Симпсона примет вид:

I » (f(x 0) + f(x 2m) + 4 + 2), (5.13)

а вместо оценки (5.10) будет справедлива следующая оценка погрешности:

| I – I С | £ h 4 , (5.14)

Пример 5.3.

Вычислим значение интеграла по формуле Симпсона (5.11) и сравним полученный результат с результатами примеров 5.1 и 5.2.

Используя таблицу значений функции eиз примера 5.1 и производя вычисления по формуле Симпсона (5.11) , получим:

I С = 0.74682418.

Оценим погрешность полученного значения. Вычислим четвертую производную f (4) (x).

f (4) (x) = (16x 4 – 48x 2 + 12) e, | f (4) (x)| £ 12.


| I – I С | £ (0.1) 4 » 0.42 × 10 -6 .

Сравнивая результаты примеров 5.1, 5.2 и 5.3, видим, что метод Симпсона имеет меньшую погрешность, чем метод средних прямоугольников и метод трапеций.


Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .