Механика космического полета в элементарном изложении - Левантовский В.И.

Слово космос является синонимом слова Вселенная. Часто космос разделяют несколько условно на ближний, который возможно исследовать в настоящее время при помощи искусственных спутников Земли, космических аппаратов, межпланетных станций и других средств, и дальний - все остальное, несоизмеримо большее. По сути дела, под ближним космосом понимается Солнечная система, а под дальним - необъятные просторы звезд и галактик.

Буквальный смысл слова «космонавтика», представляющего собой сочетание двух греческих слов - «плавание во Вселенной». В обычном употреблении это слово означает совокупность различных отраслей науки и техники, обеспечивающих исследование и освоение космического пространства и небесных тел с помощью космических летательных аппаратов - искусственных спутников, автоматических станций различного назначения, пилотируемых космических кораблей.

Космонавтика, или, как ее иногда называют, астронавтика, объединяет в себе полеты в космическое пространство, совокупность отраслей науки и техники, служащих для исследования и использования космического пространства в интересах нужд человечества с использованием различных космических средств. Началом космической эры человечества считается 4 октября 1957 г. - дата, когда в Советском Союзе был запущен первый искусственный спутник Земли.

Теория космических полетов, представлявших давнюю мечту человечества, превратилась в науку в результате основополагающих трудов великого русского ученого Константина Эдуардовича Циолковского. Им были изучены основные принципы баллистики ракет, предложена схема жидкостного ракетного двигателя, установлены закономерности, определяющие реактивную силу двигателя. Так же были предложены схемы космических кораблей и даны широко вошедшие сейчас в практику принципы конструирования ракет. В течение продолжительного времени, до того момента, когда идеи, формулы и чертежи энтузиастов и ученых стали в конструкторских бюро и в цехах заводов превращаться в объекты, изготовленные «в металле», теоретический фундамент космонавтики покоился на трех китах: 1) теории движения космических аппаратов; 2) ракетной технике; 3) совокупности астрономических знаний о Вселенной. Впоследствии в недрах космонавтики зародился широкий цикл новых научно-технических дисциплин, таких, как теория систем управления космическими объектами, космическая навигация, теория космических систем связи и передачи информации, космическая биология и медицина и т. д. Сейчас, когда нам трудно представить себе космонавтику без этих дисциплин, полезно вспомнить о том, что теоретические основы космонавтики закладывались К. Э. Циолковским в то время, когда производились лишь первые опыты над использованием радиоволн и радио не могло считаться средством связи в космосе.

В течение многих лет в качестве средства связи всерьез рассматривалась сигнализация с помощью лучей солнечного света, отражаемых в сторону Земли зеркалами, находящимися на борту межпланетного корабля. Сейчас, когда мы привыкли не удивляться ни прямому телевизионному репортажу с поверхности Луны, ни полученным по радио фотографиям, сделанным вблизи Юпитера или на поверхности Венеры, в это трудно поверить. Поэтому можно утверждать, что теория космической связи, несмотря на всю свою важность, не является все же главным звеном в цепи космических дисциплин. Таким главным звеном служит теория движения космических объектов. Именно ее можно считать теорией космических полетов. Специалисты, занимающиеся этой наукой, сами называют ее по-разному: прикладная небесная механика, небесная баллистика, космическая баллистика, космодинамика, механика космического полета, теория движения искусственных небесных тел. Все эти названия имеют один и тот же смысл, точно выражаемый последним термином. Космодинамика, таким образом, является частью небесной механики - науки, изучающей движение любых небесных тел, как естественных (звезды, Солнце, планеты, их спутники, кометы, метеорные тела, космическая пыль), так и искусственных (автоматические космические аппараты и пилотируемые корабли). Но есть нечто, выделяющее космодинамику из небесной механики. Родившаяся в лоне небесной механики космодинамика пользуется ее методами, но не умещается в ее традиционных рамках.

Существенное отличие прикладной небесной механики от классической заключается в том, что вторая не занимается и не может заниматься выбором орбит небесных тел, в то время как первая занимается отбором из огромного числа возможных траекторий достижения того или иного небесного тела определенной траектории, которая учитывает многочисленные, зачастую противоречивые требования. Главное требование - минимальность скорости, до которой разгоняется космический аппарат на начальном активном участке полета и соответственно минимальность массы ракеты-носителя или орбитального разгонного блока (при старте с околоземной орбиты). Это обеспечивает максимальную полезную нагрузку и, следовательно, наибольшую научную эффективность полета. Учитываются также требования простоты управления, условий радиосвязи (например, в момент захода станции за планету при ее облете), условий научных исследований (посадка на дневной или ночной стороне планеты) и т. п. Космодинамика предоставляет в распоряжение проектировщиков космической операции методы оптимального перехода с одной орбиты на другую, способы исправления траектории. В поле ее зрения находится неведомое классической небесной механике орбитальное маневрирование. Космодинамика представляет собой фундамент общей теории космического полета (подобно тому как аэродинамика представляет собой фундамент теории полета в атмосфере самолетов, вертолетов, дирижаблей и других летательных аппаратов). Эту свою роль космодинамика делит с ракетодинамикой - наукой о движении ракет. Обе науки, тесно переплетаясь, лежат в основе космической техники. Обе они являются разделами теоретической механики, которая сама представляет собой обособившийся раздел физики. Будучи точной наукой, космодинамика использует математические методы исследования и требует логически стройной системы изложения. Недаром основы небесной механики были разработаны после великих открытий Коперника, Галилея и Кеплера именно теми учеными, которые внесли величайший вклад в развитие математики и механики. Это были Ньютон, Эйлер, Клеро, Даламбер, Лагранж, Лаплас. И в настоящее время математика помогает решению задач небесной баллистики и в свою очередь получает толчок в своем развитии благодаря тем задачам, которые космодинамика перед ней ставит.

Классическая небесная механика была чисто теоретической наукой. Ее выводы находили неизменное подтверждение в данных астрономических наблюдений. Космодинамика привнесла в небесную механику эксперимент, и небесная механика впервые превратилась в экспериментальную науку, подобную в этом отношении, скажем, такому разделу механики, как аэродинамика. На смену поневоле пассивному характеру классической небесной механики пришел активный, наступательный дух небесной баллистики. Каждое новое достижение космонавтики - это вместе с тем свидетельство эффективности и точности методов космодинамики. Космодинамика делится на две части: теорию движения центра масс космического аппарата (теорию космических траекторий) и теорию движения космического аппарата относительно центра масс (теорию «вращательного движения»).

Ракетные двигатели

Основным и почти единственным средством передвижения в мировом пространстве является ракета, которая для этой цели была впервые предложена в 1903 г. К. Э. Циолковским. Законы ракетного движения представляют собой один из краеугольных камней теории космического полета.

Космонавтика обладает большим арсеналом ракетных двигательных систем, основанных на использовании различных видов энергии. Но во всех случаях ракетный двигатель осуществляет одну и ту же задачу: он тем или иным способом выбрасывает из ракеты некоторую массу, запас которой (так называемое рабочее тело) находится внутри ракеты. На выбрасываемую массу со стороны ракеты действует некоторая сила, и согласно третьему закону механики Ньютона - закону равенства действия и противодействия - такая же сила, но противоположно направленная, действует со стороны выбрасываемой массы на ракету. Эта последняя сила, приводящая ракету в движение, называется силой тяги. Интуитивно ясно, что сила тяги должна быть тем больше, чем большая масса в единицу времени выбрасывается из ракеты и чем больше скорость, которую удается сообщить выбрасываемой массе.

Простейшая схема устройства ракеты:

На данном этапе развития науки и техники существуют ракетные двигатели, основанные на разных принципах действия.

Термохимические ракетные двигатели.

Принцип действия термохимических (или просто химических) двигателей не сложен: в результате химической реакции (как правило, реакции горения) выделяется большое количество тепла и нагретые до высокой температуры продукты реакции, стремительно расширяясь, с большой скоростью истечения выбрасываются из ракеты. Химические двигатели относятся к более широкому классу тепловых (теплообменных) двигателей, в которых истечение рабочего тела осуществляется в результате его расширения посредством нагревания. Для таких двигателей скорость истечения в основном зависит от температуры расширяющихся газов и от их среднего молекулярного веса: чем больше температура и чем меньше молекулярный вес, тем больше скорость истечения. По этому принципу работают жидкостные ракетные двигатели, ракетные двигатели твердого топлива, воздушно-реактивные двигатели.

Ядерные тепловые двигатели.

Принцип действия этих двигателей почти не отличается от принципа действия химических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «постороннего» тепла, выделяющегося при внутриядерной реакции. По этому принципу проектировались пульсирующие ядерные тепловые двигатели, ядерные тепловые двигатели на термоядерном синтезе, на радиоактивном распаде изотопов. Однако опасность радиоактивного заражения атмосферы и заключение договора о прекращении ядерных испытаний в атмосфере, в космосе и под водой, привели к прекращению финансирования упомянутых проектов.

Тепловые двигатели с внешним источником энергии.

Принцип их действия основан на получении энергии извне. По этому принципу проектируют гелиотермический двигатель, источником энергии которому служит Солнце. Концентрируемые с помощью зеркал солнечные лучи используются для непосредственного нагрева рабочего тела.

Электрические ракетные двигатели.

Этот обширный класс двигателей объединяет различные типы двигателей, которые очень интенсивно разрабатываются в настоящее время. Разгон рабочего тела до определенной скорости истечения производится за счет электрической энергии. Энергия получается от атомной или солнечной электростанции, находящейся на борту космического корабля (в принципе даже от химической батареи). Схемы разрабатываемых электрических двигателей чрезвычайно разнообразны. Это и электротермические двигатели, электростатические (ионные) двигатели, электромагнитные (плазменные) двигатели, электрические двигатели с забором рабочего тела из верхних слоев атмосферы.

Космические ракеты

Современная космическая ракета представляет собой сложное сооружение, состоящее из сотен тысяч и миллионов деталей, каждая из которых играет предназначенную ей роль. Но с точки зрения механики разгона ракеты до необходимой скорости всю начальную массу ракеты можно разделить на две части: 1) масса рабочего тела и 2) конечная масса, остающаяся после выброса рабочего тела. Эту последнюю часто называют «сухой» массой, так как рабочее тело в большинстве случаев представляет собой жидкое топливо. «Сухая» масса (или, если угодно, масса «пустой», без рабочего тела, ракеты) состоит из массы конструкции и массы полезной нагрузки. Под конструкцией следует понимать не только несущую конструкцию ракеты, ее оболочку и т. п., но и двигательную систему со всеми ее агрегатами, систему управления, включающую органы управления, аппаратуру навигации и связи, и т. п.,- одним словом, все то, что обеспечивает нормальный полет ракеты. Полезная нагрузка состоит из научной аппаратуры, радиотелеметрической системы, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения космического корабля и т. п. Полезная нагрузка - это то, без чего ракета может совершить нормальный полет.

Набору скорости ракеты благоприятствует то, что по мере истечения рабочего тела масса ракеты уменьшается, благодаря чему при неизменной тяге непрерывно растет реактивное ускорение. Но, к сожалению, ракета состоит не из одного лишь рабочего тела. По мере истечения рабочего тела освободившиеся баки, лишние части оболочки и т. д. начинают обременять ракету мертвым грузом, затрудняя ее разгон. Целесообразно в некоторые моменты отделять эти части от ракеты. Построенная таким образом ракета называется составной. Часто составная ракета состоит из самостоятельных ракет- ступеней (благодаря этому из отдельных ступеней можно составлять различные ракетные комплексы), соединенных последовательно. Но возможно и параллельное соединение ступеней, бок о бок. Наконец, существуют проекты составных ракет, в которых последняя ступень входит внутрь предыдущей, та заключена внутри предшествующей и т. д.; при этом ступени имеют общий двигатель и уже не являются самостоятельными ракетами. Существенный недостаток последней схемы заключается в том, что после отделения отработавшей ступени резко возрастает реактивное ускорение, так как двигатель остался прежним, тяга поэтому не изменилась, а разгоняемая масса ракеты резко уменьшилась. Это затрудняет точность наведения ракеты и предъявляет повышенные требования к прочности конструкции. При последовательном же соединении ступеней вновь включаемая ступень обладает меньшей тягой и ускорение не изменяется резким скачком. Пока работает первая ступень, мы можем рассматривать остальные ступени вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После отделения первой ступени начинает работать вторая ступень, которая вместе с последующими ступенями и истинной полезной нагрузкой образует самостоятельную ракету («первую субракету»). Для второй ступени все последующие ступени вместе с истинным полезным грузом играют роль собственной полезной нагрузки и т. д. Каждая субракета добавляет к уже имеющейся скорости собственную идеальную скорость, и в результате конечная идеальная скорость многоступенчатой ракеты складывается из суммы идеальных скоростей отдельных субракет.

Ракета является весьма «затратным» транспортным средством. Ракеты-носители космических аппаратов «транспортируют», главным образом, топливо, необходимое для работы их двигателей и собственную конструкцию, состоящую в основном из топливных контейнеров и двигательной установки. На долю полезной нагрузки приходится лишь малая часть (1,5-2,0%) стартовой массы ракеты.

Составная ракета позволяет более рационально использовать ресурсы за счет того, что в полете ступень, выработавшая свое топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полета.

Варианты компоновки ракет. Слева направо:

  1. Одноступенчатая ракета.
  2. Двухступенчатая ракета с поперечным разделением.
  3. Двухступенчатая ракета с продольным разделением.
  4. Ракета с внешними топливными емкостями, отделяемыми после исчерпания топлива в них.

Конструктивно многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней.

При поперечном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая схема дает возможность создавать системы, в принципе, с любым количеством ступеней. Недостаток ее заключается в том, что ресурсы последующих ступеней не могут быть использованы при работе предыдущей, являясь для нее пассивным грузом.

При продольном разделении первая ступень состоит из нескольких одинаковых ракет (на практике, от двух до восьми), располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сил тяги двигателей первой ступени была направлена по оси симметрии второй, и работающих одновременно. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая таким образом суммарную тягу, что особенно нужно во время работы первой ступени, когда масса ракеты максимальна. Но ракета с продольным разделением ступеней может быть только двухступенчатой.

Существует и комбинированная схема разделения - продольно-поперечная, позволяющая совместить преимущества обеих схем, при которой первая ступень разделяется со второй продольно, а разделение всех последующих ступеней происходит поперечно. Пример такого подхода - отечественный носитель "Союз".

Уникальную схему двухступенчатой ракеты с продольным разделением имеет космический корабль Спейс Шаттл, первая ступень которого состоит из двух боковых твердотопливных ускорителей, на второй ступени часть топлива содержится в баках орбитера (собственно многоразового корабля), а большая часть - в отделяемом внешнем топливном баке. Сначала двигательная установка орбитера расходует топливо из внешнего бака, а когда оно будет исчерпано, внешний бак сбрасывается и двигатели продолжают работу на том топливе, которое содержится в баках орбитера. Такая схема позволяет максимально использовать двигательную установку орбитера, которая работает на всем протяжении вывода корабля на орбиту.

При поперечном разделении ступени соединяются между собой специальными секциями - переходниками - несущими конструкциями цилиндрической или конической формы (в зависимости от соотношения диаметров ступеней), каждый из которых должен выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки, испытываемой ракетой на всех участках, на которых данный переходник входит в состав ракеты. При продольном разделении на корпусе второй ступени создаются силовые бандажи (передний и задний), к которым крепятся блоки первой ступени.

Элементы, соединяющие части составной ракеты, сообщают ей жесткость цельного корпуса, а при разделении ступеней должны практически мгновенно освобождать верхнюю ступень. Обычно соединение ступеней выполняется с помощью пироболтов. Пироболт - это крепежный болт, в стержне которого рядом с головкой создается полость, заполняемая бризантным взрывчатым веществом с электродетонатором. При подаче импульса тока на электродетонатор происходит взрыв, разрушающий стержень болта, в результате чего его головка отрывается. Количество взрывчатки в пироболте тщательно дозируется, чтобы, с одной стороны, гарантированно оторвать головку, а, с другой - не повредить ракету. При разделении ступеней на электродетонаторы всех пироболтов, соединяющих разделяемые части, одновременно подается импульс тока, и соединение освобождается.

Далее ступени должны быть разведены на безопасное расстояние друг от друга. (Запуск двигателя высшей ступени вблизи низшей может вызвать прогар ее топливной емкости и взрыв остатков топлива, который повредит верхнюю ступень, или дестабилизирует ее полет.) При разделении ступеней в атмосфере для их разведения может быть использована аэродинамическая сила встречного потока воздуха, а при разделении в пустоте иногда используются вспомогательные небольшие твердотопливные ракетные двигатели.

На жидкостных ракетах эти же двигатели служат и для того, чтобы «осадить» топливо в баках верхней ступени: при выключении двигателя низшей ступени ракета летит по инерции, в состоянии свободного падения, при этом жидкое топливо в баках находится во взвешенном состоянии, что может привести к сбою при запуске двигателя. Вспомогательные двигатели сообщают ступени небольшое ускорение, под действием которого топливо «оседает» на днища баков.

Увеличение числа ступеней дает положительный эффект только до определенного предела. Чем больше ступеней, тем больше суммарная масса переходников, а также двигателей, работающих лишь на одном участке полета, и, в какой-то момент, дальнейшее увеличение числа ступеней становится контрпродуктивным. В современной практике ракетостроения более четырех ступеней, как правило, не делается.

При выборе числа ступеней важное значение имеют также вопросы надежности. Пироболты и вспомогательные твердотопливные ракетные двигатели - элементы одноразового действия, проверить функционирование которых до старта ракеты невозможно. Между тем, отказ только одного пироболта может привести к аварийному завершению полета ракеты. Увеличение числа одноразовых элементов, не подлежащих проверке функционирования, снижает надежность всей ракеты в целом. Это также заставляет конструкторов воздерживаться от слишком большого количества ступеней.

Космические скорости

Чрезвычайно важно отметить, что скорость, развиваемая ракетой (а вместе с ней и всем космическим летательным аппаратом) на активном участке пути, т. е. на том сравнительно коротком участке, пока работает ракетный двигатель, должна быть достигнута очень и очень высокая.

Поместим мысленно нашу ракету в свободное пространство и включим ее двигатель. Двигатель создал тягу, ракета получила какое-то ускорение и начала набирать скорость, двигаясь по прямой линии (если сила тяги не меняет своего направления). Какую скорость приобретет ракета к моменту, когда ее масса уменьшится от начальной m 0 до конечной величины m k ? Если допустить, что скорость истечения w вещества из ракеты неизменна (это довольно точно соблюдается в современных ракетах), то ракета разовьет скорость v, выражающуюся формулой Циолковского , определяющая скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил:

где ln обозначает натуральный, а log - десятичный логарифмы

Скорость, вычисляемая по формуле Циолковского, характеризует энергетические ресурсы ракеты. Она называется идеальной. Мы видим, что идеальная скорость не зависит от секундного расхода массы рабочего тела, а зависит только от скорости истечения w и от числа z = m 0 /m k , называемого отношением масс или числом Циолковского.

Существует понятие так называемых космических скоростей: первой, второй и третьей. Первой космической скоростью называется такая скорость, при достижении которой тело (космический аппарат), запущенное с Земли, может стать ее спутником. Если не учитывать влияния атмосферы, то непосредственно над уровнем моря первая космическая скорость составляет 7,9 км/с и с увеличением расстояния от Земли уменьшается. На высоте 200 км от Земли она равна 7,78 км/с. Практически первая космическая скорость принимается равной 8 км/с.

Для того чтобы преодолеть притяжение Земли и превратиться, например, в спутник Солнца или достигнуть какой-нибудь другой планеты Солнечной системы, запускаемое с Земли тело (космический аппарат) должно достигнуть второй космической скорости, принимаемой равной 11,2 км/с.

Третьей космической скоростью у поверхности Земли телу (космическому аппарату) необходимо обладать в том случае, когда требуется, чтобы оно могло преодолеть притяжение Земли и Солнца и покинуть Солнечную систему. Третья космическая скорость принимается равной 16,7 км/с.

Космические скорости по своему значению огромны. Они в несколько десятков раз превышают скорость звука в воздухе. Только из этого ясно видно, какие сложные задачи стоят в области космонавтики.

Почему же космические скорости такие огромные и почему космические аппараты не падают на Землю? Действительно, странно: Солнце огромными силами тяготения удерживает около себя Землю и все другие планеты Солнечной системы, не дает им улететь в космическое пространство. Странно, казалось бы, то, что Земля около себя удерживает Луну. Между всеми телами действуют силы тяготения, но не падают планеты на Солнце потому, что находятся в движении, в этом-то и секрет.

Все падает вниз, на Землю: и капли дождя, и снежинки, и сорвавшийся с горы камень, и опрокинутая со стола чашка. А Луна? Она вращается вокруг Земли. Если бы не силы тяготения, она улетела бы по касательной к орбите, а если бы она вдруг остановилась, то упала бы на Землю. Луна, вследствие притяжения Земли, отклоняется от прямолинейного пути, все время как бы "падая" на Землю.

Движение Луны происходит по некоторой дуге, и пока действует гравитация, Луна на Землю не упадет. Так же и с Землей - если бы она остановилась, то упала бы на Солнце, но этого не произойдет по той же причине. Два вида движения - одно под действием силы тяготения, другое по инерции - складываются и в результате дают криволинейное движение.

Закон всемирного тяготения, удерживающий в равновесии Вселенную, открыл английский ученый Исаак Ньютон. Когда он опубликовал свое открытие, люди говорили, что он сошел с ума. Закон тяготения определяет не только движение Луны, Земли, но и всех небесных тел в Солнечной системе, а также искусственных спутников, орбитальных станций, межпланетных космических кораблей.

Законы Кеплера

Прежде чем рассматривать орбиты космических аппаратов, рассмотрим законы Кеплера, которые их описывают.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник - объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами - Сатурна и Юпитера - он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса - тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников - казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге, Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. И задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон описывает геометрию траекторий планетарных орбит: каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце. Из школьного курса геометрии - эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек - фокусов - равна константе. Или иначе - представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, - это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно - Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности. Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца: каждая планета движется в плоскости, проходящей через центр Солнца, причем за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу - тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой: квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать все сначала - накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона, закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам - гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним - и угловые скорости галактик в целом. Труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Орбиты

Большое значение имеет расчет траекторий полета космических аппаратов, в котором должна преследоваться основная цель - максимальная экономия энергии. При расчете траектории полета космического аппарата необходимо определять наиболее выгодное время и по возможности место старта, учитывать аэродинамические эффекты, возникающие в результате взаимодействия аппарата с атмосферой Земли при старте и финише, и многое другое.

Многие современные космические аппараты, особенно с экипажем, имеют относительно малые бортовые ракетные двигатели, главное назначение которых - необходимая коррекция орбиты и осуществление торможения при посадке. При расчете траектории полета должны учитываться ее изменения, связанные с корректировкой. Большая часть траектории (собственно, вся траектория, кроме активной ее части и периодов корректировки) осуществляется с выключенными двигателями, но, конечно, под воздействием гравитационных полей небесных тел.

Траектория движения космического аппарата называется орбитой. Во время свободного полета космического аппарата, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.

Если считать Землю строго сферической, а действие гравитационного поля Земли - единственной силой, то движение космического аппарата подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, - плоскости орбиты; орбита имеет форму эллипса или окружности (частный случай эллипса).

Орбиты характеризуются рядом параметров - система величин, определяющих ориентацию орбиты небесного тела в пространстве, ее размеры и форму, а также положение на орбите небесного тела в некоторый фиксированный момент. Невозмущенную орбиту, по которой движение тела происходит в соответствии с законами Кеплера, определяют:

  1. Наклонение орбиты (i) к плоскости отсчета; может иметь значения от 0° до 180°. Наклонение меньше 90°, если для наблюдателя, находящегося в северном полюсе эклиптики или в северном полюсе мира, тело представляется движущимся против часовой стрелки, и больше 90°, если тело движется в противоположном направлении. В применении к Солнечной системе, за плоскость отсчета обычно выбирают плоскость орбиты Земли (плоскость эклиптики), для искусственных спутников Земли за плоскость отсчета обычно выбирают плоскость экватора Земли, для спутников других планет Солнечной системы за плоскость отсчета обычно выбирают плоскость экватора соответствующей планеты.
  2. Долгота восходящего узла (Ω) - один из основных элементов орбиты, используемых для математического описания формы орбиты и ее ориентации в пространстве. Определяет точку, в которой орбита пересекает основную плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, основная плоскость - эклиптика, а нулевая точка - Первая точка Овна (точка весеннего равноденствия).
  3. Большая полуось (а) - это половина главной оси эллипса. В астрономии характеризует среднее расстояние небесного тела от фокуса.
  4. Эксцентриситет - числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия и характеризует «сжатость» орбиты.
  5. Аргумент перицентра - определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д.
  6. Средняя аномалия для тела, движущегося по невозмущенной орбите - произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом, средняя аномалия есть угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению.

Существуют различные типы орбит - экваториальные (наклонение "i" = 0°), полярные (наклонение "i" = 90°), солнечно-синхронные орбиты (параметры орбиты таковы, что спутник проходит над любой точкой земной поверхности приблизительно в одно и то же местное солнечное время), низкоорбитальные (высоты от 160 км до 2000 км), среднеорбитальные (высоты от 2000 км до 35786 км), геостационарные (высота 35786 км), высокоорбитальные (высоты более 35786 км).

Академик М.В. Келдыш.
Механика космического полета

Академик Т.М. Энеев
Зам. директора ИПМ им. М.В. Келдыша, профессор Э.Л. Аким

Пятьдесят лет назад, 4 октября 1957 года человечество впервые вывело в космос устройство, которое длительное время летало по околоземной орбите, подавая сигналы о функционировании его бортовых приборов. С помощью ракеты Р-7 был запущен первый искусственный спутник Земли.

Запуск этого спутника имел длительную и сложную предысторию. О космических полетах люди мечтали с давних пор. Впервые эта мечта приобрела реальную базу после пионерской работы Циолковского, показавшего, что такие полеты осуществимы с помощью ракетной техники. Им была выведена знаменитая формула, по которой можно рассчитать запас топлива, необходимый для приобретения нужной скорости ракеты, разработаны начала теории составных ракет.

Однако реальная работа по реализации идеи космического полета началась уже после войны благодаря крайней необходимости в развитии ракетной техники для военных целей. Чтобы противостоять возникшей тогда угрозе ядерного нападения на Советский Союз, потребовалось создать межконтинентальную составную баллистическую ракету. В конструкторском бюро блестящего инженера и конструктора Сергея Павловича Королева такая ракета — знаменитая Р-7 — была создана. Разумеется, королевское КБ работало в кооперации с другими организациями, создававшими двигатели, систему управления, стартовое устройство и т. п. Здесь следует упомянуть главных конструкторов В.П. Глушко, Н.Н. Пилюгина, М.С. Рязанского, В.И. Кузнецова, В.П. Бармина. Нельзя не вспомнить и о прекрасных помощниках Сергея Павловича Королева, его заместителях В.П. Мишине, В.А. Воскресенском, К.Д. Бушуеве, Б.Е. Чертоке.

Но уже в период напряженной работы по созданию ракет некоторые ее активные участники думали о космическом полете. Наиболее серьезные исследования проводились двумя коллективами — группой М.К. Тихонравова в одном из военно-технических институтов и группой М.В. Келдыша в Математическом институте имени В.А. Стеклова. Эти исследования горячо поддерживал Королев, который с самого начала работ по созданию больших ракет предвидел их космическое применение. В 1950 г. он поразил ученых стекловского института, обсуждавших с ним вопросы проектирования Р-7, брошенной вскользь фразой: "Облетим мы все-таки вокруг земного шарика!"

Конечно, главной фигурой в реализации первых советских космических полетов был Королев. Однако наряду с ним следует упомянуть еще одного человека, внесшего сравнимый вклад в развитие нашей ракетной и космической техники, — Мстислава Всеволодовича Келдыша.

Рис. 1. Мстислав Всеволодович Келдыш

В 1946 г. в тридцатипятилетнем возрасте, только что избранный действительным членом Академии наук СССР, М.В. Келдыш был назначен начальником Реактивного научно-исследовательского института (РНИИ) — ныне Исследовательский центр им. М.В. Келдыша. С 1948 г. он начал работы по ракетодинамике и прикладной небесной механике в руководимом им отделе механики Математического института им. В.А. Стеклова АН СССР.

Следует отметить, что первоначально основное внимание Мстислава Всеволодовича, естественно, было сосредоточено на военных аспектах применения ракетной техники. Однако есть все основания полагать, что он, также как и С.П. Королев, уже на ранних этапах исследовательских работ думал и об их "космическом" будущем. Во всяком случае, в самом начале пятидесятых годов в ответ на вопрос одного из сотрудников отдела механики МИАН о возможности развивать в отделе теорию космического полета он не только горячо поддержал эту идею, но и предложил начать работу, не откладывая на будущее.

С 1948 г. М.В. Келдышем сначала в МИАНе, а затем в Институте прикладной математики АН СССР в отделе, возглавляемом академиком Д.Е. Охоцимским, был развернут широкий фронт работ по ракетодинамике и механике космического полета. Уже в первый период этих работ, еще до запуска первого искусственного спутника Земли, коллективом, руководимым М.В. Келдышем, был получен ряд принципиально важных результатов, оказавших серьезное влияние на развитие ракетной и космической техники. Отметим некоторые, наиболее важные из них.

В 1949-1951 гг. выполнен цикл работ, посвященный анализу и определению оптимальных схем и характеристик составных ракет. Эти работы помогли С.П. Королеву сделать окончательный выбор схемы составной ракеты Р-7. В этот период выполнены работы по определению оптимального программного управления. Результаты этих работ помогли серьезно улучшить летные характеристики ракеты Р-7 и межконтинентальных крылатых ракет, а впоследствии послужили теоретической основой для многих дальнейших исследований. В этот же период были решены трудные задачи движения ракеты около центра масс, в которых учитывалась подвижность жидкости, имевшей свободную поверхность в баках ракеты.

В ходе летных испытаний баллистических ракет сотрудниками Института были выполнены на первой универсальной ЭВМ "Стрела-1" прогнозы точек падения головных частей ракет. Эти оперативные определения проводились по данным траекторных измерений, поступавшим в Институт от наземных средств слежения по телеграфным каналам связи. В машинном зале "Стрелы-1" стоял связной аппарат, который связывал Институт с измерительно-управляющими пунктами МО. Это был обычный полевой аппарат, на крышке которого было написано "осторожно, враг подслушивает". По этому аппарату поисковой группе передавали прогнозируемые координаты точки падения головной части ракеты. Позже получали информацию о достоверности переданного прогноза.

В 1953 г. в Институте был впервые предложен баллистический спуск космического аппарата с орбиты на Землю и показана возможность его использования при пилотируемых полетах. В результате применения этого метода космический полет Ю.А.Гагарина был завершен удачным приземлением. В 1954 г. сотрудниками Института разработан первый конкретный вариант системы гравитационной (пассивной) стабилизации искусственного спутника и построена теория такой стабилизации. Все упомянутые работы были выполнены впервые в мире.

В 1954 г. М.В. Келдыш совместно с С.П. Королевым и М.К. Тихонравовым выдвинул предложение о создании искусственного спутника Земли и принял непосредственное участие в подготовке докладной записки для правительства на эту тему. В 1956 г. Мстислав Всеволодович был назначен председателем специальной комиссии Президиума АН СССР по ИСЗ (комиссия по объекту "Д"). В 1958 г. решением ЦК КПСС и СМ СССР М.В. Келдыш был назначен председателем Межведомственного совета по космическим исследованиям при Академии наук (МНТС по КИ). С этого момента и как руководитель комплексных научно-технических разработок, и как председатель МНТС по КИ М.В. Келдыш нес особую ответственность за ход выполнения космической программы СССР, даже в самый напряженный период его многосторонней деятельности, когда с 1961 г. по 1975 г. он был президентом Академии наук СССР.

Став президентом АН СССР, Мстислав Всеволодович получил возможность на новом, более высоком уровне руководить разработкой и реализацией советской космической программы. Круг научных проблем, которые решались в эти годы, необычайно широк и разнообразен. С его непосредственным участием исследовались общие проблемы космонавтики, тенденции и перспективы ее развития. В поле его зрения постоянно находились механика космического полета, теория управления, навигация, ориентация.

Творческий контакт и дружба Мстислава Всеволодовича Келдыша с Сергеем Павловичем Королевым имели историческое значение. Именно благодаря этому контакту и дружбе наша ракетная техника развивалась очень быстро, и особенно быстро — техника космического полета. Вообще, в плеяде перечисленных выше замечательных людей Мстислав Всеволодович играл особую роль. Благодаря именно его идеям и инициативе удавалось преодолеть очень трудные моменты в становлении нашей ракетной и космической техники, организовать систематическое проведение космических исследований в нашей стране.

После запуска первого искусственного спутника Земли фронт руководимых М.В. Келдышем работ в ОПМ МИАН существенно расширился, и в последующие годы в механике космического полета практически не было более или менее серьезных вопросов, которые в той или иной мере не были затронуты М.В. Келдышем и его "командой". Так, сразу после запуска первого ИСЗ в ОПМ МИАНа были развернуты работы по обеспечению слежения за полетом спутников Земли и других космических аппаратов. Сотрудниками М.В. Келдыша разработана методика и впервые осуществлено определение орбиты с помощью ЭВМ. Позднее при ОПМ МИАН был создан Баллистический центр, который вошел в общую систему координационно-вычислительных центров СССР. В их задачу входили сбор и обработка траекторной информации с целью определения истинных орбит летящих объектов, а также выработка соответствующих управляющих команд. Центр стал неотъемлемой частью замкнутого контура управления полетом космических аппаратов и способствовал успешному выполнению космических программ.

Были развернуты работы по комплексному баллистическому проектированию космических полетов к Луне, Марсу и Венере. М.В. Келдыш не только руководил этими проектными исследованиями. Огромное внимание он уделял реализации проектов.

Первоначально главные усилия были направлены на решение задачи достижения Луны и исследования окололунного пространства. Соответствующие работы были проведены в сжатые сроки под общим руководством М.В. Келдыша. Блестящим примером работы из "лунного" цикла явился выбор траекторий облета и фотографирования невидимой с Земли стороны Луны для КА "Луна-3".

Рис. 2. Схема полета КА "Луна-3"

Здесь впервые в мировой практике был предложен и успешно реализован "гравитационный маневр" — целенаправленное изменение траектории КА в результате возмущения его движения небесным телом (Луной).

Рис. 3. Первая фотография обратной стороны Луны, полученная КА "Луна-3"

В Институте выполнены и реализованы в ЛКИ совместно с промышленностью проектные исследования, связанные с навигационным обеспечением полетов к Луне всех отечественных лунных КА. Перечень этих 24 КА представлен на следующем рисунке.

Рис. 4. Перечень полетов к Луне

Особо следует отметить первую мягкую посадку на поверхность Луны автоматической станции "Луна-9", первый искусственный спутник Луны "Луна-10" и станцию "Луна-16" (Проект "Е-8"), впервые осуществившую забор и доставку на Землю образцов лунного грунта.

Рис. 5. "Луна 20". Контейнер с лунным грунтом

В разгар работ по подготовке лунных экспедиций Мстислав Всеволодович Келдыш и Сергей Павлович Королев приняли совместное решение начать баллистическое проектирование беспилотных полетов к Марсу и Венере. В Институте были разработаны принципиальные технические решения, сыгравшие в дальнейшем большую роль в развитии космической техники: разработка метода разгона аппарата с промежуточным выведением на незамкнутую орбиту искусственного спутника Земли (рис. 6), который стал впоследствии универсальным способом разгона космических аппаратов; принципиальная схема управления полетом КА, которая легла в основу всех работ как по баллистическому проектированию, так и по практическому управлению полетами межпланетных КА.

Рис. 6. Метод разгона аппарата с промежуточным выведением на незамкнутую орбиту искусственного спутника Земли

Эта схема обеспечивала достижение как максимальной точности управления в ходе полета, так и минимальных массовых затрат, связанных с созданием самой системы управления. Под руководством М.В. Келдыша коллектив ОПМ участвовал во всех проектно-баллистических работах, а также работах по баллистико-навигационному обеспечению полетов космических аппаратов, предназначенных для исследования межпланетного космического пространства, планет и малых тел солнечной системы. Наиболее наглядными являются полеты наших 16 КА к Венере, представленные на рис. 7.

Рис. 7. Перечень полетов к Венере

Особо следует отметить "Венеру-4", осуществившую впервые передачу на Землю параметров атмосферы планеты; первые искусственные спутники Венеры "Венеру-9", "Венеру-10" и их посадочные аппараты (рис. 8), обеспечившие передачу на Землю первых панорам с поверхности этой загадочной планеты; ИСВ "Венера-15" и "Венера-16", позволившие с помощью уникального эксперимента по радиокартографированию Венеры (рис. 9) построить качественные изображения планеты и ее рельефа, создать первый атлас Венеры.

Рис. 8. Районы посадки АМС "Венера-4" - "Венера-14"

Рис. 9. Орбита космических аппаратов
"Венера-15" - "Венера-16"

Необходимо также отметить полеты наших КА "Вега-1 и 2" к комете Галлея (рис. 10), с доставкой в атмосферу Венеры аэростатных зондов и выведением к ядру кометы европейской межпланетной станции "Джотто" (Международный проект "Лоцман") (рис. 11).

Рис. 10. АМС "Вега-1" и "Вега-2"

Рис. 11. Схема полета АМС "Вега-1"

Под руководством М.В. Келдыша в ИПМ АН были развернуты работы в новом направлении, имеющем важное естественнонаучное и прикладное значение для навигации и управления полетом космических аппаратов. Это — уточнение астрономических постоянных и построение высокоточных теорий движения небесных тел. Впервые в мировой практике были определены по данным траекторных измерений параметры нецентральности гравитационного поля Луны. Создана первая в нашей стране высокоточная теория движения Венеры. Уточнены гравитационные постоянные Земли и Луны, динамическое сжатие Венеры.

Наконец, под руководством М.В. Келдыша проводились проектно-баллистические работы по созданию ряда уникальных искусственных спутников Земли, новых и перспективных систем управления и стабилизации спутников (пассивные системы стабилизации), а также работы по определению фактического движения вокруг центра масс свободнолетящих искусственных спутников Земли (например, "Протон").

С начала интенсивных разработок в США проекта многоразовой космической системы Space Shuttle остро встал вопрос о целесообразности создания аналогичной системы в нашей стране. М.В. Келдыш неоднократно обсуждал круг задач, которые можно решать с помощью многоразовой космической системы, трудности ее создания и пути их преодоления. В результате сложилась концепция универсального транспортного средства, способного решать научные, народнохозяйственные и оборонные задачи. Принятое техническое решение рассматривалось в качестве промежуточного шага к созданию полностью многоразового аэрокосмического аппарата для полетов на любых высотах в атмосфере и даже за ее пределами. Вместе с тем, создание системы "Энергия"-"Буран" позволяло решить проблемы разработки тяжелой ракеты-носителя грузоподъемностью порядка 100 т и кислородно-водородных двигателей, конструирования аэрокосмического аппарата с весьма сложной и совершенной системой управления.

Не без внутренних колебаний и сомнений приняв решение о необходимости создания ракетно-космической системы "Энергия-Буран", М.В. Келдыш много сил, таланта и организаторских способностей отдал реализации этого проекта.

Рис. 12. С чего начинался Буран

Рис. 13. "Энергия-Буран"

Рис. 14. Посадка Бурана

В Мстиславе Всеволодовиче прекрасно сочетались качества дерзновенного мечтателя, стремившегося к пределам возможного, и трезвого реалиста, знавшего, где эти пределы кончаются. Когда под впечатлением первых успехов космических полетов некоторые всерьез рассматривали проект пилотируемого полета к Марсу в 1964 году (в облетном варианте), Мстислав Всеволодович сразу указал на нереальность подобного рода проектов по целому ряду причин и отмечал, что беспилотные автоматические аппараты еще долгие годы будут основным средством исследования дальних планет. Это не мешало, однако, ему обсуждать пилотируемые полеты к дальним планетам и подробно рассматривать различные их проекты в обозримом будущем.

По предложению С.П.Королева и М.В. Келдыша в Институте был создан Баллистический центр (БЦ ИПМ). На него возложены работы по баллистико-навигационному обеспечению (БНО) управления полетом пилотируемых кораблей и автоматических космических аппаратов научного и народно-хозяйственного назначения. Вместе с баллистическими центрами Минобороны и Роскосмоса он успешно обеспечивает полеты отечественных КА.

М.В. Келдыш очень внимательно следил за работой нашего БЦ. Очень радовался успехам и расстраивался в случае неудач. Когда он приезжал на заседания Госкомиссии в НИИ-4 МО (где в первые годы проходили эти заседания), он ревниво анализировал текущие данные прогноза двух БЦ (ИПМ и НИИ-4), которые вывешивались в виде таблицы на стене зала заседания. Если обнаруживал большие рассогласования в прогнозах, то по возвращении в ИПМ задавал вопрос: "У кого точнее и почему?"

М.В. Келдыш подчеркивал, что наш БЦ не должен быть просто мощным вычислительным центром, оперативно выполняющим необходимые расчеты. Он требовал, чтобы Центр принимал непосредственное участие во всех этапах работ по созданию и испытаниям нового КА.

Более 40 лет БЦ ИПМ успешно решает сложные проблемы баллистико-навигационного обеспечения управления полетами пилотируемых кораблей "Восток", "Восход", "Союз", долговременных орбитальных станций "Салют" и "Мир", грузовых кораблей "Прогресс", многоразовой космической системы "Буран", автоматических КА "Луна", "Венера", "Марс", "Вега", "Фобос", "Астрон", "Гранат", "Интербол" и др. Эти работы БЦ проводит в тесном взаимодействии с организациями-разработчиками КА — РКК "Энергия", НПО им. С.А.Лавочкина, с ЦНИИМАШ и др.

Следуя наказам и традициям М.В. Келдыша, ИПМ продолжает передовые исследования по механике космического полета. В последние годы в Институте совместно с НИИПМиЭ МАИ проведены исследования по баллистике и навигации КА, использующих электроракетную двигательную установку в качестве маршевого двигателя. Институтом совместно с НПО им.С.А.Лавочкина, НИИПМиЭ МАИ, ГЕОХИ и ИКИ РАН разработан проект доставки на Землю реликтового вещества Солнечной системы — образцов грунта малого небесного тела, естественного спутника Марса Фобоса (проект "Фобос-Грунт", старт к Марсу 2009 г.). Проект имеет фундаментальное научное и важное научно-техническое значения. В проекте ИПМ решал задачи баллистики, навигации и управления полетом КА на всех этапах полета (рис. 15).

Рис. 15. Схема перелета КА "Фобос-Грунт"

Проект имеет важное общественно-политическое значение. После 20-летнего перерыва в полетах наших КА к Луне и планетам успешное осуществление такого проекта позволит восстановить авторитет страны в планетных космических исследованиях.

Подводя итог краткому обзору деятельности М.В. Келдыша в области механики космического полета, можно сказать, что он внес выдающийся вклад в развитие советской ракетной и космической науки и техники, дающий ему право занять в ее истории почетное место.

§ 1. Космодинамика - теория космических полетов

Буквальный смысл слова «космонавтика» (представляющего собой сочетание двух греческих слов) - «плавание во Вселенной». В обычном употреблении это слово означает совокупность различных отраслей науки и техники, обеспечивающих исследование и освоение космического пространства и небесных тел с помощью космических летательных аппаратов - искусственных спутников, автоматических станций различного назначения, пилотируемых космических кораблей.

Теория космических полетов, представлявших давнюю мечту человечества, превратилась в науку в результате основополагающих трудов великого русского ученого Константина Эдуардовича Циолковского. В течение продолжительного времени, до того момента, когда идеи, формулы и чертежи энтузиастов и ученых стали в конструкторских бюро и в цехах заводов превращаться в объекты, изготовленные «в металле», теоретический фундамент космонавтики покоился на трех китах: 1) теории движения космических аппаратов; 2) ракетной технике; 3) совокупности астрономических знаний о Вселенной.

Впоследствии в недрах космонавтики зародился широкий цикл новых научно-технических дисциплин, таких, как теория систем управления космическими объектами, космическая навигация, теория космических систем связи и передачи информации, космическая биология и медицина и т. д. Сейчас, когда нам трудно представить себе космонавтику без этих дисциплин, полезно вспомнить о том, что теоретические основы космонавтики закладывались К. Э. Циолковским в то время, когда производились лишь первые опыты над использованием радиоволн и радио не могло считаться

средством связи в космосе. В течение многих лет в качестве средства связи всерьез рассматривалась сигнализация с помощью лучей солнечного света, отражаемых в сторону Земли зеркалами, находящимися на борту межпланетного корабля. Сейчас, когда мы привыкли не удивляться ни прямому телевизионному репортажу с поверхности Луны, ни полученным по радио фотографиям, сделанным вблизи Юпитера или на поверхности Венеры, в это трудно поверить. Поэтому можно утверждать, что теория космической связи, несмотря на всю свою важность, не является все же главным звеном в цепи космических дисциплин.

Таким главным звеном служит теория движения космических объектов. Именно ее можно считать теорией космических полетов. Специалисты, занимающиеся этой наукой, сами называют ее по-разному: прикладная небесная механика, небесная баллистика, космическая баллистика, космодинамика механика космического полета, теория движения искусственных небесных тел.

Все эти названия имеют один и тот же смысл, точно выражаемый последним термином. Космодинамика, таким образом, является частью небесной механики - науки, изучающей движение любых небесных тел - как естественных (звезды, Солнце, планеты, их спутники, кометы, метеорные тела, космическая пыль), так и искусственных (автоматические космические аппараты и пилотируемые корабли). Но есть нечто, выделяющее космодинамику из небесной механики. Родившаяся в лоне небесной механики космодинамика пользуется ее методами, но не умещается в ее традиционных рамках.

Существенное отличие прикладной небесной механики от классической заключается в том, что вторая не занимается и не может заниматься выбором орбит небесных тел, в то время как первая занимается отбором из огромного числа возможных траекторий достижения того или иного небесного тела определенной траектории, которая учитывает многочисленные, зачастую противоречивые, требования. Главное требование - минимальность скорости, до которой разгоняется космический аппарат на начальном активном участке полета и соответственно минимальность массы ракеты-носителя или орбитального разгонного блока (при старте с околоземной орбиты). Это обеспечивает максимальную полезную нагрузку и, следовательно, наибольшую научную эффективность полета. Учитываются также требования простоты управления, условий радиосвязи (например, в момент захода станции за планету при ее облете),

условий научных исследований (посадка на дневной или ночной стороне планеты) и т. п.

Космодинамика предоставляет в распоряжение проектировщиков космической операции методы оптимального перехода с одной орбиты на другую, способы исправления траектории. В поле ее зрения находится неведомое классической небесной механике орбитальное маневр ирование.

Космодинамика представляет собой фундамент общей теории космического полета (подобно тому как аэродинамика представляет собой фундамент теории полета в атмосфере самолетов, вертолетов, дирижаблей и других летательных аппаратов). Эту свою роль космодинамика делит с ракетодинамикой - наукой о движении ракет. Обе науки, тесно переплетаясь, лежат в основе космической техники. Обе они являются разделами теоретической механики, которая сама представляет собой обособившийся раздел физики.

Будучи точной наукой, космодинамика использует математические методы исследования и требует логически стройной системы изложения. Недаром основы небесной механики были разработаны после великих открытий Коперника, Галилея и Кеплера именно теми учеными, которые внесли величайший вклад в развитие математики и механики. Это были Ньютон, Эйлер, Клеро, Даламбер, Лагранж, Лаплас. И в настоящее время математика помогает решению задач небесной баллистики и в свою очередь получает толчок в своем развитии благодаря тем задачам, которые космодинамика перед ней ставит.

Классическая небесная механика была чисто теоретической наукой. Ее выводы находили неизменное подтверждение в данных астрономических наблюдений. Космодинамика привнесла в небесную механику эксперимент, и небесная механика впервые превратилась в экспериментальную науку, подобную в этом отношении, скажем, такому разделу механики, как аэродинамика. На смену поневоле пассивному характеру классической небесной механики пришел активный, наступательный дух небесной баллистики. Каждое новое достижение космонавтики - это вместе с тем свидетельство эффективности и точности методов космодинамики.

Космодинамика делится на две части: теорию движения центра масс космического аппарата (теорию космических траекторий) и теорию движения космического аппарата относительно центра масс (теорию «вращательного движения»). Как уже говорилось в предисловии, в книге будет рассказываться главным образом о траекториях, и космический аппарат в большинстве случаев будет рассматриваться как материальная точка.

Методика проведения 4 урока
"Основы космонавтики"

Цель урока: формирование знаний о теоретических и практических основах космонавтики.

Задачи обучения:

Общеобразовательные: формирование понятий:

О теоретических и практических предпосылках, задачах и методах космических исследований;
- о связи космонавтики с астрономией, физикой и другими естественно-математическими науками и с техникой;
- о средствах космонавтики - космических летательных аппаратах (КЛА);
- об основных типах реактивных ракетных двигателей (РДТТ, ЖРД, ЭРД, ЯРД);
- о траекториях, скоростях и особенностях движения КЛА, особенностях межпланетной и межзвездной навигации.

Воспитательные: формирование научного мировоззрения учащихся в ходе знакомства с историей человеческого познания. Патриотическое воспитание при ознакомлении с выдающейся ролью российской науки и техники в развитии космонавтики. Политехническое образование и трудовое воспитание при изложении сведений о практическом применении космонавтики.

Развивающие: формирование умений решать задачи на применение законов движения космических тел, формул Циолковского и космических скоростей к описанию движения КЛА.

Ученики должны знать :

О космонавтике (предмете, задаче и методах космонавтических исследований, связи ее с другими науками);
- о средствах космонавтики: основных типах КЛА, их устройстве и характеристиках;
- об основных типах ракетных двигателей, их устройстве и характеристиках
- формулу Циолковского, формулы и значения I, II, III космических скоростей (для Земли);
- о траекториях полета КЛА и связи между формой их орбит и скоростью движения.

Ученики должны уметь : решать задачи на применение формулы Циолковского и законов движения космических тел для расчета характеристик движения КЛА.

Наглядные пособия и демонстрации:

Диафильмы: "Элементы механики космических полетов".
Кинофильмы
: "Искусственные спутники Земли"; "Космические полеты".
Таблицы
: "Космические полеты"; "Космические исследования".
Приборы и инструменты
: прибор для демонстрации движения ИСЗ.

Задание на дом:

1) Изучить материала учебников:
- Б.А. Воронцов-Вельяминова : §§ 14 (4), 16 (4).
- Е.П. Левитана : §§ 7-11 (повторение).
- А.В. Засова, Э.В. Кононовича : § 11; упражнения 11 (3, 4)

2) Выполнить задания из сборника задач Воронцова-Вельяминова Б.А. : 174; 179; 180; 186.

3) Подготовить доклады и сообщения к уроку "История космонавтики".

План урока

Этапы урока

Методы изложения

Время, мин

Актуализация темы занятия

Рассказ

Формирование понятий о теоретических и практических предпосылках, задачах и методах космонавтических исследований

Лекция

7-10

Формирование понятий о средствах космонавтики и основных типах ракетных двигателей

Лекция

10-12

Формирование понятий о траекториях, скоростях и особенностях движения КЛА, особенностях межпланетной и межзвездной навигации

Лекция

10-12

Решение задач

Обобщение пройденного материала, подведение итогов урока, домашнее задание

Методика изложения материала

Данный урок лучше всего проводить в форме лекции, в ходе которой осуществляется систематизации, обобщение и развитие "донаучных" космонавтических знаний учеников и сведений по космонавтике и реактивному движению, изученных ими в курсах природоведения, естествознания и физики за весь период школьного обучения. Авторы пособия предлагают ограничиться разбором вопросов об орбитах и скорости ИСЗ, полетах КЛА к Луне и простейших траекториях межпланетных перелетов. Мы считаем необходимым дополнить и расширить этот материал, теоретизировать его так, чтобы в результате обучения школьник обрел целостное понятие о теоретических и практических основах космонавтики. Изложение материала должно опираться на ранее изученный материал по физике (основы классической механики: законы Ньютона, закон Всемирного тяготения, закон сохранения импульса, реактивное движение) и астрономии (астрометрии и небесной механики: законы Кеплера, сведения о космических скоростях, орбитах космических тел и возмущениях). Патриотический аспект воспитания реализуется в акцентировании внимания учащихся на достижениях отечественной науки и техники, вкладе российских ученых в возникновение, становление и развитие ракетостроения и космонавтики. Исторических подробностей следует избегать, откладывая их на последующее занятие.

Космонавтика - полеты в космическом пространстве; совокупность отраслей науки и техники, обеспечивающих исследование и освоение космического пространства и космических объектов и их систем с помощью различных космических летательных аппаратов (КЛА): ракет, искусственных спутников Земли (ИСЗ), автоматических межпланетных станций (АМС), космических кораблей (КК), пилотируемых или управляемых с Земли.

Теоретический фундамент космонавтики образуют:

1. Астрономия (астрометрия, небесная механика и астрофизика).

2. Теория космических полетов - космодинамика - прикладная часть небесной механики, исследующая траектории полета, параметры орбит КЛА и т. д.

3. Ракетная техника, обеспечивающая решение научно-технических проблем создания космических ракет, двигателей, систем управления, связи и передачи информации, научного оборудования и т.д.

4. Космическая биология и медицина.

Основным и вплоть до настоящего времени единственным средством передвижения в космическом пространстве является ракета. Законы ракетного движения выводятся на основе законов классической механики: кинематики и динамики (II закона Ньютона, закона сохранения импульса и т. д.).

Формула К. Э. Циолковского описывает движение ракеты в космическом пространстве без учета действия внешних условий и характеризует энергетические ресурсы ракеты:

, - число Циолковского, где m 0 - начальная, m к - конечная массы ракеты, w - скорость истечения отбрасываемой массы по отношению к ракете (скорость реактивной струи), g - ускорение свободного падения.

Рис. 73

Ракета-носитель (РН) - многоступенчатая баллистическая ракета для выведения в космос полезного груза (ИСЗ, АМС, КК и др.). Ракетоносителями обычно являются 2-4 ступенчатые ракеты, сообщающие полезному грузу I - II космическую скорость (рис. 73).

Ракетный двигатель (РД) - реактивный двигатель, предназначенный для ракет и не использующий для работы окружающую среду. В РД происходит не только преобразование подводимой к двигателю энергии (химической, солнечной, ядерной и т. д.) в кинетическую энергию движения рабочего тела двигателя, но и непосредственно создается движущая сила тяги в виде реакции струи вытекающего из двигателя рабочего тела. Таким образом РД представляет собой как бы сочетание собственно двигателя и движителя.

Удельная тяга РД определяется формулой: .

В настоящее время широкое применение нашли только химические РД.

Ракетный двигатель твердого топлива (РДТТ) применяется около 2000 лет - широко в ракетной артиллерии и ограниченно в космонавтике. Диапазон тяг РДТТ колеблется от грамм до сотен тонн (для мощных РД). Топливо в виде зарядов (вначале - дымного пороха, с конца XIX века - бездымного пороха, с середины ХХ века - специальные составы) полностью помещается в камеру сгорания. После запуска горение обычно продолжается до полного выгорания топлива, изменение тяги не регулируется. По конструкции и эксплуатации наиболее прост, но имеет ряд недостатков: низкая удельная тяга, однократность запуска и т. д. Устанавливается на некоторых РН США ("Скаут", "Тор", "Титан"), Франции и Японии. Применяется также в качестве тормозных, спасательных, корректирующих и т. д. систем (рис. 74).



Жидкостный ракетный двигатель (ЖРД) - РД, работающий на жидком ракетном топливе. Предложен К. Э. Циолковским в 1903 году. Основной двигатель современной космической техники. Тяга от долей грамма до сотен тонн. По назначению ЖРД делятся на основные (маршевые), тормозные, корректирующие и т. д. В качестве топлива применяют: из окислителей - кислород жидкий, четырехокись азота, перекись водорода; из горючих - керосин, гидразин, аммиак жидкий, водород жидкий. Наиболее перспективны сочетание жидких водорода и кислорода (РН "Энергия") (рис. 75).

Для увеличения удельной тяги перспективно использование ядерной энергии. Экспериментальные образцы ядерных ракетных двигателей (ЯРД ) разрабатывались с середины 60-х годов в СССР и США. В настоящее время Россия является единственным государством, располагающим маршевым ЯРД (рис. 76).

Продолжаются разработки электрических РД (ЭРД) - электротермических, электромагнитных, ионных. Первые экспериментальные образцы ЭРД были созданы в СССР в 1929-30 г.г.; в настоящее время ЭРД используются в качестве двигателей ориентации КЛА России и США. Маршевый ионный двигатель установлен на АМС, запущенной в конце 90-х гг. в США (рис. 77).

С точки зрения механики космического полета РД разделяются на:

1. Двигательные системы с ограниченной скоростью истечения w » 3 - 30 км/с, определяемой наибольшей температурой реактивной струи (химические, ядерные и т. д.). Они работают непродолжительное время (минуты, секунды) в атмосфере и вакууме на малых активных участках траектории полета (сотни км).

2. Системы ограниченной мощности с отдельным источником энергии, от которого зависит их эффективность (электрические и др.).

3. Системы с ограниченной тягой (парусные и радиоизотопные).

На активных участках полета движение КЛА зависит от работы его двигателей; на пассивных участках траекторий на движение КЛА влияют силы притяжения со стороны космических тел, давление света и солнечный ветер, а в верхних слоях атмосфер - аэродинамические силы трения.

Основные характеристики пассивного движения КЛА можно определить при решении задачи 2-х тел.

В центральном поле тяготения массивных космических тел КЛА движутся по кеплеровским орбитам, причем:

1. Траектория движения КЛА прямолинейна в случае, когда его начальная скорость u 0 = 0 и КЛА равноускоренно падает к центру притяжения.

2. КЛА движутся по эллиптическим траекториям, когда начальная скорость направлена под углом к центру притяжения, при . По эллиптическим орбитам вокруг Земли движутся ее ИСЗ, современные космические корабли и орбитальные станции, а также АМС, вращающиеся вокруг исследуемых ими планет.

3. По параболическим траекториям при u 0 = u II , когда конечная скорость КЛА в бесконечно удаленной точке пространства равна нулю.

4. По гиперболическим траекториям (u 0 > u II), почти неотличимым от прямолинейных на большом удалении от центра притяжения.

Траектории межпланетных полетов различаются по форме, длительности перелета, энергетическим затратам и другим факторам, зависящим от цели и особенностей космического полета. Интересно отметить, что КЛА практически никогда не движутся по прямой линии: траектории их движения (кроме некоторых идеализированных случаев) представляют собой отрезки кривых II порядка (окружности, эллипса, параболы и гиперболы), соединяющие орбиты космических тел или сами тела.

Выделяют 3 пассивных участка траекторий межпланетных полетов: 1) внутри "сферы действия" Земли, в которой движение КЛА определяется только силой земного притяжения; 2) от границы сферы действия Земли до границы сферы действия космического тела - цели полета, самому длинному и продолжительному, на котором движение КЛА определяется притяжением Солнца; 3) внутри сферы действия космического тела - цели полета.

Выше уже отмечалось, что для выхода из сферы действия Земли КЛА должен иметь скорость u > u II; . Добавочная скорость, которую находящийся на орбите искусственного спутника КЛА должен обрести для того, чтобы выйти из сферы действия Земли, называется скоростью выхода u в . , где r - расстояние от космического тела, R дÅ - радиус сферы действия Земли (R дÅ = 925000 км).

При запуске КЛА с поверхности Земли необходимо учитывать:

1) скорость и направление вращения Земли вокруг своей оси;
2) скорость и направление вращения Земли вокруг Солнца (u Å = 29,785 км/с).

Весьма сложен требующий больших энергетических затрат запуск ИСЗ, вращающихся в направлении, противоположном направлению вращения Земли вокруг своей оси; более сложен запуск КЛА по траектории, не лежащей в плоскости эклиптики.

Если скорость выхода совпадает по направлению со скоростью движения Земли v Å , орбита КЛА, кроме перигелия, лежит вне орбиты Земли (рис. 79в).
При противоположной направленности скорости u в орбита КЛА, за исключением афелия, лежит внутри орбиты Земли (рис. 79а).
При той же направленности и равенстве скоростей u в = u Å орбита КЛА становится прямой, по которой КЛА будет падать на Солнце около 64 суток (рис. 79г).
При u в = 0 орбита КЛА совпадает с орбитой Земли (рис. 79б).

Чем выше скорость u в КЛА, тем больше эксцентриситет его эллиптической орбиты. Путем сравнительно несложных расчетов определяется значение v в , необходимое для того, чтобы перигелий или афелий орбит КЛА лежал на орбите внешней или внутренней планет,.

Траектории полета КЛА, одновременно касающиеся орбит Земли и космических тел - целей межпланетного полета, называются гомановскими траекториями (в честь рассчитавшего их немецкого ученого В. Гоманна).

Для внешних планет: . Для внутренних планет: , где r - среднее расстояние планетного тела от Солнца.

Продолжительность перелета по гомановской траектории рассчитывается по формуле: средних солнечных суток.

При расчетах траектории межпланетного полета по гомановским траекториям необходимо учитывать взаимное расположение (начальную конфигурацию) Земли, Солнца и планеты-цели, характеристики и особенности движения планет по их орбитам. Например, полет к Марсу по кратчайшей гомановской траектории займет всего 69,9 d , к Юпитеру - 1,11 года, к Плутону - 19,33 года. Однако реально оптимальное взаимное положение Земли, Солнца и этих планет происходит исключительно редко и для уменьшения времени перелета требуется повысить u в , что требует дополнительных энергозатрат. Поэтому, в числе прочих причин, пилотируемые полеты к планетам Солнечной системы существенно дороже и сложнее, нежели исследование этих планет с помощью АМС, которые могут годами лететь к своим целям по самым экономичным траекториям. С учетом действия возмущений со стороны планет и Солнца АМС и космические корабли должны иметь двигатели для корректировки траектории движения.

При достижении сферы действия планеты-цели, для выхода на эллиптическую или круговую орбиту вокруг нее КЛА должен уменьшить скорость до значения, меньшего II космической для данной планеты.

В межпланетной навигации широко используется маневр КЛА в гравитационном поле планет Солнечной системы.

При движении в центральном поле тяготения массивного космического тела на КЛА действует сила притяжения со стороны этого тела, изменяющая скорость и направление движения КЛА. Направленность и величина ускорения КЛА зависят от того, насколько близко пролетит КЛА от космического тела и от угла j между направлениями входа и выхода КЛА в сферу действия этого тела.

Скорость КЛА изменяется на величину:

Наибольшее ускорение КЛА приобретает при движении по траектории, проходящей на минимальном расстоянии от космического тела, если скорость входа КЛА в сферу действия равна I космического скорости u I у поверхности этого тела, при этом .

При облете Луны КЛА может увеличить свою скорость на 1,68 км/с, при облете Венеры - на 7,328 км/с, при облете Юпитера - на 42,73 км/с. Скорость выхода КЛА из сферы действия планеты можно значительно увеличить включением двигателей в момент прохождения перицентра.

На рис. 80-81 приведены некоторые расчетные траектории межпланетных перелетов.

Астронавтика - раздел космонавтики, исследующий проблемы межзвездных полетов. В настоящее время изучает в основном теоретические проблемы механики перелета, поскольку современная наука не располагает сведениями для решения технических вопросов достижения звезд.

Для межзвездного полета КЛА должен выйти за пределы сферы действия Солнца, равной 9× 10 12 км. Межзвездные расстояния огромны: до ближайшей звезды 270000 а.е.; внутри описанной вокруг Солнца сферы радиусом 10 пк находится всего около 50 звезд.

В настоящее время в полет за пределы Солнечной системы отправились АМС "Пионер-10 и -11" и "Вояджер-1 и -2", которые удалятся на расстояние 1 светового года через тысячи лет.

Существующие и даже перспективные виды РД не пригодны или малопригодны для межзвездных перелетов, поскольку не могут обеспечить разгон КЛА до скорости свыше 0,1 скорости света с .

К ближайшим из звезд теоретически возможны лишь полеты "в один конец" автоматических межзвездных зондов (АМЗ) или пилотируемые перелеты с целью колонизации подходящих планет с экипажем в состоянии "обратимой смерти" (гибернации) или со сменой поколений внутри корабля, что требует решения множества не только технических, но и этических, психологических, биологических проблем (экипаж никогда не возвратится на Землю; большую часть жизни или даже всю жизнь при смене поколений ему предстоит провести внутри корабля; необходимо создание полностью замкнутой экосистемы КЛА и т. д.); еще до старта земные астрономические наблюдения должны дать гарантии существования планет земной группы с подходящими для жизни условиями у звезды - цели полета (иначе полет теряет смысл).

"Голубой мечтой" современной астронавтики является теоретически идеальный квантовый (фотонный) РД с w = c - единственно пригодный для осуществления межзвездных перелетов в пределах Галактики (рис. 78).

Движение физических тел со скоростями, близкими к скорости света, рассматриваются в общей теории относительности (ОТО), исследующей пространственно-временные закономерности любых физических процессов.

В рамках ОТО формула Циолковского обобщается и принимает вид: ,

где z - число Циолковского, m 0 - начальная, m 1 - конечная массы КЛА, u 1 - конечная скорость КЛА в земной системе отсчета, w - скорость реактивной струи относительно корабля.

Скорости света не сможет достигнуть даже фотонный звездолет при w = c , поскольку:.

Полет со скоростью выше скорости света согласно современной науке невозможен для любых материальных объектов. Однако (теоретически) звездолет может перемещаться со скоростью, близкой скорости света, .

Возможны варианты межзвездного полета:

1. Полет в 3 этапа: разгон КЛА до наибольшей скорости; полет по инерции с выключенными двигателями; торможение до нулевой скорости.
2. Полет в 2 этапа с постоянным ускорением: первую половину пути КЛА увеличивает скорость с ускорением g~ gÅ = 10 м/с 2 , а затем начинает торможение с тем же ускорением.

Согласно основным положениям ОТО для наблюдателя на борту КЛА при приближении к скорости света все физические процессы будут замедляться в раз, и во столько же раз будут сокращаться расстояния вдоль направления движения КЛА: пространство и время как бы "сжимаются". В системе отсчета корабля он будет неподвижен, а относительно Земли и цели полета будет перемещаться со скоростью u £ c .

Собственное (корабельное) время полета и независимое время, протекающее с момента старта на Земле, рассчитываются по разным формулам: , где и - функции гиперболического косинуса и гиперболического синуса, r - расстояние до цели полета.

При непрерывном ускорении g = 10 м/с 2 полет до звезды a Центавра займет по корабельным часам 3,6 года, по земным - 4,5 года; полет к центру Галактики займет по корабельным часам Т к = 19,72 года, по земным Т Å = 27000 лет; полет к галактике М31 ("туманности Андромеды"), ближайшей из спиральных галактик, займет соответственно Т к = 28 лет и Т Å = 3,5 миллиона лет!

Такова плата за межзвездные полеты согласно "парадоксу близнецов": облетевшие пол-Галактики и постаревшие на десятки лет астронавты возвратятся на Землю тысячи и миллионы лет спустя после старта. Помимо чисто этических проблем вернувшихся из, по сути, "полета в один конец" пришельцев из далекого прошлого в мир будущего, встает важная проблема ценности доставленной астронавтами информации: за время полета наука на Земле не стоит на месте!

Очень важны энергетические проблемы межзвездных полетов: если для достижения II космической скорости межпланетного пилотируемого перелета Земля - Марс будет затрачена энергия около 8,4× 10 9 кВт× ч (вырабатываемой электростанцией мощностью 100 МВт за 8,5 часов), то для разгона КЛА до 0,2с потребуется энергия 10 15 кВт× ч - вся энергия, вырабатываемая электростанциями Земли за 10 лет. Увеличение скорости до 0,4 с влечет увеличение расхода энергии в 16 раз при 100 % КПД двигателей! Запасы топлива для термоядерного РД составят свыше 99 % массы КЛА. Для синтеза антивещества для единственного полета фотонного звездолета требуется такое количество энергии, что современная наука не может указать его источника в переделах Солнечной системы.

Таким образом, по законам физики на современном уровне развития земной цивилизации межзвездные пилотируемые полеты КЛА практически невозможны. Исследования ближайших звезд межзвездными беспилотными АМЗ вполне возможны (в настоящее время в США и России разрабатываются проекты запуска АМЗ к Проксиме Центавра, звезде Барнарда и некоторым другим объектам в середине XXI века). Имеющие несколько десятков тонн массы полезной нагрузки АМЗ будут разгоняться до скорости 0,1-0,2с солнечными, радиоизотопными или термоядерными РД, время полета составит десятки или даже сотни лет.

Изученный материал закрепляется в ходе решения задач:

Упражнение 10:

1. Почему проще запустить КЛА к Плутону, нежели к Солнцу?

2. Возможна ли излюбленная в фантастике 60-х годов ситуация, когда КЛА с вышедшим из строя двигателем притягивается и падает на Солнце?

3. Где и почему выгоднее располагать космодромы: на полюсах или на экваторе Земли?

4. Определите скорость выхода КЛА за пределы Солнечной системы. Как долго он будет лететь к ближайшей из звезд?

5. Почему внутри космического корабля на пассивном участке траектории полета наступает невесомость?

6. Какова скорость АМС, вращающейся по круговой орбите вокруг Юпитера на расстоянии: а) 2000 км; б) 10000 км от планеты?

7. Изобразите на чертеже конфигурацию Земли, Солнца и Марса, считая их орбиты круговыми, при полете советских АМС "Марс-2" и "Марс-3", достигших Марса 21.11.1971 года и 2.12.1971 года после 192 и 188 суток полета, если противостояние планет произошло 10 августа 1971 года.

По мнению В.В. Радзиевского следует обратить внимание учителей и учащихся "на огромное практическое значение астрономии в связи с активным освоением космоса, на роль космонавтики в решении экологических проблем загрязнения окружающей среды (перенос загрязняющих атмосферу предприятий в космос, выброс в космос вредных отходов производства, демографические перспективы)… Необходимо усилить элементы космонавтики в самой программе, ввести вопросы: закон сохранения энергии в задаче 2-х тел (элементарный вывод)...

В 60-80-е годы в школах Советского Союза преподавался факультативный курс А.Д. Марленского "Основы космонавтики" (IX класс, 70 часов учебных занятий по 2 ч. в неделю) . Сведения о его структуре, содержании и планировании занятий могут пригодиться современному учителю физики и астрономии для использования соответствующего материала на уроках физики и астрономии (особенно в физико-математических классах) и внеклассных занятиях:

1) История космонавтики (2 ч.) (Первые фантастические проекты космических полетов. К.Э. Циолковский – основоположник научной космонавтики. Основные этапы развития ракетной техники. Запуск первого советского ИСЗ и начало космической эры. Полет человека в космос).

2) Движение и устройство ракет (4 ч.) (Принцип действия ракеты. Понятие о механике тел переменной массы. Формула Циолковского. Основные части и числовые характеристики одноступенчатой ракеты. Многоступенчатые ракеты. Ракетные двигатели и топлива). Начинать с повторения закона сохранения импульса; с опорой на него проанализировать одноимпульсный выброс массы из ракеты. Рассмотреть серию последовательных выбросов и показать, что результирующая скорость ракеты при однонаправленных выбросах равна сумме скоростей, которые она получает при каждом выбросе массы. Сообщить формулу Циолковского (без подробного вывода, но с детальным анализом физического смысла и решением соответствующих задач). Рассмотреть движение ракеты с точки зрения законов динамики, в зависимости от реактивной силы. Продемонстрировать на опытах возникновение реактивной силы на примерах вытекающих водяных струй и показать, как можно изменить силу тяги (приводится схема установки). Ознакомить учеников с числовыми характеристиками одноступенчатых и многоступенчатых РН. Предложить (дома) разработать проекты ракет с различными характеристиками, разобрать на следующем уроке. Работа РД изучается в общих чертах. Рассматриваются схемы их устройства, подачи топлива и графики изменения характеристик (скорость, температура и давление продуктов сгорания вдоль оси РД). Обратить внимание на основные данные РД и ракетного топлива в сравнении с тепловыми двигателями и топливом наземного транспорта. Полезно продемонстрировать действующие модели ракет.

3) Свободное движение ракеты в поле тяготения (8 ч) (Центральное поле тяготения. Задача 2-х тел. Закон сохранения механической энергии при движении в поле тяготения. Гравитационный параметр. Формула скорости тела, движущегося по эллиптической орбите. Траектории движения в поле тяготения (кеплеровы орбиты). Законы Кеплера. Круговая скорость, скорость освобождения, гиперболический избыток скорости. Понятие о возмущенном движении. Сфера действия. Невесомость). Повторить закон Всемирного тяготения применительно к 2 материальным точкам и подробно проанализировать его формулу; указать на возможность представления массивных космических тел в виде материальных точек. Формируется представление о поле тяготения как поле центральных сил и его характеристиках: ускорения свободного падения (позволяют определять силовые воздействия центрального поля на тела, вносимые в разные точки поля) и потенциалы (для определения энергетических затрат при различных перемещениях тел в этом поле). Обосновать выбор нулевого значения гравитационного потенциала для бесконечно удаленных точек в этом случае гравитационные потенциалы всех космических тел отсчитываются от нулевого уровня и их легко сравнивать. Сравнивая гравитационные потенциалы точек на поверхности планет, можно судить о величине работы для удаления тела из данной точки в бесконечность (введение понятия о II космической скорости). Решение задачи 2-х тел опирается на законы сохранения энергии и момента импульса (следует сформировать понятие о законе сохранения момента импульса на основе демонстрации скамьи Жуковского, определения понятия момента импульса и ряде опытов)

4) Движение ракеты под действием тяги (6 ч.) (Вывод КА на орбиту. Потери скорости. Начальная и суммарная характеристические скорости. Управление КА. Коррекции траектории. Перегрузки в полете. Понятие о космической навигации. Инерциальная, астро- и радионавигация. Ориентация и стабилизация КА). 5) Искусственные спутники Земли (8 ч.) (Орбиты ИСЗ. Возмущение орбит, вызванное несферичностью Земли, сопротивлением атмосферы, притяжением Луны и Солнца. Движение ИСЗ относительно поверхности Земли. Вывод ИСЗ на орбиту. Многоимпульсные маневры. Встреча на орбите. Орбиты ожидания. Гомановские переходы. Стыковка. Орбитальные станции. Спуск с орбиты. Основные физические явления при входе в атмосферу. Баллистический и планирующий спуски). 6) Полеты к Луне и планетам (8 ч.) (Траектории полетов к Луне. Искусственные спутники луны. Посадка на Луну. Траектории полета к планетам. Оптимальные траектории. Окна запуска. Коррекции траектории. Многоимпульсные траектории. Использование гравитационного поля планет для изменения траекторий КА. Облет планет. Посадка на планеты. Использование атмосферы при посадке. Коридор входа. Жесткая и мягкая посадки). 7) Условия космического полета (2 ч.) (Радиационная опасность. Метеоритная опасность. Способы защиты. Жизнеобеспечение в КК. Космическая психология. Ритм жизни в КК. Влияние невесомости и перегрузки на организм). 8) Научное и практическое использование космонавтики (6 ч.) (Успехи СССР в использовании космоса. Научная аппаратура ИСЗ, КА и АМС. Исследования Земли, околоземного космического пространства, Луны, планет, межпланетного пространства средствами космонавтики. Практическое использование космонавтики: в геодезии, метеорологии, для навигации, связи, разведки земных ресурсов). 9) Перспективы космонавтики (2 ч.) (Проекты дальнейших космических полетов в Солнечной системе. Проекты освоения Луны и планет. Возможность межзвездных перелетов). 10 часов практических работ (в том числе астрономических наблюдений).

<< Предыдущая наблюдения - лабораторные работы - практические работы - учебная программа - учебные пособия - лекции - педагогический эксперимент - дидактика - контрольные работы - задача
См. также: Все публикации на ту же тему >>

работу выполнила ученица 7Б класса Власова Людмила.

Теория космического полёта заключает в себе собрание переводов и изложений классических работ по этому вопросу, главным образом, иностранных авторов и некоторых русских. Изучение работ, посвященных проблеме межпланетных сообщений, показывает, что в разных странах разные лица пришли независимо один от другого к одному и тому же заключению, что межпланетные сообщения возможны, но практическое осуществление их пока встречает ряд технических и финансовых затруднений. Однако, эти затруднения в будущем должны быть преодолены, и человек пробьет, наконец, мешающие его полету панцири атмосферы и земного тяготения, унесется в загадочное и сулящее много новых впечатлений и открытий межпланетное пространство!

Первое затруднение, с которым мы встречаемся, это то, что между звездами нет атмосферы, и поэтому для полета в мировом пространстве невозможно применить аэроплан, для которого она необходима, как опора. Затруднения физиологического порядка будут рассмотрены позже. Теперь же ограничим наши рассуждения разрешением вопроса, позволяют ли наши знания механики допустить возможность существования двигателя, который, исключая какую либо внешнюю опору, мог бы передвигать аппарат. Хотя это и покажется странным для того, кто не занимался этим вопросом, тем не менее сегодняшние познания ученых указывают, что такой двигатель существует уже давно - это ракета. Часто говорят, что ракета движется благодаря реакции „на воздух“. Первая часть этого утверждения верна, но вторая „на воздух“ - ложна. Ракета движется так же хорошо в пустоте и даже лучше, чем в воздухе.

После израсходования горючего, начинается свободный полет ракеты в пространстве с некоторою скоростью v 1 слагающейся из собственной скорости v 1 ракеты и касательной скорости w , которую ракета получила благодаря вращению земли и ветру. Следует заметить, что пока ракета проходит в пределах земной атмосферы, сопротивление воздуха уменьшает скорость свободного полета ракеты, однако, это уменьшение незначительно на больших высотах, и, по вычислению ученого Герберта Оберта, при скорости v1 = 1000 м/с. равно всего 69 м/с, а при v1 = 10 000 м/с - всего лишь 2.2 м/с*, чем можно пренебречь В случае эллиптической орбиты, это уравнение имеет два корня, один для нас мнимый (внутри земли или под нею), другой - действительный, определяющий наивысшую точку подъема. Обратное падение ракеты не произойдет в точку взлета. Это происходит благодаря 1) влиянию ветра, 2) вращению земли и 3) условиям полета ракеты

Цель аппарата: Исследование высоты, состава и температуры земной атмосферы, определение закона сопротивления воздуха при разных высотах и скоростях, а также исследование работы самой ракеты. Аппарат состоит из двух ракет: верхней, внутренней - водородной (Н. R.) и нижней, в то же время внешней - спиртовой (A. R.) Длина аппарата 5 метров, ширина 55.6 см, вес 544 кг, из коих 6.9 кг приходятся на Н. R. Кроме того предвидена еще вспомогательная ракета. Вопрос о материале ракеты окончательно не решен. Материал ее работает, благодаря внутреннему сверхдавлению, на растяжение

1.Предварительные опыты Оберта должны заключаться в испытании работы дюзы и распылителя; в испытании истечения жидкостей из мелких отверстий и т. п.). 2. Вспомогательная ракета имеет назначением поднять вышеописанную составную ракету с высоты 5550 м до 7750 м и дать, по истощении своего горючего, главной (A. R.) ракете начальную скорость 500 м/с. Вес ее с горючим - 220 кг, продолжительность работы - 8 с; она сообщит A. R. ускорение 100 м/с2. Она своими прорезами (b) вставляется в стабилизаторы A. R., а ее баллон с кислородом (а) помещается в дюзе A. R. Для прочности, A. R. укрепляется снаружи кольцами, которые спадают одновременно со спадением вспомогательной ракеты. На фиг. 54 схематически показано взаимное расположение всех трех ракет: водородной (пунктир), спиртовой (сплошные линии) и вспомогательной (заштриховано). 3. Значение помп Р 1,2 будет тем больше, чем больше вся ракета.

Вообще человек может выдержать больший эффект ускорения, направленный от головы к ногам, нежели обратно. Еще больший эффект он может выдержать в лежачем положении или по касательной. Неприятным бывает эффект ускорения при движении по кругу, еще более неприятным при слабых подниманиях и опусканиях. Наоборот, быстрые торможения влияют слабее. На основании этих и иных соображений Оберт считает вероятным, что человек может выдерживать эффект ускорения около 51.2 м/с2 в течение 200-400 секунд. Ослабленное же ускорение не имеет никакого физического вреда. А при полете ракеты с пассажирами Оберт предлагает отправлять ракету не вертикально, т. е. вдоль земного радиуса, а наклонно, по кривой, названной им „синергией“. При этом можно повысить ускорение при взлете, так как почти парализуется влияние земного ускорения, благодаря полету едва ли не параллельно поверхности Земли.