Математическое моделирование детерминированных стохастических процессов. Детерминированные и стохастические модели

23 января 2017

Стохастическая модель описывает ситуацию, когда присутствует неопределенность. Другими словами, процесс характеризуется некоторой степенью случайности. Само прилагательное «стохастический» происходит от греческого слова «угадывать». Поскольку неопределенность является ключевой характеристикой повседневной жизни, то такая модель может описывать все что угодно.

Однако каждый раз, когда мы ее применяем, будет получаться разный результат. Поэтому чаще используются детерминированные модели. Хотя они и не являются максимально приближенными к реальному положению вещей, однако всегда дают одинаковый результат и позволяют облегчить понимание ситуации, упрощают ее, вводя комплекс математических уравнений.

Основные признаки

Стохастическая модель всегда включает одну или несколько случайных величин. Она стремится отразить реальную жизнь во всех ее проявлениях. В отличие от детерминированной модели, стохастическая не имеет цели все упростить и свести к известным величинам. Поэтому неопределенность является ее ключевой характеристикой. Стохастические модели подходят для описания чего угодно, но все они имеют следующие общие признаки:

  • Любая стохастическая модель отражает все аспекты проблемы, для изучения которой создана.
  • Исход каждого из явлений является неопределенным. Поэтому модель включает вероятности. От точности их расчета зависит правильность общих результатов.
  • Эти вероятности можно использовать для прогнозирования или описания самих процессов.

Детерминированные и стохастические модели

Для некоторых жизнь представляется чередой случайных событий, для других - процессов, в которых причина обуславливает следствие. На самом же деле для нее характерна неопределенность, но не всегда и не во всем. Поэтому иногда трудно найти четкие различия между стохастическими и детерминированными моделями. Вероятности являются достаточно субъективным показателем.

Например, рассмотрим ситуацию с подбрасыванием монетки. На первый взгляд кажется, что вероятность того, что выпадет «решка», составляет 50%. Поэтому нужно использовать детерминированную модель. Однако на деле оказывается, что многое зависит от ловкости рук игроков и совершенства балансировки монетки. Это означает, что нужно использовать стохастическую модель. Всегда есть параметры, которые мы не знаем. В реальной жизни причина всегда обуславливает следствие, но существует и некоторая степень неопределенности. Выбор между использованием детерминированной и стохастической моделей зависит от того, чем мы готовы поступиться - простотой анализа или реалистичностью.

Видео по теме

В теории хаоса

В последнее время понятие о том, какая модель называется стохастической, стало еще более размытым. Это связано с развитием так называемой теории хаоса. Она описывает детерминированные модели, которые могут давать разные результаты при незначительном изменении исходных параметров. Это похоже на введение в расчет неопределенности. Многие ученые даже допустили, что это уже и есть стохастическая модель.

Лотар Брейер изящно объяснил все с помощью поэтических образов. Он писал: «Горный ручеек, бьющееся сердце, эпидемия оспы, столб восходящего дыма - все это является примером динамического феномена, который, как кажется, иногда характеризуется случайностью. В реальности же такие процессы всегда подчинены определенному порядку, который ученые и инженеры еще только начинают понимать. Это так называемый детерминированный хаос». Новая теория звучит очень правдоподобно, поэтому многие современные ученые являются ее сторонниками. Однако она все еще остается мало разработанной, и ее достаточно сложно применить в статистических расчетах. Поэтому зачастую используются стохастические или детерминированные модели.

Построение

Стохастическая математическая модель начинается с выбора пространства элементарных исходов. Так в статистике называют перечень возможных результатов изучаемого процесса или события. Затем исследователь определяет вероятность каждого из элементарных исходов. Обычно это делается на основе определенной методики.

Однако вероятности все равно являются достаточно субъективным параметром. Затем исследователь определяет, какие события представляются наиболее интересными для решения проблемы. После этого он просто определяет их вероятность.

Пример

Рассмотрим процесс построения самой простой стохастической модели. Предположим, мы кидаем кубик. Если выпадет «шесть» или «один», то наш выигрыш составит десять долларов. Процесс построения стохастической модели в этом случае будет выглядеть следующим образом:

  • Определим пространство элементарных исходов. У кубика шесть граней, поэтому могут выпасть «один», «два», «три», «четыре», «пять» и «шесть».
  • Вероятность каждого из исходов будет равна 1/6, сколько бы мы ни подбрасывали кубик.
  • Теперь нужно определить интересующие нас исходы. Это выпадение грани с цифрой «шесть» или «один».
  • Наконец, мы может определить вероятность интересующего нас события. Она составляет 1/3. Мы суммируем вероятности обоих интересующих нас элементарных событий: 1/6 + 1/6 = 2/6 = 1/3.

Концепция и результат

Стохастическое моделирование часто используется в азартных играх. Но незаменимо оно и в экономическом прогнозировании, так как позволяют глубже, чем детерминированные, понять ситуацию. Стохастические модели в экономике часто используются при принятии инвестиционных решений. Они позволяют сделать предположения о рентабельности вложений в определенные активы или их группы.

Моделирование делает финансовое планирование более эффективным. С его помощью инвесторы и трейдеры оптимизируют распределение своих активов. Использование стохастического моделирования всегда имеет преимущества в долгосрочной перспективе. В некоторых отраслях отказ или неумение его применять может даже привести к банкротству предприятия. Это связано с тем, что в реальной жизни новые важные параметры появляются ежедневно, и если их не учитывать, это может иметь катастрофические последствия.

Математические модели в экономике и программировании

1. Детерминированные и вероятностные математические модели в экономике. Преимущества и недостатки

Методы исследования экономических процессов базируются на использовании математических - детерминированных и вероятностных - моделей, представляющих изучаемый процесс, систему или вид деятельности. Такие модели дают количественную характеристику проблемы и служат основой для принятия управленческого решения при поисках оптимального варианта. Насколько обоснованы эти решения, являются ли они лучшими из возможных, учтены ли и взвешены все факторы, определяющие оптимальное решение, каков критерий, позволяющий определить, что данное решение действительно наилучшее, - таков круг вопросов, имеющих большое значение для руководителей производства, и ответ на которые можно найти с помощью методов исследования операций [Чесноков С. В. Детерминационный анализ социально-экономических данных. - М.: Наука, 1982, стр. 45].

Одним из принципов формирования системы управления является метод кибернетических (математических) моделей. Математическое моделирование занимает промежуточное положение между экспериментом и теорией: нет необходимости строить реальную физическую модель системы, ее заменит математическая модель. Особенность формирования системы управления заключается в вероятностном, статистическом подходе к процессам управления. В кибернетике принято, что любой процесс управления подвержен случайным, возмущающим воздействиям. Так, на производственный процесс оказывают влияния большое количество факторов, учесть которые детерминированным образом невозможно. Поэтому считается, что на производственный процесс воздействуют случайные сигналы. В силу этого планирование работы предприятия может быть только вероятностным.

По этим причинам часто, говоря о математическом моделировании экономических процессов, имеют в виду именно вероятностные модели.

Опишем каждый из типов математических моделей.

Детерминированные математические модели характеризуются тем, что описывают связь некоторых факторов с результативным показателем как функциональную зависимость, т. е. в детерминированных моделях результативный показатель модели представлен в виде произведения, частного, алгебраической суммы факторов, или в виде любой другой функции. Данный вид математических моделей наиболее распространен, поскольку, будучи достаточно простыми в применении (по сравнению вероятностными моделями), позволяет осознать логику действия основных факторов развития экономического процесса, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства.

Вероятностные математические модели принципиально отличаются от детерминированных тем, что в вероятностных моделях взаимосвязь между факторами и результирующим признаком вероятностная (стохастическая): при функциональной зависимости (детерминированные модели) одному и тому же состоянию факторов соответствует единственное состояние результирующего признака, тогда как в вероятностных моделях одному и тому же состоянию факторов соответствует целое множество состояний результирующего признака [Толстова Ю. Н. Логика математического анализа экономических процессов. - М.: Наука, 2001, с. 32-33].

Преимущество детерминированных моделей в простоте их применения. Основной недостаток - низкая адекватность реальной действительности, т. к., как было отмечено выше, большинство экономических процессов носит вероятностный характер.

Достоинством вероятностных моделей является то, что они, как правило, больше соответствуют реальной действительности (более адекватны), чем детерминированные. Однако, недостатком вероятностных моделей является сложность и трудоемкость их применения, так что во многих ситуациях достаточно бывает ограничиться детерминированными моделями.

2. Постановка задачи линейного программирования на примере задачи о пищевом рационе

Впервые постановка задачи линейного программирования в виде предложения по составлению оптимального плана перевозок; позволяющего минимизировать суммарной километраж, была дана в работе советского экономиста А. Н. Толстого в 1930 году.

Систематические исследования задач линейного программирования и разработка общих методов их решения получили дальнейшее развитие в работах российских математиков Л. В. Канторовича, В. С. Немчинова и других математиков и экономистов. Также методам линейного программирования посвящено много работ зарубежных и, прежде всего, американских ученых.

Задача линейного программирования состоит в максимизации (минимизации) линейной функции.

при ограничениях

причем все

Замечание. Неравенства могут быть и противоположного смысла. Умножением соответствующих неравенств на (-1) можно всегда получить систему вида (*).

Если число переменных системы ограничений и целевой функции в математической модели задачи равно 2, то её можно решить графически.

Итак, надо максимизировать функцию к удовлетворяющей системе ограничений.

Обратимся к одному из неравенств системы ограничений.

С геометрической точки зрения все точки, удовлетворяющие этому неравенству, должны либо лежать на прямой , либо принадлежать одной из полуплоскостей, на которые разбивается плоскость этой прямой. Для того чтобы выяснить это, надо проверить какая из них содержит точку ().

Замечание 2. Если , то проще взять точку (0;0).

Условия неотрицательности также определяют полуплоскости соответственно с пограничными прямыми . Будем считать, что система неравенств совместна, тогда полуплоскости, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты которых являются решением данной системы - это множество допустимых решений. Совокупность этих точек (решений) называется многоугольником решений. Он может быть точкой, лучом, многоугольником, неограниченной многоугольной областью. Таким образом, задача линейного программирования состоит в нахождении такой точки многоугольника решений, в которой целевая функция принимает максимальное (минимальное) значение. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху (снизу). При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины построим прямую (где h - некоторая постоянная). Чаще всего берется прямая . Остается выяснить направление движения данной прямой. Это направление определяется градиентом (антиградиентом) целевой функции.

Вектор в каждой точке перпендикулярен прямой , поэтому значение f будет возрастать при перемещении прямой в направлении градиента (убывать в направлении антиградиента). Для этого параллельно прямой проводим прямые, смещаясь в направлении градиента (антиградиента).

Эти построения будем продолжать до тех пор, пока прямая не пройдет через последнюю вершину многоугольника решений. Эта точка определяет оптимальное значение.

Итак, нахождение решения задачи линейного программирования геометрическим методом включает следующие этапы:

Строят прямые, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств.

Находят полуплоскости, определяемые каждым из ограничений задачи.

Находят многоугольник решений.

Строят вектор .

Строят прямую .

Строят параллельные прямые в направлении градиента или антиградиента, в результате чего находят точку, в которой функция принимает максимальное или минимальное значение, либо устанавливают неограниченность сверху (снизу) функции на допустимом множестве.

Определяют координаты точки максимума (минимума) функции и вычисляют значение целевой функции в этой точке.

Задача о рациональном питании (задача о пищевом рационе)

Постановка задачи

Ферма производит откорм скота с коммерческой целью. Для простоты допустим, что имеется всего четыре вида продуктов: П1, П2, П3, П4; стоимость единицы каждого продукта равна соответственно С1, С2, С3, С4. Из этих продуктов требуется составить пищевой рацион, который должен содержать: белков - не менее b1 единиц; углеводов - не менее b2 единиц; жиров - не менее b3 единиц. Для продуктов П1, П2, П3, П4 содержание белков, углеводов и жиров (в единицах на единицу продукта) известно и задано в таблице, где aij (i=1,2,3,4; j=1,2,3) - какие-то определённые числа; первый индекс указывает номер продукта, второй - номер элемента (белки, углеводы, жиры).

Модели систем, о которых мы говорили до сих пор, были детерминированными (определенными), т.е. задание входного воздействия определяло выход системы однозначно. Однако на практике так бывает редко: описанию реальных систем обычно присуща неопределенность. Например, для статической модели неопределенность можно учесть, записывая место (2.1) соотношение

где -погрешность, приведенная к выходу системы.

Причины неопределенности разнообразны:

– погрешности и помехи измерений входов и выходов системы (естественные погрешности);

– неточность самой модели системы, что заставляет искусственно вводить в модель погрешность;

– неполнота информации о параметрах системы и т.д.

Среди различных способов уточнения и формализации неопределенности наибольшее распространение получил хаотический (вероятностный) подход, при котором неопределенные величины считаются случайными. Развитый понятийный и вычислительный аппарат теории вероятностей и математической статистики позволяет дать конкретные рекомендации по выбору структуры системы и оценке ее параметров. Классификация стохастических моделей систем и методов их исследования представлена в табл. 1.4. Выводы и рекомендации основаны на эффекте усреднения: случайные отклонения результатов измерений некоторой величины от ее ожидаемого значения при суммировании взаимно уничтожаются, и среднее арифметическое большого числа измерений оказывается близким к ожидаемому значению. Математические формулировки этого эффекта даются законом больших чисел и центральной предельной теоремой. Закон больших чисел гласит, что если - случайные величины с математическим ожиданием (средним значением) и дисперсией , то



при достаточно больших N . Это говорит о принципиальной возможности сколь угодно точной оценки по измерениям. Центральная предельная теорема, уточняющая (2.32) утверждает, что

где - стандартная нормально распределенная случайная величина

Поскольку распределение величины хорошо извести и затабулировано (например, известно, что то соотношение (2.33) позволяет вычислять погрешность оценки. Пусть, например требуется найти, при каком числе измерений погрешность оценки их математического ожидания с вероятностью 0,95 окажется меньше, чем 0,01, если дисперсия каждого измерения равна 0,25. Из (2.33) получаем, что должно выполняться неравенство откуда N> 10000.

Разумеется, формулировкам (2.32), (2.33) можно придать более строгий вид, и это легко может быть сделано с помощью понятий вероятностной сходимости. Трудности возникают при попытке проверить условия этих строгих утверждений. Например, в законе больших чисел и централь ной предельной теореме требуется независимость отдельных измерений (реализаций) случайной величины и конечность ее дисперсии. Если эти условия нарушаются, то могут нарушаться и выводы. Например, если все измерения совпадают: то, хотя все остальные условия выполняются об усреднении не может быть и речи. Другой пример: закон больших чисел несправедлив, если случайные величины распределены по закону Коши (с плотностью распределения не обладающему конечными математическими ожиданием и дисперсией. А ведь такой закон встречается в жизни! Например, по Коши распределена интегральная освещенность точек прямолинейного берега равномерно вращающимся прожектором, находящимся в море (на корабле) и включающимся в случайные моменты времени.

Но еще большие трудности вызывает проверка обоснованности самого употребления термина «случайный». Что такое случайная величина, случайное событие и т.д. Часто говорят, что событие А случайно, если в результате эксперимента оно может наступить (с вероятностью р) или не наступить (с вероятностью 1-р). Все, однако, не так просто. Само по­нятие вероятности может быть связано с результатами экс­периментов лишь через частоту его наступления в некотором ряде (серии) экспериментов: , где N A - число экс­периментов, в которых событие наступило, N - общее число; экспериментов. Если числа при достаточно большом N приближаются к некоторому постоянному числу р А:

то событие А можно назвать случайным, а число р - его вероятностью. При этом частоты, наблюдавшиеся в различных сериях экспериментов, должны быть близки между собой (это свойство называется статистической устойчивостью или однородностью). Сказанное относится и к понятию случайной величины, поскольку величина является случайной, если случайными являются события {а<£<Ь} для любых чисел а , Ь. Частоты наступления таких событий в длинных сериях экспериментов должны группироваться около некоторых по­стоянных значений.

Итак, для применимости стохастического подхода должны выполняться следующие требования:

1) массовость проводимых экспериментов, т.е. достаточно большое число;

2) повторяемость условий экспериментов, оправдывающая сравнение результатов различных экспериментов;

3) статистическая устойчивость.

Стохастический подход заведомо нельзя применять к единичным экспериментам: бессмысленны выражения типа «вероятность того, что завтра будет дождь», «с вероятностью 0.8 «Зенит» выиграет кубок» и т.п. Но даже если массовость и повторяемость экспериментов имеются, статистической ус­тойчивости может и не быть, а проверить это - непростое дело. Известные оценки допустимого отклонения частоты от вероятности основаны на центральной предельной теореме или неравенстве Чебышева и требуют дополнительных гипотез о независимости или слабой зависимости измерений. Опытная же проверка условия независимости еще сложнее, так как требует дополнительных экспериментов.

Более подробно методология и практические рецепты применения теории вероятностей изложены в поучительной книге В.Н. Тутубалина , представление о которой дают приводимые ниже цитаты:

«Чрезвычайно важно искоренить заблуждение, встречающееся иногда у недостаточно знакомых с теорией вероятностей инженеров и естествоиспытателей, что результат любого эксперимента можно рассматривать как случайную величину. В особо тяжелых случаях к этому присоединяется вера в нормальный закон распределения, а если уже сами случайные величины не нормальны, то верят, что их логарифмы нормальны».

«По современным представлениям область применения теоретико-вероятностных методов ограничена явлениями, которым присуща статистическая устойчивость. Однако проверка статистической устойчивости трудна и всегда неполна к тому же часто она дает отрицательный вывод. В результате в целых областях знания, например, в геологии, нормой стал такой подход, при котором статистическая устойчивость вовсе не проверяется, что неизбежно приводит к серьезным ошибкам. К тому же пропаганда кибернетики, предпринятая нашими ведущими учеными, дала (в некоторых случаях!) несколько неожиданный результат: теперь считается, что только машина (а не человек) способна получать объективные научные результаты.

В таких обстоятельствах долг каждого преподавателя - вновь и вновь пропагандировать ту старую истину, которую еще Петр I пытался (безуспешно) внушить русским купцам: что торговать надо честно, без обмана, так как в конечном счете это для самих же себя выгоднее».

Как же построить модель системы, если неопределенность в задаче есть, но стохастический подход неприменим? Ниже кратко излагается один из альтернативных подходов, основанный на теории нечетких множеств.


Напоминаем, что отношением (отношением между и) называется подмножество множества. т.е. некоторая совокупности пар R={(x , у )}, где,. Например, функциональная связь (зависимость) может быть представлена как отношение между множествами, включающее пары (х , у ), для которых.

В простейшем случае может быть, a R - отношение тождества, если.

Примеры 12-15 в табл. 1. 1 придуманы в 1988 г. учеником 86 класса 292 школы М. Коротеевым.

Математик здесь, конечно, заметит, что минимум в (1.4), строго говоря, может не достигаться и в формулировке (1.4) нужно заменить rnin на inf («инфимум» - точная нижняя грань множества). Однако ситуация от этого не изменится: формализация в данном случае не отражает существа задачи, т.е. проведена неверно. В дальнейшем, чтобы не«пугать» инженера, мы будем пользоваться обозначениями min, max; имея в виду, что при необходимости их следует заменить на более общие inf, sup.

Здесь термин «структура» используется в смысле, несколько более узком, нем в подразд. 1.1, и означает состав подсистем в системе и типы связей между ними.

Графом называется пара (G , R ), где G={g 1 ... g n }- конечное множество вершин, a - бинарное отношение на G. Если, тогда и только тогда, когда, то граф называется неориентированным, в противном случае - ориентированным. Пары называются дугами (ребрами), а элементы множества G - вершинами графа.

То есть алгебраические или трансцендентные.

Строго говоря, счетное множество представляет собой некоторую идеализацию, которую невозможно реализовать практически из-за конечности размеров технических систем и пределов человеческого восприятия. Такие идеализированные модели (например, множество натуральных чисел N ={1, 2,...}) имеет смысл вводить для множеств конечных, но с за­ранее не ограниченным (или неизвестным) числом элементов.

Формально понятие операции является частным случаем понятия отношения между элементами множеств. Например, операция сложения Двух чисел задает 3-местное (тернарное) отношение R: тройка чисел (х, у, z ) z ) принадлежит отношению R (пишем (х,у,z)), если z = х+у.

Комплексное число, аргумент полиномов А (), В ().

Это предположение часто выполняется на практике.

Если величина неизвестна, то следует заменить в (2.33) на оценку где При этом величина будет распределена уже не нормально, а по закону Стьюдента, который при практически неотличим от нормального.

Легко заметить, что (2.34) есть частный случай (2.32), когда берется, если событие А наступило в j- м эксперименте, в противном случае.При этом

А сегодня можно добавить «... и информатики» (прим. автора).

Стохастические модели

Как уже говорилось выше, стохастические модели – это модели вероятностные. При этом в результате расчетов можно сказать с достаточной степенью вероятности, каково будет значение анализируемого показателя при изменении фактора. Самое частое применение стохастических моделей – прогнозирование.

Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

  • необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
  • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
  • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

  1. наличие совокупности;
  2. достаточный объем наблюдений;
  3. случайность и независимость наблюдений;
  4. однородность;
  5. наличие распределения признаков, близкого к нормальному;
  6. наличие специального математического аппарата.

Построение стохастической модели проводится в несколько этапов:

  • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
  • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
  • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
  • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
  • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

Основные понятия корреляционного и регрессионного анализа

Корреляционный анализ - совокупность методов математической статистики, позволяющих оценивать коэффициенты, характеризующие корреляцию между случайными величинами, и проверять гипотезы об их значениях на основе расчета их выборочных аналогов.

Корреляционным анализом называется метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции .

В наиболее общем виде задача статистики (и, соответственно, экономического анализа) в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

Задачи собственнокорреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачирегрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, что дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

Автокорреляция - статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса - со сдвигом по времени.

Парная корреляция



Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы:

\ Y \ X \ Y 1 Y 2 ... Y z Итого Y i
X 1 f 11 ... f 1z
X 1 f 21 ... f 2z
... ... ... ... ... ... ...
X r f k1 k2 ... f kz
Итого ... n
... -

В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты f ij показывают количество соответствующих сочетаний Х и У.

Если f ij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания f ij допустимо утверждать о связи между Х и У. При этом, если f ij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси ординат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связи.

Корреляционным полем называется множество точек {X i , Y i } на плоскости XY (рисунки 6.1 - 6.2).

Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет положительный угол наклона (/), то имеет место положительная корреляция (пример подобной ситуации можно видеть на рисунке 6.1).

Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет отрицательный угол наклона (\), то имеет место отрицательная корреляция (пример изображен на рисунке 6.2).

Если же в расположении точек нет какой-либо закономерности, то говорят, что в этом случае наблюдается нулевая корреляция.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по У. Рассчитаем для каждого Х i среднее значение У, т.е. , как

Последовательность точек (X i , ) дает график, который иллюстрирует зависимость среднего значения результативного признака У от факторного X, – эмпирическую линию регрессии, наглядно показывающую, как изменяется У по мере изменения X.

По существу, и корреляционная таблица, и корреляционное поле, и эмпирическая линия регрессии предварительно уже характеризуют взаимосвязь, когда выбраны факторный и результативный признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов.