Метод молекулярных орбиталей n2. Метод молекулярных орбиталей (ММО)


При использовании метода молекулярных орбиталей считается, в отличие от метода валентных связей, что каждый электрон находится в поле всех ядер. При этом связь не обязательно образована парой электронов. Например, ион Н 2 + состоит из двух протонов и одного электрона. Между двумя протонами действуют силы отталкивания (рис. 30), между каждым из протонов и электроном - силы притяжения. Химическая частица образуется лишь в том случае, если взаимное отталкивание протонов компенсируется их притяжением к электрону. Это возможно, если электрон расположен между ядрами - в области связывания (рис. 31). В противном случае силы отталкивания не компенсируются силами притяжения - говорят, что электрон находится в области антисвязывания, или разрыхления.

Двухцентровые молекулярные орбитали

В методе молекулярных орбиталей для описания распределения электронной плотности в молекуле используется представление о молекулярной орбитали (подобно атомной орбитали для атома). Молекулярные орбитали - волновые функции электрона в молекуле или другой многоатомной химической частице. Каждая молекулярная орбиталь (МО), как и атомная орбиталь (АО), может быть занята одним или двумя электронами. Состояние электрона в области связывания описывает связывающая молекулярная орбиталь, в области разрыхления - разрыхляющая молекулярная орбиталь. Распределение электронов по молекулярным орбиталям происходит по тем же правилам, что и распределение электронов по атомным орбиталям в изолированном атоме. Молекулярные орбитали образуются при определенных комбинациях атомных орбиталей. Их число, энергию и форму можно вывести исходя из числа, энергии и формы орбителей атомов, составляющих молекулу.

В общем случае, волновые функции, отвечающие молекулярным орбиталям в двухатомной молекуле, представляют как сумму и разность волновых функций атомных орбитале, умноженных на некоторые постоянные коэффициенты, учитывающие долю атомных орбиталей каждого атома в образовании молекулярных орбиталей (они зависят от электроотрицательности атомов):

φ(АВ) = с 1 ψ(А) ± с 2 ψ(В)

Этот метод вычисления одноэлектронной волновой функции называют "молекулярные орбитали в приближении линейной комбинации атомных орбиталей" (МО ЛКАО).

Так, при образовании иона Н 2 + или молекулы водорода Н 2 из двух s -орбиталей атомов водорода формируются две молекулярные орбитали. Одна из них связывающая (ее обозначают σ св), другая - разрыхляющая (σ*).

Энергии связывающих орбиталей ниже, чем энергии атомных орбиталей, использованных для их образования. Электроны, заселяющие связывающие молекулярные орбитали, находятся преимущественно в пространстве между связываемыми атомами, т.е. в так называемой области связывания. Энергии разрыхляющих орбиталей выше, чем энергии исходных атомных орбиталей. Заселение разрыхляющих молекулярных орбиталей электронами способствует ослаблению связи: уменьшению ее энергии и увеличению расстояния между атомами в молекуле. Электроны молекулы водорода, ставшие общими для обоих связываемых атомов, занимают связывающую орбиталь.


Комбинация р -орбиталей приводит к двум типам молекулярных орбиталей. Из двух р -орбиталей взаимодействующих атомов, направленных вдоль линии связи, образуются связывающая σ св - и разрыхляющая σ*-орбитали. Комбинации р -орбиталей, перпендикулярных линий связи, дают две связывающих π- и две разрыхляющих π*-орбитали. Используя при заселении электронами молекулярных орбиталей те же правила, что при заполнении атомных орбиталей в изолированных атомах, можно определить электронное строение двухатомных молекул, например O 2 и N 2 (рис. 35).

Из распределения электронов по молекулярным орбиталям можно рассчитать порядок связи (ω). Из числа электронов, расположенных на связывающих орбиталях, вычитают число электронов, находящихся на разрыхляющих орбиталях, и результат делят на 2n (в расчете на n связей):

ω = / 2 n

Из энергетической диаграммы видно, что для молекулы Н 2 ω = 1.

Метод молекулярных орбиталей дает те же значения порядка химической связи, что и метод валентных связей, для молекул О 2 (двойная связь) и N 2 (тройная связь). В то же время он допускает нецелочисленные значения порядка связи. Это наблюдается, например, при образование двухцентровой связи одним электроном (в ионе Н 2 +). В этом случае ω = 0,5. Величина порядка связи прямо влияет на ее прочность. Чем выше порядок связи, тем больше энергия связи и меньше ее длина:

Закономерности в изменениях порядка, энергии и длины связи можно проследить на примерах молекулы и молекулярных ионов кислорода.


Комбинация орбиталей двух разных атомов с образованием молекулы возможно только при близости их энергий, при этом атомные орбитали атома большей электроотрицательности на энергетической диаграмме всегда располагаются ниже.

Например, при образовании молекулы фтороводорода невозможна комбинация 1s -АО атома водорода и 1s -АО или 2s -АО атома фтора, так как они сильно различаются по энергии. Ближе всего по энергии 1s -АО атома водорода и 2p -АО атома фтора. Комбинация этих орбиталей вызывает появление двух молекулярных орбиталей: связывающая σ св и разрыхляющая σ*.

Оставшиеся 2р -орбитали атома фтора не могут комбинироваться с 1s -АО атома водорода, так как они имеют разную симметрию относительно межъядерной оси. Они образуют несвязывающие π 0 -МО, имеющие такую же энергию, что и исходные 2р -орбитали атома фтора.

Не участвующие в ЛКАО s -орбитали атома фтора образуют несвязывающие σ 0 -МО. Заселение электронами несвязывающих орбиталей не способствуют и не препятствуют образованию связи в молекуле. При расчете порядка связи их вклад не учитывается.

Многоцентровые молекулярные орбитали

В многоцентровых молекулах молекулярные орбитали являются многоцентровыми, так они представляют собой линейную комбинацию орбиталей всех атомов, участвующих в образовании связей. В общем случае молекулярные орбитали не локализованы, то есть электронная плотность, отвечающая каждой орбитали, более или менее равномерно распределена по всему объему молекулы. Однако с помощью математических преобразований можно получить локализованные молекулярные орбитали определенной формы, соответствующие отдельным двух- или трехцентровым связям или неподеленным электронам.

Простейшим примером трехцентровой связи служит молекулярный ион Н 3 + . Из трех s -орбиталей атомов водорода образуются три молекулярные орбитали: связывающая, несвязывающая и разрыхляющая. Пара электронов заселяет связывающую орбиталь. Образующаяся связь является двухэлектронной трехцентровой; порядок связи равен 0,5.


Химические частицы, содержащие неспаренные электроны, обладают парамагнитными свойствами (в отличие от диамагнитных свойств химических частиц, все электроны в которых спарены). Парамагнетиками являются все вещества, состоящие из химических частицы с нечетным числом электроном, например NO. Метод молекулярных орбиталей позволяет выявить парамагнетики среди веществ, состоящих из химических частиц с четным числом электронов, например О 2 , в молекуле которого два неспаренных электрона находятся на двух разрыхляющих π*-орбиталях.

Химические частицы с неспаренными электронами на внешних орбиталях называют свободными радикалами. Они обладают парамагнетизмом и высокой реакционной способностью. Неорганические радикалы с локализованными неспаренными электронами, например . Н, . NН 2 , обычно являются короткоживущими. Они образуются при фотолизе, радиолизе, пиролизе, электролизе. Для их стабилизации используют низкие температуры. Короткоживущие радикалы - промежуточные частицы во многих реакциях.

Предпосылки возникновения метода

Хронологически метод молекулярных орбиталей появился позже метода валентных связей, поскольку оставались в теории ковалентной связи вопросы, которые не могли получить объяснение методом валентных связей. Рассмотрим некоторые из них.

Основное положение метода валентных связей состоит в том, что связь между атомами осуществляется за счет электронных пар (связующих двух-электронных облаков). Но это не всегда так. В ряде случаев в образовании химической связи участвуют отдельные электроны. Так, в молекулярном ионе Н 2+ одноэлектронная связь. Метод валентных связей образование одноэлектронной связи объяснить не может, она противоречит его основному положению.

Метод валентных связей не объясняет также роли неспаренных электронов в молекуле. Молекулы, имеющие неспаренные электроны, парамагнитны, т.е. втягиваются в магнитное поле, так как неспаренный электрон создает постоянный магнитный момент. Если в молекулах нет неспаренных электронов, то они диамагнитны - выталкиваются из магнитного поля. Молекула кислорода парамагнитна, в ней имеется два электрона с параллельной ориентацией спинов, что противоречит методу валентных связей. Необходимо также отметить, что метод валентных связей не смог объяснить ряд свойств комплексных соединений - их цветность и др.

Чтобы объяснить эти факты, был предложен метод молекулярных орбиталей.

Основные положения метода

Согласно методу молекулярных орбиталей электроны в молекулах распределены по молекулярным орбиталям, которые подобно атомным орбиталям характеризуются определенной энергией (энергетическим уровнем) и формой. В отличие от атомных орбиталей молекулярные орбитали охватывают не один атом, а всю молекулу, т.е. являются двух- или многоцентровыми. Если в методе валентных связей атомы молекул сохраняют определенную индивидуальность, то в методе молекулярных орбиталей молекула рассматривается как единая система.

Наиболее широко в методе молекулярных орбиталей используется линейная комбинация атомных орбиталей. При этом соблюдается несколько правил:

Уравнение Шредингера для молекулярной системы должно состоять из члена кинетической энергии и члена потенциальной энергии сразу для всех электронов. Но решение одного уравнения с таким большим количеством переменных (индексы и координаты всех электронов) невозможно, поэтому вводится понятие одноэлектронного приближения .

Одноэлектронное приближение предполагает, что можно рассматривать каждый электрон движущимся в поле ядер и усредненном поле остальных электронов молекулы. Это означает, что каждый i -й электрон в молекуле описывается своей собственной функцией ψ i и имеет свою собственную энергию E i . В соответствии с этим, для каждого электрона в молекуле можно составить свое уравнение Шредингера. Тогда для n электронов необходимо решить n уравнений. Это осуществляется методами матричного исчисления с помощью компьютеров.

При решении уравнения Шредингера для многоцентровой и многоэлектронной системы получаются решения в виде одноэлектронных волновых функций - молекулярных орбиталей, их энергий и электронной энергии всей молекулярной системы как целого.

Линейная комбинация атомных орбиталей

В одноэлектронном приближении метод молекулярных орбиталей описывает каждый электрон своей орбиталью. Как в атоме есть атомные орбитали, так и в молекуле есть молекулярные орбитали. Различие заключается в том, что молекулярные орбитали - многоцентровые.

Рассмотрим электрон, расположенный на молекулярной орбитали ψ i нейтральной молекулы, в тот момент времени, когда он находится вблизи ядра некоторого атома m . В этой области пространства потенциальное поле создается, в основном, ядром атома m и находящимися вблизи электронами. Поскольку молекула в целом нейтральна, притяжение между рассматриваемым электроном и каким-либо другим ядром n приблизительно компенсируется отталкиванием между рассматриваемым электроном и электронами, находящимися вблизи ядра n . Значит, вблизи ядра движение электрона будет приближенно таким же, как и в отсутствие остальных атомов. Поэтому в орбитальном приближении молекулярная орбиталь ψ i вблизи ядра m должна быть похожа на одну из атомных орбиталей этого атома. Поскольку атомная орбиталь имеют существенные значения только вблизи своих ядер, можно приблизительно представить молекулярную орбиталь ψ i в виде линейной комбинации атомных орбиталей отдельных атомов.

Для простейшей молекулярной системы, состоящей из двух ядер атомов водорода, учитывая 1s -атомные орбитали, описывающие движение электрона в атоме Н , молекулярная орбиталь представляется в виде:

Величины c 1i и c 2i - численные коэффициенты, которые и находятся решением уравнения Шредингера . Они показывают вклад каждой атомной орбитали в конкретную молекулярную орбиталь. В общем случае коэффициенты принимают значения, лежащие в интервале от -1 до +1. Если в выражении для конкретной молекулярной орбитали один из коэффициентов преобладает, то это отвечает тому, что электрон, находясь на данной молекулярной орбитали, в основном находится вблизи того ядра и описывается в основном именно той атомной орбиталью, чей коэффициент больше. Если коэффициент перед атомной орбиталью близок к нулю, то это означает, что пребывание электрона в области, описываемой данной атомной орбиталью маловероятно. По физическому смыслу квадраты данных коэффициентов определяют вероятность нахождения электрона в области пространства и энергий, описываемых данной атомной орбиталью.

В методе ЛКАО для образования устойчивой молекулярной орбитали необходимо, чтобы энергии атомных орбиталей были близки друг к другу. Кроме того, нужно, чтобы их симметрия не сильно отличалась. При выполнении этих двух требований коэффициенты должны быть близкими по своим значениям, а это, в свою очередь, обеспечивает максимальное перекрывание электронных облаков. При сложении атомных орбиталей образуется молекулярная орбиталь, энергия которой понижается относительно энергий атомных орбиталей. Такая молекулярная орбиталь называется связывающей . Волновая функция, соответствующая связывающей орбитали, получается в результате сложения волновых функций с одинаковым знаком. Электронная плотность при этом концентрируется между ядрами, и волновая функция принимает положительное значение. При вычитании атомных орбиталей энергия молекулярной орбитали повышается. Эта орбиталь называется разрыхляющей . Электронная плотность в этом случае располагается за ядрами, а между ними равна нулю. Волновая функция в двух образовавшихся электронных облаках имеет противоположные знаки, что хорошо видно из схемы образования связывающей и разрыхляющей орбиталей.

Когда атомная орбиталь одного из атомов вследствие большой разницы в энергии или симметрии не может взаимодействовать с атомной орбиталью другого атома, она переходит в энергетическую схему молекулярных орбиталей молекулы с энергией, соответствующей ей в атоме. Орбиталь этого типа называется несвязывающей .

Классификация орбиталей

Классификация орбиталей на σ или π производится в соответствии с симметрией их электронных облаков. σ -орбиталь имеет такую симметрию электронного облака, при которой поворот ее вокруг оси, соединяющей ядра, на 180° приводит к орбитали, по форме не отличимой от первоначальной. Знак волновой функции при этом не меняется. В случае π -орбитали при повороте ее на 180° знак волновой функции меняется на противоположный. Отсюда следует, что s -электроны атомов при взаимодействии между собой могут образовывать только σ -орбитали, а три (шесть) p -орбитали атома - одну σ- и две π -орбитали, причем σ -орбиталь возникает при взаимодействии р х атомных орбиталей, а π -орбиталь - при взаимодействии р y и р z . Молекулярные π -орбитали повернуты относительно межьядерной оси на 90°.

Для того чтобы отличать связывающие и разрыхляющие орбитали друг от друга, а также их происхождение, принята следующая система обозначений. Связывающая орбиталь обозначается сокращением «св» , располагающимся справа вверху после греческой буквы, обозначающей орбиталь, а разрыхляющая - соответственно «разр» . Принято еще одно обозначение: звездочкой помечаются разрыхляющие орбитали, а без звездочки - связывающие. После обозначения молекулярной орбитали пишется обозначение атомной орбитали, которой молекулярная обязана своим происхождением, например, π разр 2p y . Это означает, что молекулярная орбиталь π -типа, разрыхляющая, образовалась при взаимодействии 2р y - атомных орбиталей.

Положение атомной орбитали на шкале энергий определяется значением энергии ионизации атома, отвечающей удалению электрона, описываемого данной орбиталью, на бесконечно большое расстояние. Такая энергия ионизации называется орбитальной энергией ионизации . Так, для атома кислорода возможны типы ионизации, когда удаляется электрон с - или с 2s -электронной подоболочки.

Положение молекулярной орбитали энергетических диаграммах также определяется на основании квантово-химических расчетов электронной структуры молекул. Для сложных молекул число энергетических уровней молекулярных орбиталей на энергетических диаграммах велико, однако для конкретных химических задач часто важно знать энергии и состав не всех молекулярных орбиталей, а только наиболее «чувствительных» к внешним воздействиям. Такими орбиталями являются молекулярные орбитали, на которых размещены электроны самых высоких энергий. Эти электроны могут легко взаимодействовать с электронами других молекул, удаляться с данной молекулярной орбитали, а молекула будет переходить в ионизированное состояние или видоизменяться вследствие разрушения одних или образования других связей. Такой молекулярной орбиталью является высшая занятая молекулярная орбиталь. Зная число молекулярных орбиталей (равно суммарному числу всех атомных орбиталей) и число электронов, нетрудно определить порядковый номер ВЗМО и, соответственно, из данных расчета - ее энергию и состав. Также наиболее важной для изучения химических задач является низшая свободная молекулярная орбиталь, т.е. следующая по очереди за ВЗМО на шкале энергий, но вакантная молекулярная орбиталь. Важны и другие орбитали, прилегающие по энергии к ВЗМО и НСМО.

Молекулярные орбитали в молекулах, как и атомные орбитали в атомах, характеризуются не только относительной энергией, но и определенной суммарной формой электронного облака. Аналогично тому, как в атомах имеются s -, р -, d -, ... орбитали, самая простая молекулярная орбиталь, обеспечивающая связь между только двумя центрами (двухцентровая молекулярная орбиталь), может быть σ -, π -, δ -, ... типа. Молекулярные орбитали разделяются на типы в зависимости от того, какой симметрией они обладают относительно линии, соединяющей ядра атомов относительно плоскости, проходящей через ядра молекулы и др. Это приводит к тому, что электронное облако молекулярной орбитали различным образом распределяется в пространстве.

σ -орбитали - это молекулярные орбитали, симметричные относительно вращения вокруг межъядерной оси. Область повышенной электронной плотности σ -молекулярной орбитали распределена вдоль данной оси. Такие молекулярные орбитали могут быть образованны любыми атомными орбиталями атомных орбиталей любой симметрии. На рисунке заливкой помечены участки волновых функций, имеющие отрицательный знак; остальные участки имеют положительный знак. π -орбитали - это молекулярные орбитали, антисимметричные относительно вращения вокруг межъядерной оси. Область повышенной электронной плотности π -молекулярных орбиталей распределена вне межъядерной оси. Молекулярные орбитали π -симметрии образуются при особом перекрывании р -, d - и f -атомных орбиталей. δ -орбитали - это молекулярные орбитали, антисимметричные относительно отражения в двух взаимно перпендикулярных плоскостях, проходящих через межъядерную ось. δ -молекулярная орбиталь образуется при особом перекрывании d - и f -атомных орбиталей. Электронное облако данных молекулярных орбиталей распределено, главным образом, вне межъядерной оси.

Физический смысл метода

Для любой другой системы, включающей k атомных орбиталей, молекулярная орбиталь в приближении метода ЛКАО запишется в общем виде следующим образом:

Для уяснения физического смысла такого подхода вспомним, что волновая функция Ψ соответствует амплитуде волнового процесса, характеризующего состояние электрона. Как известно, при взаимодействии, например, звуковых или электромагнитных волн их амплитуды складываются. Как видно, приведенное уравнение разложения молеклярной орбитали на составляющие атомные орбитали равносильно предположению, что амплитуды молекулярной «электронной волны» (т. е. молекулярная волновая функция) тоже образуются сложением амплитуд взаимодействующих атомных «электронных волн» (т. е. сложением атомных волновых функций). При этом, однако, под влиянием силовых полей ядер и электронов соседних атомов волновая функция каждого атомного электрона изменяется по сравнению с исходной волновой функцией этого электрона в изолированном атоме. В методе ЛКАО эти изменения учитываются путем введения коэффициентов c iμ , где индекс i определяет конкретную молекулярную орбиталь, а индекс - конкретную атомную орбиталь. Так что при нахождении молекулярной волновой функции складываются не исходные, а измененные амплитуды - c iμ ·ψ μ .

Выясним, какой вид будет иметь молекулярная волновая функция Ψ 1 , образованная в результате взаимодействия волновых функций ψ 1 и ψ 2 - 1s -орбиталей двух одинаковых атомов. Для этого найдем сумму c 11 ·ψ 1 + c 12 ·ψ 2 . В данном случае оба рассматриваемых атома одинаковы, так что коэффициенты c 11 и c 12 равны по величине (c 11 = c 12 = c 1 ) и задача сводится к определению суммы c 1 ·(ψ 1 + ψ 2) . Поскольку постоянный коэффициент c 1 не влияет на вид искомой молекулярной волновой функции, а только изменяет ее абсолютные значения, ограничимся нахождением суммы (ψ 1 + ψ 2) . Для этого расположим ядра взаимодействующих атомов на том расстоянии друг от друга (r) , на котором они находятся в молекуле, и изобразим волновые функции 1s -орбиталей этих атомов (рисунок а ).

Чтобы найти молекулярную волновую функцию Ψ 1 , сложим величины ψ 1 и ψ 2 : в результате получится кривая, изображенная на (рисунке б ). Как видно, в пространстве между ядрами значения молекулярной волновой функции Ψ 1 больше, чем значения исходных атомных волновых функций. Но квадрат волновой функции характеризует вероятность нахождения электрона в соответствующей области пространства, т. е. плотность электронного облака. Значит, возрастание Ψ 1 в сравнении с ψ 1 и ψ 2 означает, что при образовании молекулярной орбиталли плотность электронного облака в межъядерном пространстве увеличивается. В результате образуется химическая связь. Поэтому молекулярная орбиталь рассматриваемого типа называется связывающей .

В данном случае область повышенной электронной плотности находится вблизи оси связи, так что образовавшаяся молекулярная орбиталь относится к σ -типу. В соответствии с этим, связывающая молекулярная орбиталь, полученная в результате взаимодействия двух атомных 1s -орбиталей, обозначается σ 1s св .

Электроны, находящиеся на связывающей молекулярной орбитали, называются связывающими электронами .

Рассмотрим другую молекулярную орбиталь Ψ 2 . По причине симметрии системы следует предположить, что коэффициенты перед атомными орбиталями в выражении для молекулярной орбитали Ψ 2 = c 21 ·ψ 1 + c 22 ·ψ 2 должны быть равны по модулю. Но тогда они должны отличаться друг от друга знаком: c 21 = - c 22 = c 2 .

Значит, кроме случая где знаки вкладов обеих волновых функции одинаковы, возможен и случай, когда знаки вкладов 1s -атомных орбиталей различны. В таком случае (рисунок (а) )вклад 1s -атомной орбитали одного атома положителен, а другого - отрицателен. При сложении этих волновых функций получится кривая, показанная на рисунке (б) . Молекулярная орбиталь, образующаяся при подобном взаимодействии, характеризуется уменьщением абсолютной величины волновой функции в межъядерном пространстве по сравнению с ее значением в исходных атомах: на оси связи появляется даже узловая точка, в которой значение волновой функции, а, следовательно, и ее квадрата, обращается в нуль. Это означает, что в рассматриваемом случае уменьшится и плотность электронного облака в пространстве между атомами. В результате притяжение каждого атомного ядра в направлении к межъядерной области пространства окажется более слабым, чем в противоположном направлении, т.е. возникнут силы, приводящие к взаимному отталкиванию ядер. Здесь, следовательно, химическая связь не возникает; образовавшаяся в этом случае молекулярная орбиталь называется разрыхляющей σ 1s * , а находящиеся на ней электроны - разрыхляющими электронами .

Переход электронов с атомных 1s -орбиталей на связывающую молекулярную орбиталь, приводящий к возникновению химической связи, сопровождается выделением энергии. Напротив, переход электронов с атомных 1s -орбиталей на разрыхляющую молекулярную орбиталь требует затраты энергии. Следовательно, энергия электронов на орбитали σ 1s св ниже, а на орбитали σ 1s * выше, чем на атомных 1s -орбиталях. Приближенно можно считать, что при переходе 1s -электрона на связывающую молекулярную орбиталь выделяется столько же энергии, сколько необходимо затратить для его перевода на разрыхляющую молекулярную орбиталь.

Порядок связи

В методе молекулярных орбиталей для характеристики электронной плотности, ответственной за связывание атомов в молекулу вводится величина - порядок связи . Порядок связи, в отличие от кратности связи, может принимать нецелочисленные значения. Порядок связи в двухатомных молекулах принято определять по числу связывающих электронов, участвующих в ее образовании: два связывающих электрона соответствуют простой связи, четыре связывающих электрона - двойной связи и т. д. При этом разрыхляющие электроны компенсируют действие соответствующего числа связывающих электронов. Так, если в молекуле имеются 6 связывающих и 2 разрыхляющих электрона, то избыток числа связывающих электронов над числом разрыхляющих равен четырем, что соответствует образованию двойной связи. Следовательно, с позиции метода молекулярных орбиталей химическую связь в молекуле водорода, образованную двумя связывающими электронами, следует рассматривать как простую связь.

У элементов первого периода валентной орбиталью является 1s -орбиталь. Эти две атомных орбитали образуют две σ -молекулярные орбитали - связывающую и разрыхляющую. Рассмотрим электронное строение молекулярного иона H 2 + . Он имеет один электрон, который будет занимать более энергетически выгодную s -связывающую орбиталь. В соответствии с правилом подсчета кратности связи она будет равна 0,5, а так как в ионе имеется один неспаренный электрон, H 2 + будет обладать парамагнитными свойствами. Электронное строение этого иона запишется по аналогии с электронным строением атома так: σ 1s св . Появление второго электрона на s -связывающей орбитали приведет к энергетической диаграмме, описывающей молекулу водорода, возрастанию кратности связи до единицы и диамагнитным свойствам. Возрастание кратности связи повлечет за собой и увеличение энергии диссоциации молекулы H 2 и более короткому межъядерному расстоянию по сравнению с аналогичной величиной у иона водорода.

Двухатомная молекула Не 2 существовать не будет, так как имеющиеся у двух атомов гелия четыре электрона расположатся на связывающей и разрыхляющей орбиталях, что приводит к нулевой кратности связи. Но в тоже время ион He 2 + будет устойчив и кратность связи в нем равна 0,5. Так же, как и ион водорода, этот ион будет обладать парамагнитными свойствами.

У элементов второго периода появляются еще четыре атомных орбитали: 2s, 2р х, 2р у, 2р z , которые будут принимать участие в образовании молекулярных орбиталей. Различие в энергиях 2s - и 2p -орбиталей велико, и они не будут взаимодействовать между собой с образованием молекулярных орбиталей. Эта разница в энергиях при переходе от первого элемента к последнему будет увеличиваться. В связи с этим обстоятельством электронное строение двухатомных гомоядерных молекул элементов второго периода будет описываться двумя энергетическими диаграммами, отличающимися порядком расположения на них σ св 2p x и π св 2p y,z . При относительной энергетической близости 2s - и 2p -орбиталей, наблюдаемой в начале периода, включая атом азота, электроны, находящиеся на σ разр 2s и σ св 2p x -орбиталях, взаимно отталкиваются. Поэтому π св 2p y - и π св 2p z -орбитали оказываются энергетически более выгодными, чем σ св 2p x -орбиталь. На рисунке представлены обе диаграммы. Так как участие 1s -электронов в образовании химической связи незначительно, их можно не учитывать при электронном описании строения молекул, образованных элементами второго периода.

Второй период системы открывают литий и бериллий, у которых внешний энергетический уровень содержит лишь s -электроны. Для этих элементов схема молекулярных орбиталей ничем не будет отличаться от энергетических диаграмм молекул и ионов водорода и гелия, с той лишь разницей, что у последних она построена из 1s -электронов, а у Li 2 и Ве 2 - из 2s -электронов. 1s -электроны лития и бериллия можно рассматривать как несвязывающие, т.е. принадлежащие отдельным атомам. Здесь будут наблюдаться те же закономерности в изменении порядка связи, энергии диссоциации и магнитных свойств. Ион Li 2 + имеет один неспаренный электрон, расположенный на σ св 2s -орбитали - ион парамагнитен. Появление второго электрона на этой орбитали приведет к увеличению энергии диссоциации молекулы Li 2 и возрастанию кратности связи с 0,5 до 1. Магнитные свойства приобретут диамагнитный характер. Третий s -электрон расположится на σ разр -орбитали, что будет способствовать уменьшению кратности связи до 0,5 и, как следствие этого, понижению энергии диссоциации. Такое электронное строение имеет парамагнитный ион Be 2 + . Молекула Ве 2 , так же как и Hе 2 , существовать не может из-за нулевого порядка связи. У этих молекул число связывающих электронов равно числу разрыхляющих.

Как видно из рисунка, по мере заполнения связывающих орбиталей энергия диссоциации молекул увеличивается, а с появлением электронов на разрыхляющих орбиталях уменьшается. Ряд заканчивается нестабильной молекулой Ne 2 . Из рисунка также видно, что удаление электрона с разрыхляющей орбитали приводит к повышению кратности связи и, как следствие этого, увеличению энергии диссоциации и уменьшению межъядерного расстояния. Ионизация молекулы, сопровождаемая удалением связывающего электрона дает прямо противоположный эффект.


Сокращенно метод молекулярных орбиталей (МО) в литературе получил название как метод линейной комбинации атомных орбиталей (ЛКАО). Молекула рассматривается как целое, а не как совокупность сохраняющих свою индивидуальность атомов. Каждый электрон принадлежит всей молекуле в целом и движется в поле всех ее ядер и других электронов.

Состояние электрона в молекуле описывается одноэлектронной волновой функцией i (i означает i -й электрон). Эта функция называется молекулярной орбиталью (МО) и характеризуется определенным набором квантовых чисел. Находится она в результате решения уравнения Шредингера для молекулярной системы с одним электроном. В отличие от одноцентровой атомной орбитали (АО) молекулярная орбиталь всегда многоцентровая, так как число ядер в молекуле не менее двух. Как и для электрона в атоме, квадрат модуля волновой функции | i | 2 определяет плотность вероятности нахождения электрона или плотность электронного облака. Каждая молекулярная орбиталь i характеризуется определенным значением энергии Е i . Ее можно определить, зная потенциал ионизации данной орбитали. Электронная конфигурация молекулы (ее нижнее невозбужденное состояние) задается совокупностью МО, занятых электронами. Заполнение молекулярных орбиталей электронами основывается на двух основных положениях. Электрон в молекуле занимает свободную орбиталь с наименьшей энергией, и на одной МО не может находиться более двух электронов с антипараллельными спинами (принцип Паули). Если молекула содержит 2n электронов, то для описания ее электронной конфигурации требуется n молекулярных орбиталей. Правда, на практике часто рассматривают меньшее число МО, пользуясь понятием валентных электронов, т. е. тех электронов, которые вступают в химическую связь.

При переходе одного электрона молекулы с занятой МО на более высокую свободную МО молекула в целом переходит из основного состояния (Ψ) в возбужденное состояние (* ). Для молекулы существует определенный набор разрешенных состояний, которым отвечают определенные значения энергии. Переходы между этими состояниями с поглощением и испусканием света порождают электронный спектр молекулы.

Для нахождения энергетического спектра молекулы необходимо решить уравнение Шредингера вида

Ĥ = Е , (5.15)

если известна молекулярная волновая функция . Однако трудность решения уравнения (5.35) заключается в том, что зачастую нам не известна. Поэтому одна из главных задач квантовой механики – это нахождение молекулярной волновой функции. Наиболее распространенный способ записи молекулярной орбитали состоит в использовании определенного набора атомных орбиталей, полученных для составляющих молекулу атомов. Если молекулярную орбиталь обозначить как i , а атомную – через φ k , то общее соотношение для МО имеет вид


т. е. МО есть линейная комбинация атомных орбиталей φ k со своими коэффициентами C ik . Число независимых решений для i равно числу φ k в исходном базисе. чтобы сократить число атомных волновых, функций выбирают только такие АО, которые дают вклад в химическую связь. Свойства симметрии МО могут быть определены из знаков и числовых значений коэффициентов C ik (коэффициентов ЛКАО) и свойств симметрии атомных орбиталей. Заполнение молекулярных орбиталей электронами проводится по аналогии с атомными. Наиболее точные расчеты для молекул выполняются методом самосогласованного поля (ССП). Молекулярные орбитали, вычисленные методом ССП, наиболее близки к истинным и называются хартри – фоковскими орбиталями.

5.3.3 Применение метода молекулярных орбиталей
для описания химической связи в ионе H 2 +

Самой простейшей двухатомной молекулой является молекула водорода H 2 , химическая связь в которой образована двумя электронами (типа 1s ), принадлежащими атомам водорода. Если удалить один электрон, то получаем еще более простую систему H 2 + – молекулярный ион водорода, в котором химическая связь осуществляется одним электроном. Эта устойчивая частица с межъядерным расстоянием r e (H 2 +) = 0,106 нм энергией диссоциации D 0 (H 2 +) = 2,65 эВ. С точки зрения квантовой механики эта задача многоцентровая, один электрон вращается вокруг ядер (рис. 5.10).

Уравнение Шредингера для такой системы запишется в виде (5.15), где – волновая функция молекулярного иона H 2 + , которая составляется из волновых функций атома водорода в виде

= с 1 j 1 + с 2 j 2 , (5.17)

где j 1 и j 2 – атомные волновые функции (1s атомные орбитали водорода); с 1 и с 2 – коэффициенты, которые требуется определить; Ĥ – оператор Гамильтона, имеющий вид

Последние три члена дают значение потенциальной энергии ядерного и электрон-ядерного взаимодействия, R 12 – расстояние между ядрами, r 1 и r 2 – расстояния от электрона до соответствующих ядер.

Как следует из рис. 5.10, один электрон движется вокруг двух ядер, которые предполагаются неподвижными. Такая задача в квантовой механике точно не решается, поэтому будем рассматривать приближенное ее решение методом МО. Это позволит нам познакомиться с наиболее характерными особенностями метода. Качественно будет раскрыта физическая картина образования химической связи, несмотря на приближенные значения параметров с 1 и с 2 при записи волновой функции. Основы теории метода для простейшего иона H 2 + послужат исходным пунктом для понимания природы химической связи в более сложных молекулах.

Задачу о нахождении коэффициентов с 1 и с 2 и энергии системы H 2 + будем решать при помощи вариационного метода. Суть метода заключается в следующем. Умножим обе части уравнения (5.15) на комплексно–сопряженную волновую функцию Ψ* и проинтегрируем по всей области изменения переменных. В результате получим выражение:

где d τ – элементарный объем (в декартовой системе координат d τ = dx dy dz ).

Если известна волновая функция (у нас она задана с коэффициентами с 1 и с 2) и гамильтониан Ĥ , то можно вычислить энергию системы Е . в состоянии устойчивого равновесия (r e (H 2 +) = 0,106 нм), энергия системы H 2 + должна быть минимальной.

Подставив в выражение для энергии (5.19) значение функции (5.17), получим

Выполнив соответствующие преобразования получим

В целях упрощения записи (5.21) введем обозначения интегралов:

Из свойств интегралов перекрывания следует, что S 12 = S 21 . учитывая далее коммутационные свойства оператора Гамильтона, можно показать, что Н 21 = Н 12 .

Подставив в (5.21) значения интегралов (5.22), получим

Рассчитать значение энергии по (5.23) можно, если известны значения коэффициентов с 1 и с 2 . Однако они в условиях нашей задачи не известны. Для их нахождения используют вариационный метод, согласно которому функции Ψ (5.17) должен отвечать минимум энергии Е . Условием минимума Е как функции с 1 и с 2 будет равенство нулю частных производных: и

Найдем вначале частную производную от Е по с 1 и приравняем ее нулю.

После преобразования получим

Сравнив (5.23) и (5.25), можем записать

Сгруппировав по переменным с 1 и с 2 , перепишем (5.26) следующим образом:

Дифференцируя значение энергии (5.24) по с 2 , аналогично получим

Выражения (5.27) и (5.28) представляют линейную систему уравнений с двумя неизвестными с 1 и с 2 . Для разрешимости этой системы необходимо, чтобы определитель, состоящий из коэффициентов при неизвестных, был равен нулю, т. е.

Так как МО образована из двух атомных функций, то получили определитель второго порядка, при комбинации трех атомных волновых функций получили бы определитель третьего порядка и т. д. Цифры в индексах совпадают с номером строки (первая) и с номером столбца (вторая). Это соответствие можно обобщить на функции, являющиеся линейной комбинацией n атомных орбиталей. Получим тогда определитель n -го порядка типа

где i и j имеют n значений.

Определитель можно упростить, положив интегралы S 11 = S 22 = 1, если атомные волновые функции нормированы. Интеграл S 12 обозначим через S . В нашем случае Н 11 = Н 22 , так как атомные волновые функции φ 1 и φ 2 одинаковы. Обозначим интегралы Н 11 = Н 22 = α , а Н 12 через β. Тогда определитель (5.29) будет иметь вид

Раскрыв этот определитель, получим

Решив уравнение (5.33) относительно Е , получим два значения энергии

Итак, при решении уравнения Шредингера с известной волновой функцией с точностью до коэффициентов с 1 и с 2 получим два собственных значения энергии. Определим значения коэффициентов с 1 ис 2 , вернее их соотношение, так как из двух уравнений (5.27) и (5.28) нельзя получить три неизвестных – Е, с 1 и с 2 . Зная значение Е s из (5.33) можно найти отношение с 1 /с 2 из (5.28)

Подставив значения Е s из (5.34) в последнее уравнение, получим

откуда с 1 = с 2 = с s .

Аналогично, подставив в (5.28) вместо Е значение Е as , получим второе возможное соотношение:

с 1 / с 2 = –1 или с 1 = – с 2 = с as . (5.38)

Подстановка (5.37) и (5.38) в (5.17) приводит к двум решениям уравнения Шредингера для H 2 + , к двум молекулярным орбиталям:

Для определения численного значения коэффициентов с s и с as воспользуемся условием нормировки молекулярной функции:

Подстановка вместо s его значения из (5.39) дает следующее выражение:

Первое и второе слагаемые в правой части равны единице, так как φ 1 и φ 2 нормированы. Тогда

Аналогично находится коэффициент с as :

Если интегралом перекрывания S пренебречь по сравнению с единицей (хотя для иона H 2 + и молекулы H 2 он сравним с единицей, однако ради общности им пренебрегают), то будем иметь:

Из (5.39) и (5.40) получаем две молекулярные волновые функции, соответствующие двум значениям энергии Е s и Е as ,

Обе МО являются приближенными решениями уравнения Шредингера, полученного вариационным методом. Одно из них с более низкой энергией (Ψ s ) отвечает основному, второе (Ψ аs ) – ближайшему более высокому состоянию.

По полученным волновым функциям (5.46) и (5.47) можно определить распределение электронной плотности в молекулярном ионе H 2 + , соответствующее энергиям Е s и Е as .

Как видно, симметричная функция ведет к увеличению плотности электронного заряда в области перекрывания атомных волновых функций (в межъядерном пространстве А и В ) по сравнению с плотностью зарядов, описываемых функциями φ 1 2 и φ 2 2 . Антисимметричная волновая функция ведет к уменьшению плотности заряда. На рис. 5.11 это изображено графически. Пунктирные линии изображают плотность заряда у индивидуальных атомов, удаленных один от другого на бесконечно большое расстояние, а сплошная линия – распределение электронной плотности в молекулярном ионе водорода вдоль межъядерной оси. Очевидно, что симметричная волновая функция (5.46) благоприятствует такому распределению заряда, при котором он концентрируется между ядрами. Такая МО называется связывающей. И наоборот, асимметричная МО (5.47) ведет к уменьшению плотности заряда в межъядерном пространстве и концентрации его около индивидуальных атомных ядер.

Такую МО называют антисвязывающей или разрыхляющей. Следовательно, только симметричная функция обусловливает образование устойчивой молекулы (H 2 +). На кривой зависимости потенциальной энергии от расстояния между ядрами (R АВ ) (см. рис. 5.11) на каком-то из этих расстояний окажется минимум. Получим две потенциальные кривые: одну для связывающей орбитали, а вторую для разрыхляющей (рис 5.12).

В значения энергии Е s (5.34) и Е as (5.35) входят одни и те же интегралы α, β и S , однако величины энергии неодинаковы вследствие различия знаков в правых частях.

Проанализируем более детально интегралы . Подставим оператор Гамильтона (5.34) в первый интеграл. Тогда получим:

интеграл может быть упрощен, если учесть, что – оператор Гамильтона для атома водорода с электроном около ядра А . Он дает значение энергии Е 0 в атоме водорода. оператор Гамильтона для молекулярного иона водорода может быть записан следующим образом:

где Е 0 – энергия основного состояния водородного атома.

Величина интеграла (5.50) перепишется следующим образом:

Величины Е 0 и R АВ – постоянные и их можно вынести за знак интеграла:

Так как волновая функция φ 1 нормирована, т. е. , то

где I обозначает интеграл, названный Кулоновским

вычислить который не очень просто, но тем не менее он дает существенный вклад в общую энергию системы.

Таким образом, интеграл Н 11 = Н 22 = α , как видно из (5.54), состоит из трех частей и передает классическое кулоновское взаимодействие частиц. Он включает энергию электрона в атоме водорода в основном состоянии (Е 0), кулоновское отталкивание ядер (е 2 /R АВ ) и энергию I кулоновского взаимодействия второго протона (В ) с электронным облаком, окружающим первый протон (А ). на расстояниях порядка равновесного межъядерного этот интеграл отрицателен, а на больших расстояниях, где отталкивание ядер мало, он практически равен энергии электрона на атомной орбитали, поэтому в нулевом приближении он принимается равным энергии электрона в атоме водорода (Е 0). Только на расстояниях, значительно меньших равновесного, он становится положительным и возрастает неограниченно.

Интеграл Н 12 = Н 21 = β называют обменным или резонансным. Энергия, выражаемая интегралом β, не имеет аналога в классической физике. Он описывает добавочное понижение энергии системы, которое возникает из–за возможности перехода электрона от ядра А к ядру В , как бы обменивая состояния φ 1 и φ 2 . Этот интеграл на бесконечности равен нулю, на всех других расстояниях (кроме очень коротких, меньших межъядерных) – отрицателен. Его вклад и определяет энергию химической связи (чем больше этот интеграл, тем прочнее связь). По аналогии с (5.53) этот интеграл можно записать следующим образом:

Вынося постоянные члены за знак интеграла, получим

интеграл перекрывания атомных орбиталей (обозначен S 12 = S 21 = S ), образующих молекулярную орбиталь есть величина безразмерная и равна единице при R АВ = 0 спадает до нуля при возрастании межъядерного расстояния. На расстояниях между атомами, близких или равных равновесным, обменный интеграл Н 12 тем больше по абсолютной величине, чем больше интеграл перекрывания.

Действительно, равенство (5.57) можно переписать следующим образом, если ввести обозначения S 12 и K

где K обозначает интеграл типа

называемый обменным интегралом.

Последний интеграл в (5.57) и дает основную отрицательную добавку в общий обменный интеграл Н 12 .

Если значения всех полученных интегралов подставить в уравнения для энергии (5.34) и (5.35) симметричного и асимметричного состояний, то получим

Для антисимметричного состояния получим следующее значение

Вычисления интегралов I и K довольно сложны, однако есть возможность оценить их зависимость от расстояния между ядрами атомов водорода. Результаты этой зависимости изображены кривыми потенциальной энергии на рис. 5.12.

Как видно из рис. 5.12, симметричное энергетическое состояние ведет к минимуму потенциальной энергии, поэтому образуется устойчивая частица H 2 + . Антисимметричное состояние соответствует неустойчивому энергетическому состоянию. в этом случае электрон будет на антисимметричной орбитали и молекулярный ион H 2 + не образуется. Следовательно, E s отвечает основному состоянию, а E as – первому возбужденному состоянию молекулярного иона H 2 + .

Если приближенно считать, что S 12 = 0 и сохранить обозначения для Н 11 и Н 12 соответственно через α и β, то выражения для волновых функций электрона в молекуле и его энергии приобретают простой вид:

Так как интеграл β отрицателен, то E 1 < E 2 .

Таким образом, метод МО показывает, что при соединении двух атомов в молекулу возможны два состояния электрона: – две молекулярные орбитали 1 и 2 , одна из них с более низкой энергией E 1 , другая – с более высокой энергией E 2 . Поскольку на МО возможно пребывание как двух, так и одного электрона, то метод МО позволяет оценивать вклад в химическую связь не только электронных пар, но и отдельных электронов.

Метод МО ЛКАО для иона H 2 + дает величины E 0 = 1,77 эВ и r 0 = 0,13 нм, а согласно экспериментальным данным E 0 = 2,79 эВ и r 0 = 0,106 нм, т. е. расчет качественно согласуется с экспериментальными данными.

Если при образовании молекулы из атомов электрон займет нижнюю орбиталь, то полная энергия системы понизится – образуется химическая связь.

Поэтому волновую функцию 1 (соответствует s )называют связывающей орбиталью. Переход электрона на верхнюю орбиталь 2 (соответствует as ) увеличит энергию системы. связь при этом не образуется, система станет менее устойчивой. Такую орбиталь называют разрыхляющей. Связывающее и разрыхляющее действие электронов определяется видом волновых функций 1 и 2 .

В молекуле водорода H 2 на нижней связывающей орбитали размещается два электрона, что приводит к увеличению силы связи и понижению энергии связывающей орбитали. Результаты расчета по методу МО для молекулы водорода H 2 приводят к значению Е 0 = 2,68 эВ и r 0 = 0,085 нм, а эксперимент дает значения Е 0 = 4,7866 эВ и r 0 = 0,074 нм. По порядку величины результаты согласуются, хотя энергия самого низкого состояния отличается чуть ли не в два раза от значения, полученного экспериментально. Аналогичным образом образуются молекулярные орбитали и для других двухатомных молекул, состоящих из более тяжелых атомов.

5.4. Типы химических связей
в двухатомных молекулах.
σ
-и π -связи

Наиболее распространенными видами связи в молекулах являются σ- и π-связи, которые образуются в результате перекрывания электронных облаков внешних (валентных) электронов. Имеются и другие виды химических связей, которые характерны для комплексных соединений, содержащих атомы наиболее тяжелых элементов.

На рис. 5.13 и 5.14 приведены типичные варианты перекрывания s-, р - и d- электронных облаков при образовании химических связей. Перекрывание их происходит таким образом, чтобы при данной длине связи область перекрывания оказалась наибольшей, что отвечает максимально возможной силе химической связи.

Под σ-связью в молекуле будем понимать такую связь, которая образуется за счет перекрывания внешних s - или p -электронов. при этом перекрывании электронное облако в пространстве между атомами обладает цилиндрической симметрией относительно оси, проходящей через ядра атомов (см. рис. 5.13) Область перекрывания облаков при цилиндрически расположенной электронной плотности лежит на оси связи. Волновая функция определяется величиной электронной плотности в межъядерном пространстве (см. рис. 5.13). Максимальная электронная плотность описывается σ-связывающей МО орбиталью, а минимальная – σ*‑разрыхляющей. В связывающих МО электронная плотность между ядрами наибольшая и отталкивание ядер уменьшается. Энергия молекулы меньше, чем энергия АО, молекула устойчива, интеграл перекрывания S > 0. В антисвязывающих (или разрыхляющих) МО электронная плотность между ядрами равна нулю, увеличивается отталкивание ядер, энергия МО больше, чем энергия АО. Состояние молекулы неустойчиво, интеграл перекрывания S < 0.

Каждая пара АО, образующая МО, дает две молекулярные орбитали (связывающую и антисвязывающую), что находит отражение в появлении двух энергетических уровней и соответственно потенциальных кривых (см. рис. 5.12). В нормальном состоянии связывающие орбитали заполнены электронами.

Кроме связывающей и разрыхляющих орбиталей имеются несвязывающие орбитали. Обычно это АО атома, не образующего химических связей. Интеграл перекрывания в данном случае равен нулю. Что имеет место в том случае, если АО относятся к различным типам симметрии.

Наряду с σ-связями в молекуле могут существовать и π-связи, которые образуются в результате перекрывания атомных р-орбиталей или d - и р -орбиталей (рис. 5.14).

Электронное облако π-связи не обладает аксиальной симметрией. Оно симметрично относительно плоскости, проходящей через ось молекулы. Плотность электронного облака обращается в этой плоскости в нуль. На рис. 5.15 показано образование π-связи и электронная плотность для
π св -орбитали. π-связь слабее σ-связи, и на диаграмме уровней энергия π–связи изображается выше энергии σ-связи. Электронные конфигурации молекулы и заполнение электронами различных оболочек проводится таким же образом, как и для атомов. Электроны помещаются последовательно по два с учетом принципа Паули (начиная с более низкой МО и заканчивая более высокой) с противоположными спинами на каждый энергетический уровень (без учета вырождения).

Рассмотрим химические связи в простейших двухатомных молекулах, их энергетические уровни и заполнение их электронами.

Известно, в ионе молекулы Н 2 + химическая связь осуществляется одним 1s -электроном, и находится он на связывающей орбитали σ s . Это означает, что из 1s -атомной орбитали образуется связывающая молекулярная σ-орбиталь. для молекулы водорода Н 2 уже два 1s электрона образуют аналогичную орбиталь – (σ s) 2 . Можно считать, что два связывающих электрона соответствуют одинарной химической связи. Рассмотрим электронное строение молекулы Не 2 . Атом гелия содержит два валентных (1s -электрона) электрона, поэтому при рассмотрении молекулы мы должны четыре валентных электрона разместить на молекулярных орбиталях. Согласно принципу Паули два из них разместятся на связывающей σ s -орбитали, а два других на разрыхляющей σ s *-орбитали. Электронное строение этой молекулы можно записать следующим образом:

Не 2 [(σ s) 2 (σ s *) 2 ].

Поскольку один разрыхляющий электрон уничтожает действие связывающего электрона, то такая молекула существовать не может. У нее два связывающих и два разрыхляющих электрона. Порядок химической связи равен нулю. А вот ион Не 2 + уже существует. для него электронное строение будет иметь следующий вид:

Не 2 + [(σ s) 2 (σ s *) 1 ].

Один разрыхляющий электрон не компенсирует двух связывающих.

Рассмотрим образование молекул из атомов элементов второго периода таблицы Менделеева. Для этих молекул будем считать, что электроны заполненного слоя не принимают участия в химической связи. В молекуле Li 2 имеются два связывающих (2s ) электрона – Li 2 (σ s) 2 . Молекула Ве 2 должна иметь электронную конфигурацию

Ве 2 [(σ s) 2 (σ s *) 2 ],

в которой на молекулярных орбиталях располагаются четыре электрона (по два 2s -электрона от каждого атома). Число связывающих и разрыхляющих электронов одинаково, поэтому молекулы Ве 2 не существует (здесь полная аналогия с молекулой Не 2).

В молекуле В 2 на молекулярных орбиталях приходится размещать шесть электронов (четыре 2s -электрона и два 2р -электрона). Электронная конфигурация запишется следующим образом:

В 2 [(σ s) 2 (σ s *) 2 (π x ) (π y )].

Два электрона в молекуле В 2 располагаются по одному на π x - и π y -орбиталях с одинаковой энергией. По правилу Гунда они имеют параллельные спины (на одной орбитали не могут располагаться два электрона с одинаковыми спинами). Действительно, эксперимент показывает наличие в этой молекуле двух неспаренных электронов.

В молекуле углерода С 2 на молекулярных орбиталях нужно разместить восемь валентных электронов (два 2s -электрона и два 2р электрона одного и другого атомов). Электронное строение будет выглядеть следующим образом:

С 2 [(σ s) 2 (σ s *) 2 (π x ) 2 (π y ) 2 ].

В молекуле С 2 разрыхляющих электронов два, а связывающих шесть. Избыток связывающих электронов равен четырем, поэтому связь в этой молекуле двойная. Связь в молекуле азота N 2 осуществляется электронами 2s 2 и 2р 3 . Рассмотрим только участие в связи трех неспаренных p -электронов. 2s -электрона составляют заполненную оболочку и их участие в образовании связи близко к нулю. Облака трех p x , p y , p z электронов простираются в трех взаимно перпендикулярных направлениях. Поэтому в молекуле азота возможна лишь s-связь за счет концентрации электронной плотности вдоль оси z (рис. 5.16), т. е. s образуется за счет пары p z -электронов. Остальные две химические связив молекуле N 2 будут только p-связями (за счет перекрывания p x p x , p y p y электронов. на рис. 5.16, б это перекрывание показано отдельно.

Таким образом, три общие электронные пары в молекуле азота образуют одну s-и две p-связи. В этом случае говорят о тройной химической связи. Два атома не могут быть связаны между собой более чем тремя электронными парами. Электронная конфигурация молекулы N 2 имеет следующий вид:

N 2 [(σ s) 2 (σ x *) 2 (π x ,y ) 4 (σ z ) 2 ].

Высшей занятой орбиталью считается σ z -орбиталь, образованная за счет перекрытия двух р -орбиталей, лепестки которых направлены вдоль оси связи (ось z ). Это обусловлено закономерностью изменения энергии 2s - и 2р -электронов с ростом порядкового номера элемента.

В молекуле кислорода О 2 по молекулярным орбиталям должны быть распределены двенадцать валентных электронов, два из которых, по сравнению с молекулой N 2 , должны занять разрыхляющие орбитали. Общее электронное строение запишется так:

О 2 [(σ s) 2 (σ s *) 2 (σ z) 2 (π x ) 2 , (π y ) 2 (π x *) 1 (π y *) 1 ].

Как и в молекуле B 2 , два электрона с параллельными спинами занимают две различные π-орбитали. Это обусловливает парамагнитные свойства молекулы кислорода, что соответствует опытным данным. Избыток четырех связывающих электронов обеспечивает порядок связи в молекуле, равный двум.

В следующей за кислородом молекуле F 2 надо дополнительно расположить на орбиталях 2 валентных р -электрона, поэтому молекула фтора будет иметь следующее электронное строение:

F 2 [(σ s) 2 (σ s *) 2 (σ z ) 2 (π x ) 2 (π y ) 2 (π x *) 2 (π y *) 2 ].

Избыток двух связывающих электронов характеризует одинарную химическую связь в молекуле F 2 .

Легко показать, что молекулы Ne 2 не существует, так как в ней число связывающих электронов равно числу разрыхляющих.

Рассмотрим электронное строение отдельных двухатомных молекул, состоящих из разнородных атомов, на примере молекулы СО. В молекуле СО на молекулярных орбиталях располагается десять валентных электронов. Ее электронное строение аналогично электронному строению N 2 , в которой также десять валентных электронов располагаются на тех же молекулярных орбиталях. Этим объясняется близость химических и физических свойств этих молекул. На рис. 5.17 приведена диаграмма уровней энергии МО в молекуле СО.

Из диаграммы видно, что уровни энергии 2s -электронов углерода и кислорода значительно различаются, поэтому их линейная комбинация не может соответствовать реальной МО в данной молекуле, как это могло следовать из упрощенных комбинаций. 2s -электроны кислорода остаются в молекуле на том же энергетическом уровне, что и в атоме, образуя несвязывающую молекулярную орбиталь (s H). 2s – АО углерода при линейной комбинации с соответствующей по симметрии 2р - АО кислорода (2р z ) образуют связывающую s и разрыхляющую s * молекулярную орбитали. При линейной комбинации 2р x и 2р y – АО углерода и кислорода образуются молекулярные орбитали p x (связывающая) и π x * (разрыхляющая) и аналогично p y и p y * . 2р z – АО углерода, на которую перейдет один s -электрон в результате реакции будет второй несвязывающей
p Н -орбиталью. На нее перейдет дополнительно один из р -электронов кислорода. Таким образом, десять валентных электронов в молекуле СО заполняют три связывающие и две несвязывающие МО. Электронная конфигурация внешних электронов молекулы СО будет выглядеть следующим образом:

(σ Н) 2 (σ) 2 (π x,y ) 4 (π H)].

В молекуле NО на орбиталях нужно расположить одинадцать электронов, что приведет к строению электронной оболочки типа:

NО [(σ s ) 2 (σ s *) 2 (π x ) 2 (π y ) 2 (σ z ) 2 (π x *)].

Как видно, число избыточных связывающих электронов равно пяти. С точки зрения порядка химической связи надо ввести дробное число, равное 2,5, для ее характеристики. Если в этой молекуле удалить один электрон, то получится ион NO + с более прочной межатомной связью, так как число связывающих электронов здесь будет равно шести (удален один электрон с разрыхляющей π x * -орбитали).

Если два атома могут связываться только одной общей парой электронов, то между такими атомами всегда образуется σ-связь. π-связь осуществляется в том случае, если два атома связываются двумя или тремя общими электронными парами. Типичным примером может служить молекула азота. Химическая связь в ней осуществляется за счет трех неспаренных p x , p y , и p z -электронов. Угловые лепестки их орбиталей простираются в трех взаимно перпендикулярных направлениях. Если за линию связи принять ось z , то перекрывание р z -атомных орбиталей дадут одну σ z -связь. Остальные орбитали p x и p y дадут только π-связи. Таким образом, три пары связывающих электронов дают одну σ-связь и две π-связи. Итак, все одинарные химические связи между атомами являются σ-связями. В любой кратной связи одна σ-связь, а остальные – π-связи.

5.5. Систематика электронных состояний
в двухатомной молекуле

Для систематики электронных состояний в двухатомных молекулах, аналогично как и в атомах, вводятся определенные квантовые числа, характеризующие орбитальное и спиновое движение электронов. Наличие электрических и магнитных полей как в молекулах, так и в атомах, приводит к векторному сложению орбитальных и спиновых моментов количества движения. Однако в двухатомной молекуле валентные электроны движутся не в сферически-симметричном электрическом поле, что характерно для атома, а в аксиально-симметричном, что характерно для двухатомных или линейных многоатомных молекул. Все двухатомные молекулы относятся к двум типам симметрии: D h или С ∞ u . К первому типу относятся молекулы, состоящие из одинаковых атомов, ко второму – из разноименных. Ось бесконечного порядка направлена вдоль химической связи. в том же направлении действует и электрическое поле, которое сильно влияет на полный орбитальный момент, вызывая его прецессию вокруг оси поля. В результате этого полный орбитальный момент перестает квантоваться, а сохраняется лишь квантование его проекции L z на ось молекулы:

L z = m L· ħ ,(5.65)

где m L – квантовое число, принимающее значения m L = 0, ±1, ±2и т. д. При этом энергия электронного состояния зависит только от абсолютного значения m L , что соответствует тому факту, что с наглядной точки зрения оба вращения электрона (правое и левое) вокруг оси молекулы приводят к одному и тому же значению энергии. Введем некоторую величину Λ, которая характеризует абсолютную величину проекции полного орбитального момента на ось молекулы. Тогда значения Λ будут целыми положительными числами, различающимися на одну единицу Λ = êm L ê = 0, 1,2,...

Для классификации электронных состояний двухатомной молекулы числа Λ играют ту же роль, что и орбитальное квантовое число l для классификации электронных состояний атомов. Общее суммарное квантовое число для атомов принято обозначать , где суммирование производится по всем электронам атома. Если L = 0, то такие электронные состояния обозначаются буквой s ; если L = 1, то электронные состояния обозначаются буквой р ., т. е.

Хронологически метод МО появился позже метода ВС, по­скольку оставались в теории ковалентной связи вопросы, кото­рые не могли получить объяснение методом ВС. Укажем некото­рые из них.

Как известно, основное положение метода ВС состоит в том, что связь между атомами осуществляется за счет электронных пар (свя­зующих двухэлектронных облаков). Но это не всегда так. В ряде слу­чаев в образовании химической связи участвуют отдельные элек­троны. Так, в молекулярном ионе Н 2 + одноэлектронная связь. Ме­тод ВС образование одноэлектронной связи объяснить не может, она противоречит его основному положению.

Метод ВС не объясняет также роли неспаренных электронов в мо­лекуле. Молекулы, имеющие неспаренные электроны, парамагнитны , т. е. втягиваются в магнитное поле, так как неспаренный электрон создает постоянный магнитный момент. Если в молекулах нет неспа­ренных электронов, то они диамагнитны – выталкиваются из магнит­ного поля. Молекула кислорода парамагнитна, в ней имеется два электрона с параллельной ориентацией спинов, что противоречит методу ВС. Необходимо также отметить, что метод ВС не смог объяснить ряд свойств комплексных соединений – их цветность и др.

Чтобы объяснить эти факты, был предложен метод молекулярных орбиталей (ММО).

4.5.1. Основные положения ммо, мо.

1. В молекуле все электроны являются общими. Сама молекула - это единое целое, совокупность ядер и электронов.

2. В молекуле каждому электрону соответствует молекулярная орбиталь, подобно тому как каждому электрону в атоме соответствует атомная орбиталь. И обозначения орбиталей аналогичны:

АО s, p, d, f

МО σ, π, δ, φ

3. В первом приближении молекулярная орбиталь представляет собой линейную комбинацию (сложение и вычитание) атомных орби­талей. Поэтому говорят о методе МО ЛКАО (молекулярная орбиталь есть линейная комбинация атомных орбиталей), при которой из N АО образуется N МО (это основное положение метода).

Рис. 12. Энергетическая

схема образо­вания моле-

кулы водорода Н 2

Рассмотрение химических связей в методе МО заключается в рас­пределении электронов в молекуле по ее орбиталям. Последние за­полняются в порядке возраста­ния энергии и с учетом принципа Паули. В этом методе пред­полагается увеличение электрон­ной плотности между ядрами при образовании ковалентной связи.

Пользуясь положениями 1-3, объясним образование молекулы H 2 с точки зрения метода МО. При достаточном сближении ато­мов водорода происходит перекрывание их электронных орби­талей. Согласно п. 3 из двух одинаковых ls-орбиталей образуются две молекуляр­ные орбитали: одна из них от сложения атомных орбиталей, другая от их вычитания (рис.12). Энергия первой E 1 < E 2 , а энергия второй E 2 < E 3 .

Молекулярная орбиталь, энергия которой меньше энергии атом­ной орбитали изолированного атома, называется связывающей (обозна­чается символом св), а находящиеся на ней электроны-связываю­щими электронами.

Молекулярная орбиталь, энергия которой больше энергии атомной орбитали, называется антисвязывающей или раз­рыхляющей (обозначается символом разр), а находящиеся на ней электроны - разрыхляющими электронами.

Если у соединяющихся атомов водорода спины электронов антипараллельны, то они займут связывающую МО, возникает химиче­ская связь (рис. 12), сопровождающаяся выделением энергии E 1 (435 кДж/моль). Если же спины электронов атомов водорода параллельны, то они в соответствии с принципом Паули не могут разместиться на одной молекулярной орбитали: один из них раз­местится на связывающей, а другой на разрыхляющей орбитали, значит химическая связь образоваться не может.

Согласно методу МО образование молекул возможно, если число электронов на связывающих орбиталях больше числа электронов на разрыхляющих орбиталях. Если же число электронов на связы­вающих и разрыхляющих орбиталях одинаково, то такие молекулы образоваться не могут. Так, теория не допускает существования моле­кулы Нe 2 , так как в ней два электрона находились бы на связываю­щей орбитали и два - на разрыхляющей. Всегда разрыхляющий электрон сводит на нет действие связывающего электрона.

В системе обозначений метода МО реакцию образования моле­кулы водорода из атомов записывают так:

2H = H 2 [(σ CB 1s) 2 ],

т.е. используются символы, выражающие размещение электронов на атомных и молекулярных орбиталях. При этом символ каждой МО заключается в круглые скобки и над скобками справа проставляется число электронов на этой орбитали.

Число валентных связей опреде­ляется по формуле:

где: В – число связей;

N СВ N РАЗР – соответственно число связываю­щих и разрыхляющих электронов в молекуле.

В молекуле водорода В = (2-0) : 2=1, водород одновалентен. Молекула Н 2 диамагнитна (электроны спарены).

Теперь легко объясняется одноэлектронная связь в молекуляр­ном ионе Н 2 + (рис.13). Единственный электрон этого иона занимает энергетически наиболее выгодную орбиталь св 1s. Уравнение процесса:

H + H + = H 2 + [(σ св 1s) 1 ], ∆H = - 259,4 кДж


Рис. 13. Энергетическая схема Рис. 14. Энергетическая схема

образования молекулярного образования дигелий-иона Hе 2

иона водорода H 2

Число связей в ионе H 2 + равно ½ (связь одним электроном). Ион H 2 + - парамагнитен (имеет один неспаренный электрон).

Возможно существование молекулярного дигелий иона Не 2 + (рис.14). Уравнение его образования

He + He + = He 2 + [(σ CB 1s) 2 (σ разр 1s) 1 ], ∆H = - 292,8 кДж

Этот ион экспериментально обнаружен. Число связей в нем

Рис. 15 . Энергетическая схема образования двухатом­ных гомонуклеарных молекул элементов второго пе­риода

(2-1) : 2 = 1 / 2 . Ион- парамагнитен (имеет неспаренный электрон).

4.5.2. Основные двухатомные гомонуклеарные молекулы элементов 2-го периода. Рассмотрен­ный принцип построения МО из двух одинаковых АО сохраняется при построении гомонуклеарных молекул элементов 2-го периода системы Д.И. Менделеева. Они образуются в результате взаимодействия 2s- и 2р x -, 2р y - и 2р z -орбиталей.

Участием внутренних электронов 1s-орбиталей можно пренебречь (на последующих энергети­ческих схемах они не учтены). 2s-орбиталь одного атома взаимодействует только с 2s-орбиталью другого атома (должна быть близость значений энергий взаимодей­ствующих орбиталей), образуя МО σ 2 s св и σ 2 s разр. При перекрывании (взаимодействии) 2р-орбиталей обоих атомов образуются МО: σ х св, σ х разр, π у св, π у разр, π z св, π z разр

(

Рис. 16. Энергети-ческая схема об-разования моле-кулы Li 2

рис.15). Т.е. из шести исходных 2р-орбиталей образуется шесть МО – три связывающих и три разрыхляющих. МО, образующиеся изs - и р x -атомных орбиталей, обозначаются буквой , а из р у - и р z - – буквой . С помощью рис. 15 легко представить электронные конфигурации этих молекул в системе обозначений метода МО.

Пример 1. Молекула лития Li 2 . Схема ее образования представлена на рис.16. В ней два связывающих электрона, молекула диамагнитна (электроны спарены). Написание уравнения и формулы можно упростить, обозначив внутренний уровень через K:

2Li = Li 2

Число связей равно 1.

Пример 2. Молекула бериллия Be 2 . Восемь электронов молекулы размещены на МО следующим образом:

Ве 2

Как видно, число связей в молекуле равно нулю: два разрыхляющих электрона уничтожают действие двух связывающих. Такая молекула не может существовать, и она до сих пор не обнаружена. Необходимо отметить, что невозможны двухатомные молекулы у всех элементов IIА-группы, палладия и инертных элементов, так как их атомы имеют замкнутую электронную структуру.

Пример 3. Молекула азота N 2 (рис. 17). Распределение 14 электронов по МО записывается так:

N 2 [(σ CB 1s) 2 (σ разр 1s) 2 (σ CB 2s) 2 (σ разр 2s) 2 (π CB 2p y) 2 (π CB 2p z) 2 (σ CB 2p x) 2 ]

или сокращенно:

N 2 [КК (σ s CB)2 (σ s разр)2(π y CB)2(π z CB)2(σ x CB)2]

1 -1 +1 +1 +1=3

Рис. 17. Энергетическая схема образования молекулы N 2

Под формулой указано число связей в молекуле, исходя из расчета, что два электрона, расположенные на одной МО, образуют валентную связь; знак плюс обозначает связующие орбитали, знак минус – разрыхляющие. Число связей в молекуле 3. нет неспаренных электронов – молекула диамагнитна.

Пример 4. Молекула O 2 (рис. 18). Электроны размещаются по МО в последовательности:

O 2 [КК(σ s CB)2(σ s разр)2(π y CB)2(π z CB)2(σ x CB)2(π y разр)1(π z разр)1]

1 -1 +1 +1 +1 - 1 / 2 - 1 / 2 =2

Рис. 18. Энергетическая схема образования молекулы O 2

В молекуле две валентные связи. Послед-ние два электрона размес-тились на различных π-разрыхляющих орбиталях в соответствии с правилом Гунда. Два неспаренных электрона обусловливают парамагнетизм молекулы кислорода.

4.5.3. Двухатомные гетеронуклеарные молекулы элементов 2-го периода. Энерге­тическая схема образования МО гетеронуклеарных двухатомных молекул, состоящих из атомов элементов 2-го периода, представлена на рис. 19. Она сходна со схемой образования МО гомонуклеарных молекул.

Основное различие сводится к тому, что значения энергии одноименных орбиталей атомов разных элементов не равны между собой, поскольку различны заряды ядер атомов. В качестве примера рассмотрим электронную валентную конфи-гурацию молекул СО и NO.

Рис. 19 . Энергетическая схема образования двух атомных гетеро-нуклеарных молекул элементов второго периода

Пример 5 . Молекула СО. Внешняя электронная оболочка атома углерода имеет кон­фигурацию 2s 2 2p 2 , а кислорода 2s 2 2p 4 . Стало быть, в заполнении МО молекулы СО принимают участие 4+6=10 электронов. Из них два размещаются на орбитали σ 2 s св, два – на орбитали σ 2 s разр, четыре – на орбиталях π y CB и π z CB , а девятый и десятый – на σ х св. Таким образом, электронную валентную конфигурацию молекулы СО можно выразить формулой:

СО[КК(σ s CB)2 (σ s разр)2(π y CB)2(π z CB)2 (σ х CB)2]

1 -1 +1 +1 +1=3

Как и предусматривалось теорией ВС, в молекуле СО три валентные связи (сравните с N 2). Молекула диамагнитна – все электроны спарены.

Пример 6. Молекула NO. На МО молекулы оксида азота (II) должны разместиться 11 электронов: пять азота – 2s 2 2p 3 и шесть кислорода – 2s 2 2p 4 . Десять изних разме­щаются так же, как и электроны молекулы оксида углерода (II) (пример 5), а одиннадца­тый разместится на одной из разрыхляющих орбиталей – π y разр или π Z разр (эти ор­битали энергетически эквивалентны между собой). Тогда

NО[КК(σ s CB)2(σ s разр)2(π y CB)2(π z CB)2(σ х CB)2(π y разр)1]

1 -1 +1 +1 +1 - 1 / 2 =2 1 / 2

Значит, молекула NO имеет две с половиной валентные связи, энергия связи боль­шая - 677,8кДж/моль. Она парамагнитна, так как содержит один неспаренный электрон.

Приведенные примеры служат иллюстрацией возможностей метода МО в объяснении строения и свойств молекул.

Пример 7. Какую валентность, обусловленную неспаренными электронами (спинвалентность), может проявлять фосфор в нормальном и возбужденном состояниях?

Решение. Распределение электронов внешнего энергетического уровня фосфора 3s 2 3р 3 (учитывая правило Хунда,
) по квантовым ячейкам имеет вид:

3s 3рx 3py 3pz

Атомы фосфора имеют свободные d-орбитали, поэтому возможен переход одного 3s-электрона в 3d-состояние:

3s 3px 3py 3pz 3dxy

Отсюда валентность (спинвалентность) фосфора в нормальном состоянии равна трем, а в возбужденном - пяти.

Пример 8 . Что такое гибридизация валентных орбиталей? Какое строение имеют молекулы типа АВ n , если связь в них образуется за счет sp -, sp 2 -, sp 3 -гибридизации орбиталей атома А?

Решение. Теория валентных связей (ВС) предполагает участие в образовании ковалентных связей не только чистых АО, но и смешанных, так называемых гибридных, АО. При гибридизации первоначальная форма и энергия орбиталей (электронных облаков) взаимно изменяются и образуются орбитали (облака) новой одинаковой формы и с одинаковой энергией. Число гибридных орбиталей (q) равно числу исходных. Ответ см. в табл. 13.

Метод молекулярных орбиталей основан на предположении, что электроны в молекуле расположены на молекулярных орбиталях, аналогично атомным орбиталям в изолированном атоме . Каждой молекулярной орбитали соответствует определенный набор молекуляр-ных квантовых чисел. Для молекулярных орбиталей сохраняет справед-ливость принцип Паули, т.е. каждой молекулярной орбитали может находиться не более двух электронов с антипараллельными спинами.

В общем случае, в многоатомной молекуле электронное облако принадлежит одновременно всем атомам, т.е. участвует в образовании многоцентровой химической связи. Таким образом, все электроны в молекуле принадлежат одновременно всей молекуле, а не являются собственностью двух связанных атомов . Следовательно, молекула рассматривается как единое целое, а не как некая совокупность индивидуальных атомов .

В молекуле, как и в любой системе из ядер и электронов, состояние электрона на молекулярных орбиталях должно описываться соответствую-щей волновой функцией. В наиболее распространенном варианте метода молекулярных орбиталей волновые функции электронов находят, представляя молекулярную орбиталь как линейную комбинацию атомных орбиталей (сам вариант получил сокращенное наименование «МОЛКАО»).

В методе МОЛКАО полагают, что волновая функция y , отвечаю-щая молекулярной орбитали, может быть представлена в виде суммы:

y = с 1 y 1 + с 2 y 2 + ¼ + с n y n

где y i – волновые функции, характеризующие орбитали взаимо-действующих атомов;

с i – числовые коэффициенты, введение которых необходимо потому, что вклад различных атомных орбиталей в суммарную мо- лекулярную орбиталь может быть различным.

Поскольку квадрат волновой функции отражает вероятность нахождения электрона в какой-либо точке пространства между взаимодействующими атомами, представляет интерес выяснить, какой вид должна иметь молекулярная волновая функция. Проще всего решить этот вопрос в случае комбинации волновых функций 1s-орбиталей двух одинаковых атомов:

y = с 1 y 1 + с 2 y 2

Поскольку для одинаковых атомов с 1 = с 2 = с, следует рассмотреть сумму

y = с 1 (y 1 + y 2)

Постоянная с влияет только на величину амплитуды функции, следовательно, для нахождения формы орбитали достаточно выяснить, что будет представлять собой сумма y 1 и y 2 .

Расположив ядра двух взаимодействующих атомов на расстоянии, равном длине связи, и изобразив волновые функции 1s-орбиталей, произведем их сложение. При этом оказывается, что в зависимости от знаков волновых функций, их сложение дает различные результаты. В случае сложения функций с одинаковыми знаками (рис. 4.15, а) значения y в межъядерном пространстве больше, чем значения y 1 и y 2 . В противоположном случае (рис. 4.15, б) суммарная молекулярная орбиталь характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с волновыми функциями исход-ных атомов.

y 2
y 1



Рис. 4.15. Схема сложения атомных орбиталей при образовании

связывающей (а) и разрыхляющей (б) МО

Поскольку квадрат волновой функции характеризует вероятность нахождения электрона в соответствующей области пространства, т.е. плотность электронного облака, это означает, что в первом варианте сложения волновых функций плотность электронного облака в межъядерном пространстве увеличивается, а во втором – уменьшается.

Таким образом, сложение волновых функций с одинаковыми знаками приводит к возникновению сил притяжения положительно заряженных ядер к отрицательно заряженной межъядерной области и образованию химической связи. Такая молекулярная орбиталь называется связывающей , а электроны, находящиеся на ней - связывающими электронами .

В случае сложения волновых функций разных знаков притяжение каждого ядра в направлении межъядерной области ослабевает, и преобладают силы отталкивания - химическая связь не укрепляется, а образовавшаяся молекулярная орбиталь называется разрыхляющей (электроны, на ней расположенные – разрыхляющими электронами ).

Аналогично атомным s-, p-, d-, f- орбиталям, МО обозначают s- , p- , d- , j- орбитали . Возникающие при взаимодействии двух 1s-орбиталей молекулярные орбитали обозначают: s -связывающая и s (со звездочкой) - разрыхляющая . При взаимодействии двух атомных орбиталей всегда образуются две молекулярные - связывающая и разрыхляющая.

Переход электрона с атомной 1s- орбитали на s - орбиталь, приводящий к образованию химической связи, сопровождается выделением энергии. Переход электрона с 1s-орбитали на s -орбиталь требует затраты энергии. Следовательно, энергия s -связывающей орбитали ниже, а s -разрых-ляющей – выше, чем энергия исходных атомных 1s-орбиталей, что принято изображать в виде соответствующих диаграмм (рис. 4.16).

АО МО АО

Рис. 4.16. Энергетическая диаграмма образования МО молекулы водорода

Наряду с энергетическими диаграммами образования молекулярных орбиталей, интересен внешний вид молекулярных облаков, полученных путем перекрывания или отталкивания орбиталей взаимодействующих атомов.

Здесь следует учесть, что взаимодействовать могут не любые орбитали, а лишь удовлетворяющие определенным требованиям.

1. Энергии исходных атомных орбиталей не должны сильно отличаться друг от друга – они должны быть соизмеримы по величине.

2. Атомные орбитали должны обладать одинаковыми свойствами симметрии относительно оси молекулы.

Последнее требование приводит к тому, что могут комбинировать между собой, например, s – s (рис. 4.17, а), s – p x (рис. 4.17, б), р х – р х, но не могут s – p y , s – p z (рис. 4.17, в), т.к. в первых трех случаях обе орбитали при повороте вокруг межъядерной оси не меняют (рис. 3.17 а,б), а в последних случаях – изменяют знак (рис. 4.17, в). Это приводит, в последних случаях к взаимному вычитанию образующихся областей перекрывания, и оно не происходит.

3. Электронные облака взаимодействующих атомов должны максимально перекрываться. Это означает, например, что невозможно комбинирование p x – p y , p x – p z или p y – p z орбиталей, не имеющих областей перекрывания.


(а) (б) (в)

Рис. 4.17. Влияние симметрии атомных орбиталей на возможность

образования молекулярных орбиталей: МО образуются (а, б),

не образуются (в)

В случае взаимодействия двух s-орбиталей образующиеся s - и s -орбитали выглядят следующим образом (рис. 3.18)

1s
s 1
1s

+

Рис. 4.18. Схема комбинирования двух 1s-орбиталей

Взаимодействие двух p x -орбиталей также дает s-связь, т.к. возникающая связь направлена вдоль прямой, соединяющей центры атомов. Возникающие молекулярные орбитали обозначают соответст-венно s и s , схема их образования представлена на рис. 4.19.



Рис. 4.19. Схема комбинирования двух p x -орбиталей

При комбинации р у – р у или р z – p z -орбиталей (рис. 4.20) s-орбитали образоваться не могут, т.к. области возможного перекрывания орбиталей не расположены на прямой, соединяющей центры атомов. В этих случаях образуются вырожденные p у - и p z -, а также p - и p - орбитали (термин «вырожденные» обозначают в данном случае «одинаковые по форме и энергии»).

Рис. 4.20. Схема комбинирования двух p z -орбиталей

При расчетах молекулярных орбиталей многоатомных систем могут, кроме того, появиться энергетические уровни, лежащие посередине между связывающими и разрыхляющими молекулярными орбиталями . Такие МО называют несвязывающими .

Как и в атомах, электроны в молекулах стремятся занять молекулярные орбитали, отвечающие минимальной энергии. Так, в молекуле водорода оба электрона перейдут с 1s-орбитали на связывающую s 1 s -орбиталь (рис. 4.14), что можно изобразить формульной записью:

Как и атомные, молекулярные орбитали могут вмещать не более двух электронов.

Метод МО ЛКАО не оперирует понятием валентности, но вводит термин «порядок», или «кратность связи».

Порядок связи (Р) равен частному от деления разности числа связывающих и разрыхляющих электронов на число взаимодействующих атомов, т.е. в случае двухатомных молекул половине этой разности . Порядок связи может принимать целочисленные и дробные значения, в том числе и нуль (если порядок связи равен нулю, система неустойчива, и химическая связь не возникает).

Следовательно, с позиции метода МО, химическую связь в молекуле H 2 , образованную двумя связывающими электронами, следует рассматри-вать как одинарную связь, что соответствует и методу валентных связей.

Понятно, с точки зрения метода МО, и существование устойчивого молекулярного иона H . В этом случае единственный электрон переходит с атомной 1s-орбитали на молекулярную s 1 S -орбиталь, что сопровождает-ся выделением энергии и образованием химической связи с кратностью 0,5.

В случаях молекулярных ионов H и He (содержащих три электрона) третий электрон помещается уже на разрыхляющую s -орбиталь (например, He (s 1 S) 2 (s ) 1), и порядок связи в таких ионах согласно определению 0,5. Такие ионы существуют, но связь в них слабее, чем в молекуле водорода.

Поскольку в гипотетической молекуле Не 2 должно быть 4 электрона, они могут расположиться только по 2 на s 1 S - связывающей и s - разрыхляющей орбиталях, т.е. порядок связи равен нулю, и двухатомных молекул гелия, как и других благородных газов, не существует. Аналогично не могут образовываться молекулы Be 2 , Ca 2 , Mg 2 , Ba 2 и т.д.

Таким образом, с точки зрения метода молекулярных орбиталей из двух взаимодействующих атомных орбиталей образуются две молекуляр-ные: связывающая и разрыхляющая. Для АО с главными квантовыми числами 1 и 2 возможно образование МО, представленных в табл. 4.4.