Математическая логика: предмет, структура и основные принципы операций.

современная математическая модель формальной логики как науки о правильном рассуждении. По меткому выражению русского логика Порецкого, математическая логика суть логика по предмету и математика - по методу решения своих проблем. Систематическая разработка математической логики началась с работ Больцано, Фреге, Рассела и Витгенштейна. Суть этой логики и рассмотрении большинства логических категорий (понятие, предикат, суждение, умозаключение, вывод, доказательство) как логических функций, областью значения которых являются истинностные значения. Как логические функции истолковываются и все логические операторы (термины «Все», «Существует», «Некоторые», «Один», «Ниодин», «и», «или», «если, то», «тождественно», «возможно», «необходимо» и т. д. и т. п.). Все логические функции задаются, в конечном счете, табличным способом с помощью всевозможных сочетаний введенного числа истинностных значений на «входе» и «выходе» этих функций. Так, например, логическое отношение «если, то...» моделируется с помощью функции =), называемой материальной импликацией.

Отличное определение

Неполное определение ↓

МАТЕМАТИЧЕСКАЯ ЛОГИКА

логика, развившаяся в точную науку, применяющую математич. методы, или, согласно П. С. Порецкому, логика по предмету, математика по методам. Идея построения М. л. высказывалась впервые Лейбницем. Но лишь в 19 в. в соч. Буля "Математический анализ логики" (G."Boole, "The mathematical analysis of logic", 1847) была начата систематич. разработка этой науки. Дальнейшее развитие М. л. в значит. мере стимулировалось потребностями математики, ставившей логич. проблемы, для решения к-рых старые средства классич. формальной логики были непригодны. Одной из этих проблем явилась проблема недоказуемости 5-го постулата Эвклида в геометрии. Эта проблема связана с аксиоматическим методом, являющимся наиболее распространенным способом логич. систематизации математики. Он требует точной формулировки основных, принимаемых без доказательства положений развертываемой теории – т.н. а к с и о м, из к-рых все дальнейшее ее содержание логически выводится. Математич. теории, развиваемые т.о., наз. а к с и о м а т и ч е с к и м и. Классич. прототипом такого построения математич. теории является эвклидово построение геометрии. В связи со всякой аксиоматич. теорией естественно возникает ряд логич. проблем. В частности, возникает проблема л о г и ч е с к о й н е з а в и с и м о с т и аксиом данной теории, состоящая в установлении того, что ни одна из аксиом теории не может быть чисто логически выведена из остальных аксиом. Для эвклидовой геометрии в течение двух тысячелетий оставался открытым вопрос о логич. независимости 5-го постулата Эвклида. Было предпринято много тщетных попыток вывести его из остальных аксиом эвклидовой геометрии, пока, наконец, в работах Н. И. Лобачевского не было впервые в явной форме высказано убеждение в невозможности осуществить такой вывод. Это убеждение было подкреплено Лобачевским построением новой геометрии, в корне отличной от эвклидовой. В геометрии Лобачевского, тщательно разработанной ее творцом, не обнаруживалось противоречий; это вселяло уверенность в том, что противоречия и вообще не могут возникнуть, как бы далеко ни было продвинуто выведение следствий из аксиом новой геометрии. Впоследствии нем. математиком Ф. Клейном было доказано, что п р о т и в о р е ч и я не могут возникнуть в геометрии Лобачевского, если они не могут возникнуть в эвклидовой г е о м е т р и и (см. Метод аксиоматический). Так возникли и были частично решены исторически первые проблемы "недоказуемости" и непротиворечивости в аксиоматич. теориях. Точная постановка таких проблем, их рассмотрение как проблем математических требуют уточнения понятия доказательства. Всякое математич. доказательство состоит в последовательном применении тех или иных логич. средств к исходным положениям. Но логич. средства не представляют собой чего-то абсолютного, раз навсегда установленного. Они вырабатывались многовековой человеческой практикой; "...практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, д а б ы эти фигуры м о г л и получить значение а к с и о м" (Ленин В. И., Соч., т. 38, с. 181–82). Человеческая практика является, однако, на каждом историч. этапе ограниченной, а объем ее все время растет. Логич. средства, удовлетворительно отражавшие человеческое мышление на данном этапе или в данной области, могут уже оказаться неподходящими на след. этапе или в др. области. Тогда в зависимости от изменения содержания рассматриваемого предмета изменяется и способ его рассмотрения – изменяются логич. средства. Это в особенности относится к математике с ее далеко идущими многостепенными абстракциями. Здесь бессмысленно говорить о логич. средствах как о чем-то данном в своей совокупности, как о чем-то абсолютном. Зато имеет смысл рассмотрение логич. средств, применяемых в той же или иной конкретной обстановке, встречающейся в математике. Их установление для к.-л. аксиоматич. теории и составляет искомое уточнение понятия доказательства для этой теории. Важность этого уточнения для развития математики выявилась в особенности за последнее время. Разрабатывая множеств теорию, ученые столкнулись с рядом трудных проблем, в частности с проблемой о мощности континуума, выдвинутой Г. Кантором (1883), к к-рой до 1939 не было найдено удовлетворит. подходов. Др. проблемы, столь же упорно не поддававшиеся решению, встретились в дескриптивной теории множеств, разрабатываемой сов. математиками. Постепенно выяснилось, что трудность этих проблем является логической, что она связана с неполной выявленностью применяемых логич. средств и аксиом и что единств. путем к ее преодолению является уточнение тех и других. Выяснилось, т.о., что разрешение этих задач требует привлечения М. л., к-рая, следовательно, является наукой, необходимой для развития математики. В наст. время надежды, возлагавшиеся на М. л. в связи с этими проблемами, уже оправдали себя. В отношении проблемы континуума очень существенный результат был получен К. Геделем (1939), доказавшим непротиворечивость обобщенной континуум-гипотезы Кантора с аксиомами теории множеств при условии, что эти последние непротиворечивы. В отношении же ряда трудных проблем дескриптивной теории множеств важные результаты получены П. С. Новиковым (1951). Уточнение понятий доказательства в аксиоматич. теории является важным этапом ее развития. Теории, прошедшие этот этап, т.е. аксиоматич. теории с установленными логич. средствами, называют д е д у к т и в н ы м и т е о р и я м и. Лишь для них допускают точную формулировку интересующие математиков проблемы доказуемости и непротиворечивости в аксиоматич. теориях. Для решения этих проблем в совр. М. л. применяется метод формализации доказательств. Идея метода формализации доказательств принадлежит нем. математику Д. Гильберту. Проведение этой идеи стало возможным благодаря предшествовавшей разработке М. л. Булем, Порецким, Шредером, Фреге, Пеано и др. В наст. время метод формализации доказательств является мощным орудием исследования в проблемах обоснования математики. Применение метода формализации бывает обычно связано с выделением логич. части рассматриваемой дедуктивной теории. Эта логич. часть, оформляемая, как и вся теория, в виде нек-рого исчисления, т.е. системы формализованных аксиом и формальных правил вывода, может быть рассматриваема как самостоятельное целое. Простейшим из логич. исчислений являются исчисления высказываний, классическое и конструктивное. Формальное различие двух исчислений высказываний отражает глубокое различие в их истолкованиях, касающееся смысла пропозициональных переменных и логич. связок (см. Интуиционизм, Исчисление задач, Логика высказываний). Наиболее широко используемым при построении дедуктивных математич. теорий является в наст. время классич. предикатов исчисление, представляющее собой развитие и уточнение классич. теории суждений Аристотеля и вместе с тем соответствующее теоретико-множеств. системе абстракций. Конструктивное исчисление предикатов относится к классич. исчислению предикатов так же, как конструктивное исчисление высказываний к классич. исчислению высказываний. Самое существенное из расхождений между этими двумя исчислениями предикатов связано с истолкованием в них частных, или экзистенциальных, суждений. В то время как в конструктивном исчислении предикатов такие суждения истолковываются как утверждения о возможности определ. конструкций и считаются установленными лишь при указании этих конструкций, в классич. исчислении предикатов экзистенциальные суждения обычно трактуются в отрыве от конструктивных возможностей как некие "чистые" утверждения о существовании (см. Конструктивное направление). Более удовлетворительное истолкование экзистен-циальных суждений классич. исчисления предикатов, увязывающее определ. образом это исчисление с конструктивным исчислением предикатов, было открыто А. Н. Колмогоровым в 1925. В математике логич. исчисления применяются в сочетании со специфич. аксиомами развертываемых дедуктивных теорий. Напр., теорию натуральных чисел можно строить, объединяя аксиомы Пеано для арифметики с исчислением предикатов (классическим или конструктивным). Применяемое при этом объединение логич. символики с математической не только позволяет оформлять математич. теории в виде исчислений, но и может являться ключом к уточнению смысла математич. предложений. В наст. время сов. математиком Н. А. Шаниным разработаны точные правила конструктивного истолкования математич. суждений, охватывающие широкие области математики. Применение этих правил становится возможным лишь после того, как рассматриваемое суждение записано на надлежащем точном логико-математич. языке. В результате применения правил истолкования может выявиться конструктивная задача, связываемая с данным суждением. Это, однако, происходит не всегда: не со всяким математич. предложением обязательно связывается конструктивная задача. С исчислениями связаны следующие понятия и идеи. Об исчислении говорят, что оно непротиворечиво, если в нем не выводима никакая формула вида U вместе с формулой U (где есть знак отрицания). Задача установления непротиворечивости применяемых в математике исчислений является одной из гл. задач М. л. В наст. время эта задача решена лишь в весьма огранич. объеме. Употребляются разл. понятия п о л н о т ы исчисления. Имея в виду охват той или иной содержательно определенной области математики, считают исчисление полным относительно этой области, если в нем выводима всякая формула, выражающая верное утверждение из этой области. Другое понятие полноты исчисления связано с требованием доставлять либо доказательство, либо опровержение для всякого предложения, формулируемого в исчислении. Первостепенное значение в связи с этими понятиями имеет теорема Геделя–Россера, утверждающая несовместимость требования полноты с требованиями непротиворечивости для весьма широкого класса исчислений. Согласно теореме Геделя–Россера, никакое непротиворечивое исчисление из этого класса не может быть полным относительно арифметики: для всякого такого исчисления может быть построено верное арифметич. утверждение, формализуемое, но не выводимое в этом исчислении (см. Метатеория). Эта теорема, не снижая значения М. л. как мощного организующего средства в науке, в корне убивает надежды на эту дисциплину как на нечто способное осуществить всеобщий охват математики в рамках одной дедуктивной теории. Надежды такого рода высказывались мн. учеными, в том числе Гильбертом – главным представителем формализма в математике – направления, пытавшегося свести всю математику к манипуляциям с формулами по определенным раз навсегда установленным правилам. Результат Геделя и Россера нанес этому направлению сокрушительный удар. В силу их теоремы, даже такая сравнительно элементарная часть математики, как арифметика натуральных чисел, не может быть охвачена одной дедуктивной теорией. М. л. органически связана с кибернетикой, в частности с теорией релейно-контактных схем и автоматов, машинной математикой и лингвистикой математической. Приложения М. л. к релейно-контактным схемам основаны на том, что всякая двухполюсная релейно- контактная схема в след. смысле м о д е л и р у е т нек-рую формулу U классич. исчисления высказываний. Если схема управляется n реле, то столько же различных пропозициональных переменных содержит U, и, если обозначить через bi, суждение "Реле номер i сработало", то цепь будет тогда и только тогда замкнута, когда будет верен результат подстановки суждений b1, ..., bn вместо соответствующих логич. переменных в U. Построение такой моделируемой формулы, описывающей "условия работы" схемы, оказывается особенно простым для т.н. ?-с х е м, получаемых исходя из элементарных одноконтактных цепей путем параллельных и последовательных соединений. Это связано с тем, что параллельное и последовательное соединения цепей моделируют, соответственно, дизъюнкцию и конъюнкцию суждений. Действительно, цепь, полученная путем параллельного (последовательного) соединения цепей Ц1 и Ц2, тогда и только тогда замкнута, когда замкнута цепь Ц1 или (и) замкнута цепь Ц2. Применение исчисления высказываний к релейно-контактным схемам открыло плодотворный подход к важным проблемам совр. техники. Вместе с тем эта связь теории с практикой привела к постановке и частичному решению мн. новых и трудных проблем М. л., к числу к-рых в первую очередь относится т.н. проблема м и н и м и з а ц и и, состоящая в разыскании эффективных методов нахождения простейшей формулы, равносильной данной формуле. Релейно-контактные схемы являются частным случаем управляющих схем, применяемых в совр. автоматах. Управляющие схемы иных типов, в частности, схемы из электронных ламп или полупроводниковых элементов, имеющие еще большее практич. значение, также могут быть разрабатываемы с помощью М. л., к-рая доставляет адекватные средства как для анализа, так и для синтеза таких схем. Язык М. л. оказался также применимым в теории программирования, создаваемой в наст. время в связи с развитием машинной математики. Наконец, созданный в М. л. аппарат исчислений оказался применимым в математической лингвистике, изучающей язык математич. методами. Одной из осн. проблем этой науки является точная формулировка правил грамматики рассматриваемого языка, т.е. точное определение того, что следует понимать под "грамматически правильной фразой этого языка". Как показал амер. ученый Хомский, есть все основания искать решение этой задачи в следующем виде: строится нек-рое исчисление, и грамматически правильными фразами объявляются выражения, составленные из знаков алфавита данного языка и выводимые в этом исчислении. Работы в этом направлении продолжаются. См. также Алгебра логики, Конструктивная логика, Логика комбинаторная, Логика классов, Логическое исчисление, Модальная логика и лит. при этих статьях. А. Марков. Москва.

Другие разделы

МАТЕМАТИЧЕСКАЯ ЛОГИКА, дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.

Важную роль в математической логике играют понятия дедуктивной теории и исчисления. Исчислением называется совокупность правил вывода, позволяющих считать некоторые формулы выводимыми. Правила вывода подразделяются на два класса. Одни из них непосредственно квалифицируют некоторые формулы как выводимые. Такие правила вывода принято называть аксиомами . Другие же позволяют считать выводимыми формулы, синтаксически связанные некоторым заранее определённым способом с конечными наборами выводимых формул. Широко применяемым правилом второго типа является правило modus ponens: если выводимы формулы и, то выводима и формула.

Отношение исчислений к семантике выражается понятиями семантической пригодности и семантической полноты исчисления. Исчисление И называется семантически пригодным для языка Я, если любая выводимая в И формула языка Я является верной. Аналогично, исчисление И называется семантически полным в языке Я, если любая верная формула языка Я выводима в И.


Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода, с использованием языка математики.


Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат К. Гёделя о том, что так называемое классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка. С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Гёделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики.


Стоит отметить, что на практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и соответственно входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.


Разделы математической логики

    Алгебра логики

    Логика высказываний

    Теория доказательств

    Теория моделей

Логика высказываний (или пропозициональная логика от англ. propositional logic, или исчисление высказываний) - это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка.

Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений

Алгебра логики (алгебра высказываний) - раздел математической логики, в котором изучаются логические операции над высказываниями . Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

Базовыми элементами, которыми оперирует алгебра логики, являются высказывания. Высказывания строятся над множеством , над элементами которого определены три операции:

    Отрицание (унарная операция),

    Конъюнкция (бинарная),

    Дизъюнкция (бинарная),

а также константы - логический ноль 0 и логическая единица 1.

Теория вероятности - раздел математики, изучающий случайные события их свойства и операции над ними.

В теории вероятностей изучаются, те случайные события, которые могут быть воспроизведены в одних и тех же условиях и обладающие следующим свойством: в результате эксперимента, при условии S событие A может произойти с определенной вероятность p.


Основными понятиями теории вероятности являются: событие, вероятность, случайное событие, случайное явление, математическое ожидание, дисперсия, функция распределения, вероятностное пространство.


Как наука теория вероятностей возникает в середине 17 века. Первые работы появляются, в связи с подсчетом вероятностей в азартных играх. Исследуя прогнозирование выигрыша при бросании костей,
Блез Паскаль и Пьер Ферма , в своей переписке 1654 года, открыли первые вероятностные закономерности. В частности в этой переписки они пришли к понятию математическое ожидание и теоремам умножения и сложения вероятностей. В 1657 году эти результаты были приведены в книге Х. Гюйгенса «О расчетах в азартных играх», которая является первым трактатом по теории вероятностей.

Больших успехов в теории вероятностей достиг
Яков Бернулли : он установил закон больших чисел в простейшем случае, сформулировал многие понятия современной теории вероятностей. Им была написана монография по теории вероятностей, которая была издана посмертно в 1713 году, под названием «Искусство предположений».

В первой половине 19 века теория вероятностей начинает применяться в теории ошибок наблюдений. В это время были доказаны
теорема Муавра - Лапласа (1812) и теорема Пуассона (1837), являющиеся первыми предельными теоремами. Лаплас расширил и систематизировал математические основы теории вероятностей. Гаусс и Лежандр разработали метод наименьших квадратов.

Во второй половине 19 века большинство открытий в теории вероятности были сделаны российскими учеными
П. Л. Чебышёвым и его ученикам и А. М. Ляпуновым и А.А Марковым. В 1867 году Чебышёв сформулировал и достаточно просто доказал закон больших чисел при весьма общих условиях. В 1887 он же впервые сформулировал и предложил метод решения центральной предельной теоремы для сумм независимых случайных величин. В1901 году эта теорема была доказана Ляпуновым при более общих условиях. Марков в 1907 году впервые рассмотрел схему испытаний связанных в цеп, тем самым, положив основу теории Марковских цепей. Так же он внес большой вклад в исследования, касающиеся теории больших чисел и центральной предельной теоремы.

В начале 20 века происходит расширение круга применения теории вероятностей, создаются системы строго математического обоснования и новые методы теории вероятностей. В этот период благодаря трудам
Андрея Николаевича Колмогорова теории вероятностей приобретает современный вид.

В 1926 году, будучи аспирантом, Колмогоров получает необходимые и достаточные условия, при которых имеет место закон больших чисел. В 1933 в своей работе «Основные понятия теории вероятностей» Колмогоров вводит аксиоматику теории вероятностей, которая общепризнанна наилучшей.


Математический аппарат теории вероятности широко используется в науке и технике. В частности в астрономии для расчета орбит комет используется метод наименьших квадратов. В медицине при оценке эффективности методов лечения так же используется теория вероятности.


/ БДЭ Математика /

Дедукция

Помните, Шерлок Холмс постоянно твердил о своих дедуктивных способностях? Так что же такое дедукция?

ДЕДУКЦИЯ (лат. deductio - выведение) - такая форма мышления, когда новая мысль выводится чисто логическим путем из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью, либо аксиомой, либо гипотезой. Последняя мысль данного вывода называется заключением.

Дедуктивное умозаключение, являющееся предметом традиционной логики, применяется нами всякий раз, когда требуется рассмотреть какое - либо явление на основании уже известного нам общего положения и вывести в отношении этого явления необходимое заключение. Нам известен, например, следующий конкретный факт - “данная плоскость пересекает шар” и общее правило относительно всех плоскостей, пересекающих шар, -“всякое сечение шара плоскостью есть круг”. Применяя это общее правило к конкретному факту, каждый правильно мыслящий человек необходимо придет к одному и тому же выводу: “значит данная плоскость есть круг”.


Структура дедуктивного умозаключения и принудительный характер его правил
отобразили самое распространенные отношения между предметами материального мира: отношения рода, вида и особи, т. е. общего, частного и единичного: то, что присуще всем видам данного рода, то присуще и любому виду; то, что присуще всем особям рода, то присуще и каждой особи.

Впервые теория дедукции была обстоятельно разработана Аристотелем. Он выяснил требования, которым должны отвечать отдельные мысли, входящие в состав дедуктивного умозаключения, определил значение терминов и раскрыл правила некоторых видов дедуктивных умозаключений. Положительной стороной аристотелевского учения о дедукции является то,что в нем отобразились реальные закономерности объективного мира.

Под термином “дедукция” в узком смысле слова понимают также следующее:
1) Метод исследования, заключающийся в следующем: для того, чтобы получить новое знание о предмете или группе однородных предметов, надо, во - первых найти ближайший род, в который входят эти предметы, и, во - вторых, применить к ним соответствующий закон, присущий всему данному роду предметов . Дедуктивный метод играет огромную роль в математике. Известно, что все теоремы выводятся логическим путем с помощью дедукции из небольшого конечного числа исходных начал, называемых аксиомами.
2) Форма изложения материала в книге, лекции, докладе, беседе, когда от общих положений, правил, законов идут к менее общим положениям, правилам, законам.
Этот способ позволяет задавать формальные аксиоматические теории .
2.Задание только аксиом
В этом случае правила вывода считаются общеизвестными, поэтому задаются только аксиомы. Поэтому при таком построении теорем, говорят, что полуформальная аксиоматическая теория .
3.Задание только правил вывода
Данный способ построения теорем основывается на задании только правил вывода, поскольку множество аксиом пусто. Исходя из этого, теория, заданная таким образом, являет собой частный случай формальной теории. Позднее эта разновидность стала называться теорией естественного вывода .

К основным свойства дедуктивных теорий относятся:
1. Противоречивость
Противоречивой называется теория, в которой множество теорем покрывает всё множество формул.

2. Полнота
Полной называется теория, в которой для любой формулы F выводима либо сама F , либо ее отрицание -F .
3. Независимость аксиом
Когда отдельную аксиому теории нельзя вывести из остальных аксиом, то ее называют независимой . Система аксиом называется независимой только в том случае, если каждая аксиома в ней независима.
4. Разрешимость
Когда в теории существует эффективный алгоритм, позволяющий определить количество шагов, доказывающих теорему, теория называется разрешимой .
К примеру, логика высказываний, логика первого порядка (исчисление предикатов), формальная арифметика (теория S ).

Введение

Тема контрольной работы «Математическая логика».

БУЛЬ или БУЛ, а также БУУЛ, Джордж (1815-1864) – английский математик, который считается основоположником математической логики.

Математическая логика – это раздел математики, посвященный анализу методов рассуждений, при этом в первую очередь исследуются формы рассуждений, а не их содержание, т.е. исследуется формализация рассуждений.

Формализация рассуждений восходит к Аристотелю. Современный вид аристотелева (формальная) логика приобрела во второй половине XIX века в сочинении Джорджа Буля “Законы мысли”.

Интенсивно математическая логика начала развиваться в 50-е годы XX века в связи с бурным развитием цифровой техники.

1. Элементы математической логика

Основными разделами математической логики являются исчисление высказываний и исчисление предикатов.

Высказывание – есть предложение, которое может быть либо истинно, либо ложно.

Исчисление высказываний – вступительный раздел математической логики, в котором рассматриваются логические операции над высказываниями.

Предикат – логическая функция от п переменных, которая принимает значения истинности или ложности.

Исчисление предикатов – раздел математической логики, объектом которого является дальнейшее изучение и обобщение исчисления высказываний.

Теория булевых алгебр (булевых функций) положена в основу точных методов анализа и синтеза в теории переключательных схем при проектировании компьютерных систем.

1.1 Основные понятия алгебры логики

Алгебра логики – раздел математической логики, изучающий логические операции над высказываниями.

В алгебре логики интересуются лишь истинностным значением высказываний. Истинностные значения принято обозначать:

1 (истина) 0 (ложь).

Каждой логической операции соответствует функция, принимающая значения 1 или 0, аргументы которой также принимают значения 1 или 0.

Такие функции называются логическими или булевыми, или функциями алгебры логики (ФАЛ). При этом логическая (булева) переменная x может принимать только два значения:

.

Таким образом,

- логическая функция, у которой логи-ческие переменные являются высказываниями. Тогда сама логическая функция является сложным высказыванием.

В этом случае алгебру логики можно определить, как совокупность множества логических функций с заданными в нем всевозможными логическими операциями. Таким логическим операциям, как конъюнкция (читается И) , дизъюнкция (ИЛИ ), импликация, эквивалентность, отрицание (НЕ) , соответствуют логические функции, для которых приняты обозначения

(&, ·), ~, – (), и имеет место таблица истинности:
x~y
0 0 0 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 0 0
1 1 1 1 1 0 1

Это табличный способ задания ФАЛ. Наряду с ними применяется задание функций с помощью формул в языке, содержащем переменные x , y , …, z (возможно индексированные) и символы некоторых конкретных функций – аналитический способ задания ФАЛ.

Наиболее употребительным является язык,содержащий логические символы

~, –. Формулы этого языка определяются следующим образом:

1) все переменные есть формулы;

2) если P и Q – формулы, то

P ~ Q , - фор-мулы.

Например, выражение

~ - формула. Если переменным x , y , z придать значения из двоичного набора 0, 1 и провести вычисления в соответствии с операциями, указанными в формуле, то получим значение 0 или 1.

Говорят, что формула реализует функцию. Так формула

~ реализует функцию h (x , y , z ):
x y z h (x, y, z )
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Пусть P и Q – формулы, которые реализуют функции f (x 1 , x 2 , …, x n ) и g (x 1 , x 2 , …, x n ). Формулы равны: P = Q , если функции f и g совпадают, т.е. совпадают их таблицы истинности. Алгебра, основным множеством которой является все множество логических функций, а операциями – дизъюнкция, конъюнкция и отрицание, называется булевой алгеброй логических функций.

Приведем законы и тождества, определяющие операции

– и их связь с операциями , ~:

1. Идемпотентность конъюнкции и дизъюнкции:

.

2. Коммутативность конъюнкции и дизъюнкции:

.

3. Ассоциативность конъюнкции и дизъюнкции:

.

4. Дистрибутивность конъюнкции относительно дизъюнкции и дизъюнкции относительно конъюнкции:


.

5. Двойное отрицание:

.

6. Законы де Моргана:

=, =.

7. Склеивание:

.

8. Поглощение

.

9. Действия с константами 0 и 1.

Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

математическая логика - ЛОГИКА СИМВОЛИЧЕСКАЯ, математическая логика, теоретическая логика область логики, в которой логические выводы исследуются посредством логических исчислений на основе строгого символического языка. Термин «Л. с.» был, по видимому, впервые… … Энциклопедия эпистемологии и философии науки

МАТЕМАТИЧЕСКАЯ ЛОГИКА - Ее еще называют символической логикой. М. л. это та же самая Аристотелева силлогистическая логика, но только громоздкие словесные выводы заменены в ней математической символикой. Этим достигается, во первых, краткость, во вторых, ясность, в… … Энциклопедия культурологии

МАТЕМАТИЧЕСКАЯ ЛОГИКА - МАТЕМАТИЧЕСКАЯ логика, дедуктивная логика, использующая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений … Современная энциклопедия

МАТЕМАТИЧЕСКАЯ ЛОГИКА - дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике … Большой Энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - (символическая логика), аналитический раздел логики, результат применения математических методов к проблемам классической логики. Рассматривает понятия, которые могут быть истинными или ложными, связь между понятиями и оперирование ими, включая… … Научно-технический энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - один из ведущих разделов современной логики и математики. Сформировался в 19 20 ст. как реализация идеи о возможности записать все исходные допущения на языке знаков, аналогичных математическим и тем самым заменить рассуждения вычислениями.… … Новейший философский словарь

математическая логика - сущ., кол во синонимов: 1 логистика (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

математическая логика - — Тематики электросвязь, основные понятия EN mathematical logic … Справочник технического переводчика

МАТЕМАТИЧЕСКАЯ ЛОГИКА - теоретическая логика, символическая логика, раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики. Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе… … Математическая энциклопедия

Книги

  • Математическая логика , Ершов Юрий Леонидович, Палютин Евгений Андреевич. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории… Купить за 1447 грн (только Украина)
  • Математическая логика , Ершов Ю.Л.. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории…