Масса химического элемента определяется количеством. Масса атома

Энциклопедичный YouTube

    1 / 3

    ✪ Химия| Относительная атомная масса

    ✪ Относительная атомная масса. Молекулярная масса.

    ✪ 15. Атомная масса

    Субтитры

Общие сведения

Одним из фундаментальных свойств атома является его масса . Абсолютная масса атома - величина, чрезвычайно малая. Так, атом водорода имеет массу около 1,67⋅10 −24 г . Поэтому в химии (для практических целей) преимущественно и значительно удобнее пользоваться относительной [условной] величиной, которую называют относительной атомной массой или просто атомной массой и которая показывает, во сколько раз масса атома данного элемента больше массы атома другого элемента, принятой за единицу измерения массы.

В качестве единицы измерения атомных и молекулярных масс принята 1 ⁄ 12 часть массы нейтрального атома наиболее распространённого изотопа углерода 12 C . Эта внесистемная единица измерения массы получила название атомная единица массы (а. е. м. ) или дальтон (Да).

Разность между атомной массой изотопа и его массовым числом называется избытком массы (обычно его выражают в МэВ). Он может быть как положительным, так и отрицательным; причина его возникновения - нелинейная зависимость энергии связи ядер от числа протонов и нейтронов, а также различие в массах протона и нейтрона.

Зависимость атомной массы изотопа от массового числа такова: избыток массы положителен у водорода-1 , с ростом массового числа он уменьшается и становится отрицательным, пока не достигается минимум у железа-56, потом начинает расти и возрастает до положительных значений у тяжёлых нуклидов . Это соответствует тому, что деление ядер, более тяжёлых, чем железо, высвобождает энергию, тогда как деление лёгких ядер требует энергии. Напротив, слияние ядер легче железа высвобождает энергию, слияние же элементов тяжелее железа требует дополнительной энергии.

История

При вычислениях атомных масс изначально (с начала XIX века, по предложению Дж. Дальтона ; см. Атомистическая теория Дальтона) за единицу массы [относительную] принимали массу атома водорода как самого лёгкого элемента и по отношению к нему вычисляли массы атомов др. элементов. Но так как атомные массы большинства элементов определяются, исходя из состава их кислородных соединений , то фактически (де-факто) вычисления производились по отношению к атомной массе кислорода, которая принималась равной 16; отношение между атомными массами кислорода и водорода считали равным 16: 1. Впоследствии более точные измерения показали, что это отношение равно 15,874: 1 или, что то же самое, 16: 1,0079 , - в зависимости от того, к какому атому - кислорода или водорода - относить целочисленное значение. Изменение атомной массы кислорода повлекло бы за собой изменение атомных масс большинства элементов. Поэтому было решено оставить для кислорода атомную массу 16, приняв атомную массу водорода равной 1,0079.

Таким образом, за единицу атомной массы принималась 1 ⁄ 16 часть массы атома кислорода, получившая название кислородной единицы . В дальнейшем было установлено, что природный кислород представляет собой смесь изотопов , так что кислородная единица массы характеризует среднее значение массы атомов природных изотопов кислорода (кислорода-16, кислорода-17 и кислорода-18), которое оказалось непостоянным из-за природных вариаций изотопного состава кислорода. Для атомной физики такая единица оказалась неприемлемой, и в этой отрасли науки за единицу атомной массы была принята 1 ⁄ 16 часть массы атома кислорода 16 O. В результате оформились две шкалы атомных масс - химическая и физическая. Наличие двух шкал атомных масс создавало большие неудобства. Величины многих констант, рассчитанных по физической и химической шкалам, оказывались различными . Это неприемлемое положение привело к введению углеродной шкалы атомных масс вместо кислородной.

Единая шкала относительных атомных масс и новая единица атомной массы принята Международным съездом физиков (1960) и унифицирована Международным съездом химиков (1961; спустя 100 лет после 1-го Международного съезда химиков), вместо предыдущих двух кислородных единиц атомной массы - физической и химической. Кислородная химическая единица равна 0,999957 новой углеродной единицы атомной массы. В современной шкале относительные атомные массы кислорода и водорода равны соответственно 15,9994: 1,0079… Поскольку новая единица атомной массы привязана к конкретному изотопу, а не к среднему значению атомной массы химического элемента, природные изотопные вариации не сказываются на воспроизводимости этой единицы.

(1766–1844) на своих лекциях демонстрировал студентам выточенные из дерева модели атомов, показывая, как они могут соединяться, образуя различные вещества. Когда одного из студентов спросили, что такое атомы, он ответил: «Атомы – это раскрашенные в разные цвета деревянные кубики, которые изобрел мистер Дальтон».

Конечно, Дальтон прославился не своими «кубиками» и даже не тем, что в двенадцатилетнем возрасте стал школьным учителем. С именем Дальтона связано возникновение современной атомистической теории. Впервые в истории науки он задумался о возможности измерения масс атомов и предложил для этого конкретные способы. Понятно, что непосредственно взвесить атомы невозможно. Дальтон рассуждал только о «соотношении весов мельчайших частиц газообразных и других тел», то есть об относительных их массах. И поныне, хотя масса любого атома в точности известна, ее никогда не выражают в граммах, так как это исключительно неудобно. Например, масса атома урана – самого тяжелого из существующих на Земле элементов – составляет всего 3,952·10 –22 г. Поэтому массу атомов выражают в относительных единицах, показывающих, во сколько раз масса атомов данного элемента больше массы атомов другого элемента, принятого в качестве стандарта. Фактически это и есть «соотношение весов» по Дальтону, т.е. относительная атомная масса.

В качестве единицы массы Дальтон принял массу атома водорода, а для нахождения масс других атомов он использовал найденные разными исследователями процентные составы различных соединений водорода с другими элементами. Так, по данным Лавуазье , в воде содержится 15% водорода и 85% кислорода. Отсюда Дальтон нашел относительную атомную массу кислорода – 5,67 (в предположении, что в воде на один атом водорода приходится один атом кислорода). По данным английского химика Уильяма Остина (1754–1793) о составе аммиака (80% азота и 20% водорода) Дальтон определил относительную атомную массу азота, равную 4 (также в предположении о равном числе атомов водорода и азота в этом соединении). А из данных по анализу некоторых углеводородов Дальтон приписал углероду значение 4,4. В 1803 Дальтон составил первую в мире таблицу относительных атомных масс некоторых элементов. В дальнейшем эта таблица претерпела очень сильные изменения; основные из них произошли еще при жизни Дальтона, что видно из следующей таблицы, в которой приведены данные из учебников, изданных в разные годы, а также в официальном издании ИЮПАК – Международного союза теоретической и прикладной химии (International Union of Pure and Applied Chemistry).

Прежде всего, обращают на себя внимание непривычные атомные массы у Дальтона: они в несколько раз отличаются от современных! Это объясняется двумя причинами. Первая – неточность эксперимента в конце 18 – начале 19 в. Когда Гей-Люссак и Гумбольдт уточнили состав воды (12,6% Н и 87,4% О), Дальтон изменил значение атомной массы кислорода, приняв ее равной 7 (по современным данным в воде 11,1% водорода). По мере совершенствования методов измерения уточнялись атомные массы и многих других элементов. При этом за единицу измерения атомных масс сначала выбирали водород, потом – кислород, а в настоящее время – углерод .

Вторая причина более серьезная. Дальтон не знал, в каком соотношении находятся атомы разных элементов в различных соединениях, поэтому он принял наиболее простую гипотезу о соотношении 1:1. Так считали многие химики, пока не были надежно установлены и приняты химиками правильные формулы для состава воды (Н 2 О) и аммиака (NH 3), многих других соединений. Для установления формул газообразных веществ использовался закон Авогадро , позволяющий определять относительную молекулярную массу веществ. Для жидких и твердых веществ использовали другие способы (см . МОЛЕКУЛЯРНОЙ МАССЫ ОПРЕДЕЛЕНИЕ). Особенно просто было устанавливать формулы соединений элементов переменной валентности, например, хлорида железа. Относительная атомная масса хлора уже была известна из анализа ряда его газообразных соединений. Теперь, если принять, что в хлориде железа число атомов металла и хлора одинаково, то для одного хлорида относительная атомная масса железа получалась равной 27,92, а для другого – 18,62. Отсюда следовало, что формулы хлоридов FeCl 2 и FeCl 3 , и A r (Fe) = 55,85 (среднее из двух анализов). Вторая возможность – формулы FeCl 4 и FeCl 6 , и A r (Fe) = 111,7 – была исключена как маловероятная. Относительные атомные массы твердых веществ помогало находить эмпирическое правило, сформулированное в 1819 французскими учеными П.И.Дюлонгом и А.Т.Пти: произведение атомной массы на теплоемкость – величина постоянная. Особенно хорошо правило Дюлонга – Пти выполнялось для металлов, что позволило, например, Берцелиусу уточнить и исправить атомные массы некоторых из них.

При рассмотрении относительных атомных масс химических элементов, приводящихся в периодической таблице, можно заметить, что для разных элементов они даются с разной точностью. Например, для лития – с 4 значащими цифрами, для серы и углерода – с 5, для водорода – с 6, для гелия и азота – с 7, для фтора – с 8. Отчего такая несправедливость?

Оказывается, точность, с которой определяется относительная атомная масса данного элемента, зависит не столько от точности измерений, сколько от «природных» факторов, не зависящих от человека. Они связаны с непостоянством изотопного состава данного элемента: в разных образцах соотношение изотопов не вполне одинаковое. Например, при испарении воды молекулы с легкими изотопами (см . ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ) водорода переходят в газовую фазу чуть быстрее, чем молекулы тяжелой воды, содержащие изотопы 2 Н. В результате в водяных парах изотопа 2 Н немного меньше, чем в жидкой воде. Многие организмы также разделяют изотопы легких элементов (для них разница в массах более существенна, чем для тяжелых элементов). Так, при фотосинтезе растения отдают предпочтение легкому изотопу 12 С. Поэтому в живых организмах, а также произошедших от них нефти и угле содержание тяжелого изотопа 13 С понижено, а в углекислом газе и образовавшемся из него карбонатах, наоборот, – повышено. Микроорганизмы, восстанавливающие сульфаты, также накапливают легкий изотоп 32 S, поэтому в осадочных сульфатах его больше. В «остатках» же, не усвоенных бактериями, доля тяжелого изотопа 34 S больше. (Кстати, анализируя соотношение изотопов серы, геологи могут отличить осадочный источник серы от магматического. А по соотношению изотопов 12 С и 13 С можно даже отличить тростниковый сахар от свекловичного!)

Итак, для многих элементов приводить очень точные значения атомных масс просто не имеет смысла, поскольку они немного меняются от одного образца к другому. По точности, с какой приводятся атомные массы, можно сразу сказать, происходит ли в природе «разделение изотопов» данного элемента и насколько сильно. А вот, например, для фтора атомная масса приводится с очень высокой точностью; значит, атомная масса фтора в любом его земном источнике постоянна. И это неудивительно: фтор относится к так называемым элементам-одиночкам, которые в природе представлены одним-единственным нуклидом.

В периодической таблице массы некоторых элементов стоят в скобках. Это относится главным образом к актинидам, стоящим после урана (так называемые трансурановые элементы), к еще более тяжелым элементам 7-го периода, а также к нескольким более легким; среди них технеций, прометий, полоний, астат, радон, франций. Если сравнить таблицы элементов, напечатанные в разные годы, то окажется, что эти числа время от времени меняются, иногда в течение всего нескольких лет. Некоторые примеры приведены в таблице.

Причина изменений в таблицах заключается в том, что указанные элементы радиоактивны, у них нет ни одного стабильного изотопа. В таких случаях принято приводить либо относительную атомную массу наиболее долгоживущего нуклида (например, для радия), либо массовые числа; последние приводятся в скобках. Когда открывают новый радиоактивный элемент, то получают вначале лишь один из многих его изотопов – конкретный нуклид с определенным числом нейтронов. Исходя из теоретических представлений, а также экспериментальных возможностей, стараются получить нуклид нового элемента с достаточным временем жизни (с таким нуклидом легче работать), однако удавалось это «с первого захода» не всегда. Как правило, при дальнейших исследованиях выяснялось, что существуют и могут быть синтезированы новые нуклиды с бoльшим временем жизни, и тогда проставленное в Периодической таблице элементов Д.И.Менделеева число надо было заменять. Сопоставим массовые числа некоторых трансуранов, а также прометия, взятые из книг, изданных в разные годы. В скобках в таблице приведены современные данные для периодов полураспада. В старых изданиях вместо принятых в настоящее время символов элементов 104 и 105 (Rf – резерфордий и Db – дубний) фигурировали Ku – курчатовий и Ns – нильсборий.

Таблица 2.
Элемент Z Год издания
1951 1958 1983 2000
Pm 61 147 (2,62 года) 145 (18 лет) 145 145
Pu 94 239 (24100 лет) 242 (3,76 . 10 5 лет) 244 (8,2 . 10 7 лет) 244
Am 95 241 (432 года) 243 (7370 лет) 243 243
Cm 96 242 (163 сут) 245 (8500 лет) 247 (1,58 . 10 7 лет) 247
Bk 97 243 (4,5 час) 249 (330 сут) 247 (1400 лет) 247
Cf 98 245 (44 мин) 251 (900 лет) 251 251
Es 99 254 (276 сут) 254 252 (472 сут)
Fm 100 253 (3 сут) 257 (100,5 сут) 257
Md 101 256 (76 мин) 258 (52 сут) 258
No 102 255 (3,1 мин) 259 (58 мин)
Lr 103 256 (26 сек) 262 (3,6 час)
Rf 104 261 (78 сек) 261
Db 105 261 (1,8 сек) 262 (34 сек)

Как видно из таблицы, все приведенные в ней элементы радиоактивные, их периоды полураспада намного меньше возраста Земли (несколько млрд. лет), поэтому в природе этих элементов нет и получены они искусственно. По мере совершенствования техники эксперимента (синтез новых изотопов и измерение времени их жизни) иногда удавалось найти нуклиды, живущие в тысячи и даже миллионы раз дольше известных до этого. Например, когда в 1944 на циклотроне в Беркли были поставлены первые опыты по синтезу элемента № 96 (впоследствии его назвали кюрием), то единственная имевшаяся тогда возможность получения этого элемента заключалась в облучении a-частицами ядер плутония-239: 239 Pu + 4 He ® 242 Cm + 1 n. Полученный нуклид нового элемента имел период полураспада около полугода; он оказался очень удобным компактным источником энергии, и позднее его использовали с этой целью, например, на американских космических станциях «Сервейор». В настоящее время получен кюрий-247, который имеет период полураспада 16 млн. лет, что в 36 млн. раз превышает время жизни первого известного нуклида этого элемента. Так что изменения, вносимые время от времени в таблицу элементов, могут быть связаны не только с открытием новых химических элементов!

В заключение – о том, как узнали, в каком соотношении присутствуют в элементе разные изотопы? Например, о том, что в природном хлоре на долю 35 Cl приходится 75,77% (остальное – изотоп 37 Cl)? В данном случае, когда в природном элементе всего два изотопа, решить задачу поможет такая аналогия.

В 1982 в результате инфляции стоимость меди, из которых чеканились одноцентовые монеты США, превысила номинал монеты. Поэтому с этого года монеты делают из более дешевого цинка и лишь сверху покрывают тонким слоем меди. При этом содержание дорогой меди в монете снизилось с 95 до 2,5%, а масса – с 3,1 до 2,5 г. Через несколько лет, когда в обращении находилась смесь монет двух типов, преподаватели химии сообразили, что эти монеты (на глаз они почти неразличимы) – прекрасное пособие для их «изотопного анализа», либо по массе, либо по числу монет каждого типа (аналогия массовой или мольной доли изотопов в смеси). Будем рассуждать так: пусть у нас имеется 210 монет, среди которых есть и легкие, и тяжелые (это соотношение не зависит от числа монет, если их достаточно много). Пусть также общая масса всех монет равна 540 г. Если бы все эти монеты были «легкой разновидности», то общая их масса была бы равна 525 г, что на 15 г меньше действительной. Почему так? Потому что не все монеты легкие: есть среди них и тяжелые. Замена одной легкой монеты на тяжелую приводит к увеличению общей массы на 0,6 г. Нам же надо увеличить массу на 40 г. Следовательно, легких монет имеется 15/0,6 = 25. Таким образом, в смеси 25/210 = 0,119 или 11,9% легких монет. (Конечно, со временем «изотопное соотношение» монет разного типа будет меняться: легких будет все больше, тяжелых – все меньше. Для элементов же соотношение изотопов в природе постоянно.)

Точно так же и в случае изотопов хлора или меди: известна средняя атомная масса меди – 63,546 (ее определили химики, анализируя различные соединения меди), а также массы легкого 64 Cu и тяжелого 65 Cu изотопов меди (эти массы определили физики, используя свои, физические, методы). Если элемент содержит более двух стабильных изотопов, их соотношение определяется другими методами.

Наши монетные дворы – Московский и Санкт-Петербургский тоже, оказывается, чеканили разные «изотопные разновидности» монет. Причина та же – подорожание металла. Так, 10- и 20-рублевые монеты в 1992 чеканились из немагнитного медно-никелевого сплава, а в 1993 – из более дешевой стали, и эти монеты притягиваются магнитом; по внешнему виду они практически не различаются (кстати, часть монет этих годов отчеканены «не в том» сплаве, такие монеты очень редкие, а некоторые стоят дороже золота!). В 1993 чеканились также 50-рублевые монеты из медного сплава, и в том же году (гиперинфляция!) – из стали, покрытой латунью. Правда, массы наших «изотопных разновидностей» монет отличаются не так сильно, как у американских. Тем не менее, точное взвешивание кучи монет дает возможность рассчитать, сколько в них монет каждого сорта – по массе, либо по числу монет, если подсчитано общее их число.

Илья Леенсон

В процессе развития науки химия столкнулась с проблемой подсчёта количества вещества для проведения реакций и полученных в их ходе веществ.

На сегодня для подобных расчётов химической реакции между веществами и смесями используют значение относительной атомной массы, внесённой в периодическую таблицу химических элементов Д. И. Менделеева.

Химические процессы и влияние доли элемента в веществах на ход реакции

Современная наука под определением «относительная атомная масса химического элемента» подразумевает, во сколько раз масса атома данного химического элемента больше одной двенадцатой части атома углерода.

С зарождением эры химии потребность в точных определениях хода химической реакции и её результатов росла.

Поэтому химики постоянно пытались решить вопрос о точных массах взаимодействующих элементов в веществе. Одним из лучших решений на то время была привязка к самому лёгкому элементу. И вес его атома был взят за единицу.

Исторический ход подсчёта вещества

Изначально использовался водород, затем кислород. Но этот способ расчёта оказался неточным. Причиной тому послужило наличие в кислороде изотопов с массой 17 и 18.

Поэтому, имея смесь изотопов, технически получали число, отличное от шестнадцати. На сегодня относительная атомная масса элемента рассчитывается исходя из принятого за основу веса атома углерода, в соотношении 1/12.

Дальтон заложил основы относительной атомной массы элемента

Лишь спустя некоторое время, в 19-м веке, Дальтон предложил вести расчёт по самому лёгкому химическому элементу - водороду. На лекциях своим студентам он демонстрировал на вырезанных из дерева фигурках, как соединяются атомы. По другим элементам он использовал данные, ранее полученные другими учёными.

По экспериментам Лавуазье в воде содержится пятнадцать процентов водорода и восемьдесят пять процентов кислорода. Имея эти данные, Дальтон рассчитал, что относительная атомная масса элемента, входящего в состав воды, в данном случае кислорода, составляет 5,67. Ошибочность его расчётов связана с тем, что он считал неверно относительно количества атомов водорода в молекуле воды.

По его мнению, на один атом кислорода приходился один атом водорода. Воспользовавшись данными химика Остина о том, что в составе аммиака 20 процентов водорода и 80 процентов азота, он рассчитал, чему равна относительная атомная масса азота. Имея этот результат, он пришёл к интересному выводу. Получалось, что относительная атомная масса (формула аммиака ошибочно была принята с одной молекулой водорода и азота) составляет четыре. В своих расчетах ученый опирался на периодическую систему Менделеева. По анализу он рассчитал, что относительная атомная масса углерода - 4,4, вместо принятых до этого двенадцати.

Несмотря на свои серьёзные промашки, именно Дальтон первым создал таблицу некоторых элементов. Она претерпела неоднократные изменения ещё при жизни учёного.

Изотопная составляющая вещества влияет на значение точности относительного атомного веса

При рассмотрении атомных масс элементов можно заметить, что точность по каждому элементу разная. К примеру, по литию она четырёхзначная, а по фтору - восьмизначная.

Проблема в том, что изотопная составляющая каждого элемента своя и непостоянна. Например, в обычной воде содержится три типа изотопа водорода. В их число, кроме обычного водорода, входит дейтерий и тритий.

Относительная атомная масса изотопов водорода составляет соответственно два и три. «Тяжёлая» вода (образованная дейтерием и тритием) испаряется хуже. Поэтому в парообразном состоянии изотопов воды меньше, чем в жидком состоянии.

Избирательность живых организмов к различным изотопам

Живые организмы обладают селективным свойством по отношению к углероду. На построение органических молекул используют углерод с относительной атомной массой, равной двенадцати. Поэтому вещества органического происхождения, а также ряд полезных ископаемых, таких как уголь и нефть, содержат меньше изотопной составляющей, чем неорганические материалы.
Микроорганизмы, перерабатывающие и накапливающие серу, оставляют после себя изотоп серы 32. В зонах, где бактерии не перерабатывают, доля изотопа серы - 34, то есть гораздо выше. Именно на основании соотношения серы в породах почвы геологи приходят к выводу о природе происхождения слоя - магматическую природу он имеет или же осадочную.

Из всех химических элементов только один не имеет изотопов - фтор. Поэтому его относительная атомная масса более точная, чем других элементов.

Существование в природе нестабильных веществ

У некоторых элементов относительная масса указана в квадратных скобках. Как видно, это элементы, расположенные после урана. Дело в том, что они не имеют устойчивых изотопов и распадаются с выделением радиоактивного излучения. Поэтому в скобках указан наиболее устойчивый изотоп.

Со временем выяснилось, что у некоторых из них возможно получить в искусственных условиях устойчивый изотоп. Пришлось менять в периодической таблице Менделеева атомные массы некоторых трансурановых элементов.

В процессе синтеза новых изотопов и измерения их продолжительности жизни порой удавалось обнаружить нуклиды с продолжительностью полураспада в миллионы раз дольше.

Наука не стоит на месте, постоянно открываются новые элементы, законы, взаимосвязи различных процессов в химии и природе. Поэтому, в каком виде окажется химия и периодическая система химических элементов Менделеева в будущем, лет через сто, - является туманным и неопределённым. Но хочется верить, что накопленные за прошедшие века труды химиков послужат новому, более совершенному знанию наших потомков.

Атомной массой называется сумма масс всех протонов, нейтронов и электронов, из которых состоит тот или иной атом или молекула. По сравнению с протонами и нейтронами масса электронов очень мала, поэтому она не учитывается в расчетах. Хотя это и некорректно с формальной точки зрения, нередко данный термин используется для обозначения средней атомной массы всех изотопов элемента. На самом деле это относительная атомная масса, называемая также атомным весом элемента. Атомный вес – это среднее значение атомных масс всех изотопов элемента, встречающихся в природе. Химики должны различать эти два типа атомной массы при выполнении своей работы – неправильное значение атомной массы может, к примеру, привести к неправильному результату для выхода продукта реакции.

Шаги

Нахождение атомной массы по периодической таблице элементов

    Изучите как записывается атомная масса. Атомная масса, то есть масса данного атома или молекулы, может быть выражена в стандартных единицах системы СИ – граммах, килограммах и так далее. Однако в связи с тем, что атомные массы, выраженные в этих единицах, чрезвычайно малы, их часто записывают в унифицированных атомных единицах массы, или сокращенно а.е.м. – атомные единицы массы. Одна атомная единица массы равна 1/12 массы стандартного изотопа углерод-12.

    • Атомная единица массы характеризует массу одного моля данного элемента в граммах . Эта величина очень полезна при практических расчетах, поскольку с ее помощью можно легко перевести массу заданного количества атомов или молекул данного вещества в моли, и наоборот.
  1. Найдите атомную массу в периодической таблице Менделеева. В большинстве стандартных таблиц Менделеева содержатся атомные массы (атомные веса) каждого элемента. Как правило, они приведены в виде числа в нижней части ячейки с элементом, под буквами, обозначающими химический элемент. Обычно это не целое число, а десятичная дробь.

    Помните о том, что в периодической таблице приведены средние атомные массы элементов. Как было отмечено ранее, относительные атомные массы, указанные для каждого элемента в периодической системе, являются средними значениями масс всех изотопов атома. Это среднее значение ценно для многих практических целей: к примеру, оно используется при расчете молярной массы молекул, состоящих из нескольких атомов. Однако когда вы имеете дело с отдельными атомами, этого значения, как правило, бывает недостаточно.

    • Поскольку средняя атомная масса представляет собой усредненное значение для нескольких изотопов, величина, указанная в таблице Менделеева не является точным значением атомной массы любого единичного атома.
    • Атомные массы отдельных атомов необходимо рассчитывать с учетом точного числа протонов и нейтронов в единичном атоме.

Расчет атомной массы отдельного атома

  1. Найдите атомный номер данного элемента или его изотопа. Атомный номер – это количество протонов в атомах элемента, оно никогда не изменяется. Например, все атомы водорода, причем только они, имеют один протон. Атомный номер натрия равен 11, поскольку в его ядре одиннадцать протонов, тогда как атомный номер кислорода составляет восемь, так как в его ядре восемь протонов. Вы можете найти атомный номер любого элемента в периодической таблице Менделеева – практически во всех ее стандартных вариантах этот номер указан над буквенным обозначением химического элемента. Атомный номер всегда является положительным целым числом.

    • Предположим, нас интересует атом углерода. В атомах углерода всегда шесть протонов, поэтому мы знаем, что его атомный номер равен 6. Кроме того, мы видим, что в периодической системе, в верхней части ячейки с углеродом (C) находится цифра "6", указывающая на то, что атомный номер углерода равен шести.
    • Обратите внимание, что атомный номер элемента не связан однозначно с его относительной атомной массой в периодической системе. Хотя, особенно для элементов в верхней части таблицы, может показаться, что атомная масса элемента вдвое больше его атомного номера, она никогда не рассчитывается умножением атомного номера на два.
  2. Найдите число нейтронов в ядре. Количество нейтронов может быть различным для разных атомов одного и того же элемента. Когда два атома одного элемента с одинаковым количеством протонов имеют разное количество нейтронов, они являются разными изотопами этого элемента. В отличие от количества протонов, которое никогда не меняется, число нейтронов в атомах определенного элемента может зачастую меняться, поэтому средняя атомная масса элемента записывается в виде десятичной дроби со значением, лежащим между двумя соседними целыми числами.

    Сложите количество протонов и нейтронов. Это и будет атомной массой данного атома. Не обращайте внимания на количество электронов, которые окружают ядро – их суммарная масса чрезвычайно мала, поэтому они практически не влияют на ваши расчеты.

Вычисление относительной атомной массы (атомного веса) элемента

  1. Определите, какие изотопы содержатся в образце. Химики часто определяют соотношение изотопов в конкретном образце с помощью специального прибора под названием масс-спектрометр. Однако при обучении эти данные будут предоставлены вам в условиях заданий, контрольных и так далее в виде значений, взятых из научной литературы.

    • В нашем случае допустим, что мы имеем дело с двумя изотопами: углеродом-12 и углеродом-13.
  2. Определите относительное содержание каждого изотопа в образце. Для каждого элемента различные изотопы встречаются в разных соотношениях. Эти соотношения почти всегда выражают в процентах. Некоторые изотопы встречаются очень часто, тогда как другие очень редки – временами настолько, что их с трудом можно обнаружить. Эти величины можно определить с помощью масс-спектрометрии или найти в справочнике.

    • Допустим, что концентрация углерода-12 равна 99%, а углерода-13 – 1%. Другие изотопы углерода действительно существуют, но в количествах настолько малых, что в данном случае ими можно пренебречь.
  3. Умножьте атомную массу каждого изотопа на его концентрацию в образце. Умножьте атомную массу каждого изотопа на его процентное содержание (выраженное в виде десятичной дроби). Чтобы перевести проценты в десятичную дробь, просто разделите их на 100. Полученные концентрации в сумме всегда должны давать 1.

    • Наш образец содержит углерод-12 и углерод-13. Если углерод-12 составляет 99% образца, а углерод-13 – 1%, то необходимо умножить 12 (атомная масса углерода-12) на 0,99 и 13 (атомная масса углерода-13) на 0,01.
    • В справочниках даются процентные соотношения, основанные на известных количествах всех изотопов того или иного элемента. Большинство учебников по химии содержат эту информацию в виде таблицы в конце книги. Для изучаемого образца относительные концентрации изотопов можно также определить с помощью масс-спектрометра.
  4. Сложите полученные результаты. Просуммируйте результаты умножения, которые вы получили в предыдущем шаге. В результате этой операции вы найдете относительную атомную массу вашего элемента – среднее значение атомных масс изотопов рассматриваемого элемента. Когда рассматривается элемент в целом, а не конкретный изотоп данного элемента, используется именно эта величина.

    • В нашем примере 12 x 0,99 = 11,88 для углерода-12, и 13 x 0,01 = 0,13 для углерода-13. Относительная атомная масса в нашем случае составляет 11,88 + 0,13 = 12,01 .
  • Некоторые изотопы менее стабильны, чем другие: они распадаются на атомы элементов с меньшим количеством протонов и нейтронов в ядре с выделением частиц, входящих в состав атомного ядра. Такие изотопы называют радиоактивными.

Массы атомов и молекул очень малы. Поэтому логично было ввести новые единицы измерения массы в химии, выбрав в качестве эталона массу одного из элементов. В современной физике и химии в качестве единицы атомной массы выбрана 112 массы атома углерода 12C. Новая единица получила название атомной единицы массы.

ОПРЕДЕЛЕНИЕ

Атомная единица массы (а.е.м.) - внесистемная единица, применяемая для выражения масс атомов, молекул, атомных ядер и элементарных частиц. Определяется как 112 массы атома углерода 12C в основном состоянии.

1 а.е.м. = 1,660539040⋅10−27 кг ≈ 1,66⋅10−27 кг

Массы всех атомов и молекул, таким образом, могут быть выражены в атомных единицах массы. В таких случаях говорят об абсолютной атомной массе (A) или абсолютной молекулярной массе (молMмол). Эти величины имеют размерность [а.е.м.].

Довольно удобно выражать атомные массы всех элементов относительно массы эталонной единицы. Масса атома, рассчитанная относительно 1 а.е.м., получила название относительной атомной массы.

ОПРЕДЕЛЕНИЕ

Относительная атомная масса элемента Ar - отношение массы атома к 112 массе атома углерода 12C:

Ar(X)=m(X)112m(12C)

Относительная атомная масса - величина безразмерная!

Относительная атомная масса показывает, во сколько раз масса данного атома больше 112 массы атома углерода. Например, Ar(H)=1, т.е. один атом водорода имеет такую же массу, как 112 атома углерода; а запись Ar(Mg)=24 означает, что атом магния в 24 раза тяжелее, чем 112 атома углерода.

Изначально (в XIX веке) атомные веса элементов относили к массе водорода, приняв по предложению Джона Дальтона последнюю за единицу, так как водород - самый легкий элемент. Затем в качестве эталона использовали массу кислорода, принятую за 16, поскольку при расчете массы элементов в основном использовались их кислородные соединения. Отношение массы кислорода к массе водорода принималось как 16 к 1. Однако у кислорода существует три изотопа: 16O, 17O, 18O, поэтому 1/16 веса природного кислорода характеризовала лишь среднее значение массы всех известных изотопов кислорода. В результате оформили две шкалы: физическая (основанная на массе 16O) и химическая (основанная на среднем значении массы природного кислорода), что создавало определенные трудности. Поэтому в 1961 году за единицу массы была принята 1/12 веса атома углерода 12C.

Атомные массы многих элементов были установлены в XIX веке опытным путем. Так, например, было известно, что медь реагирует с серой с образованием сульфида меди состава CuS, где на один атом меди приходится один атом серы. Рассчитав массы вступивших



в реакцию серы и меди, заметили, что масса прореагировавшей серы в два раза меньше массы прореагировавшей меди, а следовательно, каждый атом меди в 2 раза тяжелее атома серы. Аналогичным образом были установлены атомные массы других элементов по реакциям образования их соединений с кислородом - оксидов.

Численные значения абсолютных масс атомов, выраженные в а.е.м., совпадают со значениями относительных атомных масс.

Значения относительных атомных масс элементов приведены в Периодической системе химических элементов Д.И. Менделеева. В случае, если у элемента есть несколько изотопов, в качестве атомной массы в периодической таблице указывается среднее значение массы всех изотопов.

При решении расчетных задач атомная масса округляется по правилам арифметики, до ближайшего целого числа .

Например: Ar(P)=31, Ar(Ge)=73, Ar(Zn)=65

Исключением является хлор, атомная масса которого округляется до десятых:

Однако, в большинстве экзаменационных заданий и задач базового уровня масса меди округляется до целого числа: Ar(Cu)=64.

РАСЧЁТ СРЕДНЕЙ АТОМНОЙ МАССЫ ЭЛЕМЕНТА

Атомные массы элементов, приведённые в таблице Менделеева, имеют дробные значения. Это связано с тем, что в данном случае речь идёт о средней относительной атомной массе элемента. Она рассчитывается с учётом распространённости изотопов элемента в земной коре:

Ar(X)=Ar(aX)⋅ω(aX)+Ar(bX)⋅ω(bX)+…,

где Ar - средняя относительная атомная масса элемента X,

Ar(aX),Ar(bX) - относительные атомные массы изотопов элемента X,

ω(aX),ω(bX) - массовые доли соответствующих изотопов элемента X по отношению к общей массе всех атомов данного элемента в природе.

Например, хлор имеет два природных изотопа - 35Cl (75,78% по массе) и 37Cl (24,22%). Относительная атомная масса элемента хлора равна:

Ar(Cl)=Ar(35Cl)⋅ω(35Cl)+Ar(37Cl)⋅ω(37Cl)

Ar(Cl)=35⋅0,7578+37⋅0,2422=26,523+8,9614=35,4844≈35,5