Лазеры. Виды лазеров

Низшему энергетическому уровню атома соответствует орбита наименьшего радиуса. В обычном состоянии электрон находится на этой орбите. При сообщении порции энергии электрон переходит на другой энергетический уровень, т.е. "перескакивает" на одну из внешних орбит. В таком, так называемом возбужденном состоянии атом неустойчив. Через некоторое время электрон переходит на более низкий уровень, т.е. на орбиту меньшего радиуса. Переход электрона с дальней орбиты на ближнюю сопровождается испусканием светового кванта. Свет - это поток испускаемых атомами особых частиц - фотонов, или квантов электромагнитного излучения. Их следует представлять себе в виде отрезков волны, а не как частицы вещества. Каждый фотон несёт строго определённую порцию энергии, “выброшенную” атомом.

В основном состоянии атомы находятся на 1 энергетическом уровне с наименьшей энергией. Чтобы перевести атом на уровень 2, ему надо сообщить энергию hν=∆E=E2-E1. Или говорят, необходимо, чтобы атом провзаимодействовал с одним квантом энергии. Обратный переход 2 электронов может происходить самопроизвольно, только в одном направлении. Наряду с этими переходами возможны и вынужденные переходы под влиянием внешнего излучения. Переход 1à2 всегда вынужденный. Атом, оказавшийся в состоянии 2, живёт в нем в течении 10(с.-8)с, после чего атом спантанно возвращается в исходное состояние. Наряду со спонтанным переходом 2à1 возможен вынужденный переход, при этом излучается квант энергии, который вызвал этот переход. Это дополнительное излучение называется вынужденным или индуцированным. Т.о. под влиянием внешнего излучения возможны 2 перехода: вынужденное излучение и вынужденное поглощение, причем оба процесса равновероятны. Дополнительный квант, испускаемый при вынужденном излучении, приводит к усилению света. Индуцированное излучение обладает свойствами: 1) нагревание индуцированного кванта совпадает с напряжением индуцирующего кванта, 2) фаза, поляризация, частота индуцирующего излучения совпадает с фазой, поляризацией и частотой индуцирующего излучения, т.е. индуцированное и индуцирующее излучение высококогерентны, 3) при каждом индуцированном переходе происходит выигрыш в 1 квант энергии, т.е. усиление света. j

БИЛЕТ 8

Субъективные характеристики восприятия звука, их связь с объективными характеристиками звука.

Субъективные характеристики звука

В сознании человека под действием нервных импульсов, поступающих от звуковоспринимающего органа, формируются слуховые ощущения, кото­рые субъект может охарактеризовать определенным образом.

Существуют три субъективные характеристики звук, основанные на ощущениях, которые данный звук вызывает у субъекта: высота звука, тембр звука и громкость звука.

Понятием высота субъект оценивает звуки разных частот: чем больше частота звука, тем более высоким называется данный звук. Однако между частотой звука и его высотой нет однозначного соответствия. На восприятие высоты звука влияет его интенсивность. Из двух звуков одинаковой частоты звук большей интенсивности воспринимается как более низкий.

Тембром звука называется качественная характеристика звука (своеобразная "окраска" звука) связанная с его спектральным составом. Голоса разных людей различаются между собой. Это различие определяется разным спектральным составом звуков, воспроизводимых разными людьми. Существуют специальные названия для голосов разного тембра: бас, тенор, сопрано и др.. По этой же причине люди различает одинаковые ноты, воспроизведенные на разных музыкальных инструментах: у разных инструментов разный спектральный состав звуков.

Громкость - это субъективная характеристика звука, определяющая уровень слухового ощущения: чем выше уровень слухового ощущения возникающий у субъекта, тем более громким называет субъект данный звук.

Величина слухового ощущения (громкость) зависит от интенсивности звука и- чувствительности слухового аппарата субъекта. Чем выше интенсивность звука, тем выше величина слухового ощущения (громкость) при прочих равных условиях.

Слуховой аппарат человека способен воспринимать звуки, интенсив­ность которых меняется в весьма широких пределах. Для появления слухового ощущения интенсивность звука должна превышать некоторое определенное значение / 0 Минимальное значение интенсивности звука / 0 , воспринимаемое слуховым аппаратом субъекта, называется пороговой интенсивностью, или порогом слышимости. У разных людей величина порога слышимости имеет разное значение и меняется при изменении частоты звука. В среднем для людей с нормальным слухом на частотах 1-3 кГц и порог слышимости Iо принимается равным 10" 12 Вт/м".

С другой стороны, При превышении интенсивности звука некоторого предела в органе слуха вместо слухового ощущения возникает ощущение боли.

Максимальное значение интенсивности звука I Maxi еще воспринимаемого субъектом как звуковое ощущение, называется порогом болевого ощущения. Величина порога боле­вого ощущения примерно равна 10 Вт/м". Порог слышимости 1 0 и порог болевого ощущения 1 мах определяют интервал интенсивностей звуков, создающих у субъекта слуховое ощущение.

Блок-схема электронного диагностического прибора. Термодатчик, устройство и принцип действия. Чувствительность термодатчика.

Спектроскоп. Оптическая схема и принцип действия спектроскопа.

БИЛЕТ 9

Закон Вебера-Фехнера. Громкость звуков, единицы измерения громкости.

Чувствительность слухового аппарата человека, в свою очередь, сама зависит от интенсивности звука и его частоты. Зависимость чувствительности от интенсивности является общим свойством всех органов чувств и называется адаптацией. Чувствительность органов чувств к внешнему раздражителю автоматически уменьшается с повышением интенсивности раздражителя. Количественно взаимосвязь чувствительности органа и интенсивности раздражителя выражается эмпирическим законом Вебера-Фехнера: при сравнении двух раздражителей прирост силы ощущения пропорционален логарифму отношения интенсивностей раздражителей.

Математически эта взаимосвязь выражается соотношением

∆E = E 2 -E 1 , = k*lgI 2 /I 1

где I 2 иI 1 - интенсивности раздражителей,

E 2 иE 1 - соответствующие им силы ощущений,

к - коэффициент, зависящий от выбора единиц измерения интенсивностей и сил ощущений.

В соответствии с законом Вебера-Фехнера при увеличении интенсивности звука увеличивается и величина слухового ощущения (громкость); однако за счет уменьшения чувствительности величина слухового ощущения воз­растает в меньшей степени, чем интенсивность звука. Величина слухового ощущения нарастает при увеличении интенсивности звука пропорционально логарифму интенсивности.

Используя закон Вебера-Фехнера и понятие пороговой интенсивности, можно ввести количественную оценку громкости. Положим в формуле (4) интенсивность первого раздражителя (звука) равной пороговой (I 1 =I 0), тогда E 1 будет равно нулю. Опуская индекс "2", получим E = k*lgI/I 0

Величина слухового ощущения (громкость) Е пропорциональна лога­рифму отношения интенсивности звука, создавшего эту величину ощущения, к пороговой интенсивности I 0. Полагая коэффициент пропорциональности к равным единице, получим величину слухового ощущения Е в единицах, называемых "бел".

Таким образом величина слухового ощущения (громкость) определяется по формуле

E = lgI/I 0 [Б].

Наряду с белами используется единица в 10 раз меньшая, получившая название "децибел". Громкость звука в децибелах определяется по формуле

E = 10lgI/I 0 [ДБ].

Блок-схема электронного диагностического прибора. Назначение и основные характеристики усилителя. Виды искажений. Коэффициент усиления усилителя, его зависимость от параметров схемы.

Коэффициент пропускания и оптическая плотность растворов, их зависимость от концентрации.

Примечание: r" и k" - являются векторами r и k соответственно.

Один из основных выводов квантовой механики гласит, что каждая физическая система (например, электрон в атоме) может находиться только в одном из заданных энергетических состояний, - так называемых, собственных состояниях системы. С каждым состоянием (скажем, с состоянием электрона) можно связать собственную функцию


Ψ (r" , t) = U n * (r") * e -iEnt/ħ


причем | Un (r") | 2 dxdydz - вероятность нахождения электрона в некотором состоянии n в пределах элементарного объема dxdydz с центром в точке, определяемой радиус-вектором r" , Е n - энергия n -го состояния, ħ = h/2π; - постоянная Планка.

Каждому электрону в некоторой физической системе (например, в атоме или молекуле) соответствует свое состояние, т.е. своя энергия, причем эта энергия имеет дискретное значение.

На рис. 7.1 приведена схема энергетических уровней такой физической системы (на примере атома) . Обратимся к двум из уровней этой системы - 1 и 2. Уровень 1 соответствует основному состоянию физической системы, где нахождение ее наиболее вероятно. На уровень 2 система (электрон в атоме) может попасть, если ей передана некоторая энергия, равная hv = | E 2 - E 1 |.

Этот уровень 2 атома является возбужденным состоянием. Если система (атом) находится в состоянии 2 в течение времени t 0 , то существует конечная вероятность, что он перейдет в состояние 1, испустив при этом квант электромагнитной энергии hv = E 2 - E 1 . Этот процесс, происходящий без воздействия внешнего поля случайно во времени (хаотически), называется спонтанным .



Среднее число атомов, испытывающих спонтанный переход из состояния 2 в состояние 1 за одну секунду

DN 2 / dt = A 2 1 * N 2 = N 2 / (t cn) 2 1

где А 21 - скорость (вероятность) спонтанного перехода, (t cn) 21 = A 21 - 1 называется временем жизни атома в возбужденном состоянии, связанным с переходом 2→1. Спонтанные переходы происходят из любого данного состояния только в состояния, лежащие по энергии ниже (например, если атом находится в состоянии 3, то возможны прямые переходы 3→2, 3→1, а попавший на уровень 2 атом переходит спонтанно на уровень 1).


При наличии электромагнитного поля, имеющего частоту v ~ (E 2 - E 1) / h атом может совершить переход из состоянии 1 в состояние 2, поглощая при этом квант электромагнитного поля (фотон) с энергией hv. Однако, если атом в тот момент, когда он подвергается действию электромагнитного поля, уже находится в состоянии 2, то он может перейти в состояние 1 с испусканием кванта с энергией hv под воздействием этого поля. Этот переход соответствует индуцированному излучению.

Процесс индуцированного перехода от спонтанного отличает то, что для индуцированного перехода скорости переходов 2→1 и 1→2 равны, в то время как для спонтанного процесса скорость перехода 1→2, при котором энергия атома увеличивается, равна нулю.

Кроме этого, индуцированные процессы имеют и другие принципиальные особенности:

  • скорость индуцированных процессов пропорциональна интенсивности электромагнитного поля, в то время как спонтанные от поля не зависят;
  • волновой вектор k" , определяющий направление распространения индуцированного излучения, совпадает по направлению с соответствующим вектором вынуждающего поля (спонтанное излучение имеет произвольное направление распространения);
  • частота, фаза и поляризация индуцированного излучения также совпадают с частотой, фазой и поляризацией вынуждающего поля, в то время как спонтанное излучение, даже имея ту же частоту, имеет произвольную случайную фазу и поляризацию.
Таким образом, можно утверждать, что вынуждающее и индуцированное (вынужденное) излучения оказываются строго когерентными.

Рассмотрим случай, когда плоская монохроматическая волна с частотой v и интенсивностью I v распространяется через среду с объемной плотностью атомов N 2 на уровне 2 и N 1 на уровне 1.

Если ввести скорость переходов, которые индуцируются монохроматическим полем с частотой v, обозначив ее через W i (v), то можно оценить условия, при которых будет существовать индуцированное излучение.

За 1 с в объеме 1 м 3 возникает N 2 W i индуцированных переходов с уровня 2 на уровень 1 и N 1 W i переходов с 1 на 2 уровень. Таким образом, полная мощность, генерируемая в единичном объеме

Рис. 1. a - спонтанное излучение фотона; б - вынужденное излучение; в - резонансное поглощение; Е1 и Е2 - уровни энергии атома.

Атом, находясь в возбужденном состоянии а , может через некоторый промежуток времени спонтанно, без каких-либо внешних воздействий, перейти в состояние с низшей энергией (в нашем случае в основное), отдавая избыточную энергию в виде электромаг­нитного излучения (испуская фотон с энергией h = E 2 –Е 1). Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воз­действий называется спонтанным (или самопроизвольным ) излучением . Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно.

В 1916 г. А. Эйнштейн для объяснения наблюдавшегося на опыте термодинамичес­кого равновесия между веществом и испускаемым и поглощаемым им излучением постулировал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Если на атом, находящийся в возбуж­денном состоянии 2 , действует внешнее излучение с частотой, удовлетворяющей усло­вию hv = E 2 E 1 , то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии hv = E 2 E 1 (рис. 309, в). При подобном переходе происходит излучение атомом фотона, дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызыва­ющий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.

7 Принцип действия лазера

Ла́зер устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Луч лазера может быть непрерывным, с постоянной амплитудой, или импульсным, достигающим экстремально больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества.

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направление распространения, поляризацию и фазу Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённым состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические , электрические , химические и др.).

Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное - через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы , ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы ). Этот режим работы лазера называют режимом модулированной добротности .

Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн ), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости ] . Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера

§ 6 Поглощение.

Спонтанное и вынужденное излучение


В нормальных условиях (при отсутствии внешних воздействий) большая часть электронов в атомах находятся на самом низком невозбужденном уровне Е 1 , т.е. атом обладает минимальным запасом внутренней энергии, остальные уровни Е 2 , Е 3 ....Е n , соответствующие возбужденным состояниям, обладают минимальной заселенностью электронами или вообще свободны. Если атом находится в основном состоянии с Е 1 , то под действием внешнего излучения может осуществиться вынужденный переход в возбужденное состояние с Е 2 . Вероятность таких переходов пропорциональна плотности излучения, вызывающего эти переходы.

Атом, находясь в возбужденном состоянии 2, может через некоторое время спонтанно самопроизвольно (без внешних воздействий) перейти в состояние с низшей энергией, отдавая избыточную энергию в виде электромагнитного излучения, т.е. испуская фотон.

Процесс испускания фотона возбужденным атомом без каких-либо внешних воздействий называется спонтанным (самопроизвольным) излучением. Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Т.к. спонтанные переходы взаимно не связаны, то спонтанное излучение не когерентно .

Если на атом, находящийся в возбужденном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей h n = Е 2 - Е 1 , то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона с той же энергией h n = Е 2 - Е 1 . При подобном переходе происходит излучение атомом дополнительно к тому фотону, под действием которого произошел переход. Излучение, происходящее в результате внешнего облучения называется вынужденным . Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызывающий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Вторичные фотоны неотличимы от первичных.

Эйнштейн и Дирак доказали тождественность вынужденного излучения вынуждающему излучению: они имеют одинаковую фазу, частоту, поляризацию и направление распространения. Þ Вынужденное излучение строго когерентно с вынуждающим излучением.

Испущенные фотоны, двигаясь в одном направлении и, встречая другие возбужденные атомы, стимулируют дальнейшие индуцированные переходы, и число фотонов растет лавинообразно. Однако наряду с вынужденным излучением будет происходить поглощение. Поэтому для усиления падающего излучения необходимо, чтобы число фотонов в вынужденных излучениях (которое пропорционально заселенности возбужденных состояний) превышало число поглощенных фотонов. В системе атомы находятся в термодинамическом равновесии, поглощение будет преобладать над вынужденным излучением, т.е. падающее излучение при прохождении через вещество будет ослабляться.

Чтобы среда усиливала падающее на нее излучение необходимо создать неравновесное состояние системы , при котором число атомов в возбужденном состоянии больше, чем в основном. Такие состояния называются состояниями с инверсией заселенностей . Процесс создания неравновесного состояния вещества называется накачкой . Накачку можно осуществить оптическими, электрическими и другими способами.

В средах с инверсной заселенностью вынужденное излучение может превысить поглощение, т.е. падающее излучение при прохождении через среду будет усиливаться (эти среды называются активными). Для этих сред в законе Бугера I = I 0 e - a x , коэффициент поглощения a - отрицателен.

§ 7. Лазеры - оптические квантовые генераторы

В начале 60-х годов был создан квантовый генератор оптического диапазона - лазер “ Light Amplification by Stimulated emission of Radiation ” - усиления света путем индуцированного испускания излучения. Свойства лазерного излучения: высокая монохроматичность (предельно высокая световая частота), острая пространственная направленность, огромная спектральная яркость.

Согласно законам квантовой механики, энергия электрона в атоме не произвольна: она может иметь лишь определенный (дискретный) ряд значений Е 1 , Е 2 , Е 3 ... Е n , называемых уровнями энергии. Значения эти различны для разных атомов. Набор дозволенных значений энергии носит название энергетического спектра атома. В нормальных условиях (при отсутствии внешних воздействий) большая часть электронов в атомах пребывает на самом низком возбужденном уровне Е 1 , т.е. атом обладает минимальным запасом внутренней энергии; остальные уровни Е 2 , Е 3 .....Е n соответствуют более высокой энергии атома и называются возбужденными.

При переходе электрона с одного уровня энергии на другой атом может испускать или поглощать электромагнитные волны, частота которых n m n = (Е m - Е n ) h ,

где h - постоянная Планка (h = 6.62 · 10 -34 Дж·с);

Е n - конечный, Е m - начальный уровень.

Возбужденный атом может отдать свою некоторую избыточную энергию, полученную от внешнего источника или приобретенную им в результате теплового движения электронов, двумя различными способами.

Всякое возбужденное состояние атома неустойчиво, и всегда существует вероятность его самопроизвольного перехода в более низкое энергетическое состояние с испусканием кванта электромагнитного излучения. Такой переход называют спонтанным (самопроизвольным). Он носит нерегулярный, хаотический характер. Все обычные источники дают свет в результате спонтанного испускания.

Таков первый механизм испускания (электромагнитного излучения). В рассмотренной двухуровневой схеме испускания света никакого усиления излучения добиться не удастся. Поглощенная энергия h n выделяется в виде кванта с той же энергией h n и можно говорить о термодинамическом равновесии : процессы возбуждения атомов в газе всегда уравновешены обратными процессами испукания.


§2 Трехуровневая схема

В атомах вещества при термодинамическом равновесии на каждом последующем возбужденном уровне находится меньше электронов, чем на предыдущем. Если подействовать на систему возбуждающим излучением с частотой, попадающей в резонанс с переходом между уровнями 1 и 3 (схематично 1 → 3), то атомы будут поглощать это излучение и переходить с уровня 1 на уровень 3. Если интенсивность излучения достаточно велика, то число атомов, перешедших на уровень 3, может быть весьма значительным и мы, нарушив равновесное распределение населенностей уровней, увеличим населенность уровня 3 и уменьшим, следовательно, населенность уровня 1.

С верхнего третьего уровня возможны переходы 3 → 1 и 3 → 2. Оказалось, что переход 3 1 приводит к испусканию энергии Е 3 -Е 1 = h n 3-1 , а переход 3 → 2 не является излучательным: он ведет к заселению ”сверху” промежуточного уровня 2 (часть энергии электронов при этом переходе отдается веществу, нагревая его). Этот второй уровень называется метастабильным , и на нем в итоге окажется атомов больше, чем на первом. Поскольку атомы на уровень 2 поступают с основного уровня 1 через верхнее состояние 3, а обратно на основной уровень возвращаются с “большим запаздыванием”, то уровень 1 “обедняется”.

В результате и возникает инверсия, т.е. обратное инверсное распределение населенностей уровней. Инверсия населенностей энергетических уровней создается интенсивным вспомогательным излучением, называемым излучением накачки и приводит в конечном итоге к индуцированному (вынужденному) размножению фотонов в инверсной среде.

Как во всяком генераторе, в лазере для получения режима генерации необходима обратная связь . В лазере обратная связь реализуется с помощью зеркал. Усиливающая (активная) среда помещается между двумя зеркалами - плоскими или чаще вогнутыми. Одно зеркало делается сплошным, другое частично прозрачным.

“Затравкой” для процесса генерации служит спонтанное испускание фотона. В результате движения этого фотона в среде он порождает лавину фотонов, летящих в том же направлении. Дойдя до полупрозрачного зеркала, лавина частично отразится, а частично пройдет сквозь зеркало наружу. После отражения от правого зеркала волна идет обратно, продолжая усиливаться. Пройдя расстояние l , она достигает левого зеркала, отражается и снова устремляется к правому зеркалу.

Такие условия создаются только для осевых волн. Кванты других направлений не способны забрать заметную часть запасенной в активной среде энергии.

Выходящая из лазера волна имеет почти плоский фронт, высокую степень пространственной и временной когерентности по всему сечению пучка.

В лазерах в качестве активной среды применяют различные газы и газовые смеси (газовые лазеры ), кристаллы и стекла с примесями определенных ионов (твердотельные лазеры ), полупроводники (полупроводниковые лазеры ).

Способы возбуждения (в системе накачки) зависят от типа активной среды. Это либо способ передачи энергии возбуждения в результате столкновения частиц в плазме газового разряда (газовые лазеры), либо передача энергии облучением активных центров некогерентным светом от специальных источников (оптическая накачка в твердотельных лазерах), либо инжекция неравновесных носителей через р- n - переход, либо возбуждение электронным пучком, либо оптическая накачка(полупроводниковые лазеры).

В настоящее время создано чрезвычайно много различных лазеров, дающих излучение в широком диапазоне длин волн (200 ¸ 2·10 4 нм). Лазеры работают с очень короткой длительностью светового импульса t » 1·10 -12 с, могут давать и непрерывное излучение. Плотность потока энергии лазерного излучения составляет величину порядка 10 10 Вт/см 2 (интенсивность Солнца составляет всего 7·10 3 Вт/см 2).

Переход возбужденной системы (атома, молекулы) с верхних энергетических уровней на нижние может происходить либо спонтанно, либо индуцированно.

Спонтанным называется самопроизвольный (самостоятельный) переход, обусловленный только факторами, действующими внутри системы и свойственными ей. Эти факторы определяют среднее время пребывания системы в возбужденном состоянии; согласно соотношению Гейзенберга (см. § 11),

Теоретически это время может иметь различные значения в пределах:

т. е. зависит от свойств системы - разброса значений энергии возбужденного состояния (за характеристику системы обычно принимается среднее значение времени пребывания в возбужденных состояниях в зависимости от среднего значения Следует учесть также воздействие на систему окружающего пространства («физического вакуума»), в котором даже в отсутствие электромагнитных волн существует, согласно квантовой теории, флуктуирующее поле («вакуумные флуктуации»); это поле может стимулировать переход бужденной системы к низшим уровням и должно быть включено в число неустранимых факторов, вызывающих спонтанные переходы.

Индуцированным называется вынужденный (стимулированный) переход в энергетически низшее состояние, вызванное каким-нибудь внешним воздействием на возбужденную систему: тепловыми столкновениями, взаимодействием с соседними частицами или проходящей через систему электромагнитной волной. Однако в литературе установилось более узкое определение: индуцированным называется переход, вызванный только электромагнитной волной, причем той же частоты, которая излучается системой при этом переходе (поля других частот не будут резонировать с собственными колебаниями системы,

поэтому их стимулирующее действие будет слабым). Так как «носителем» электромагнитного поля является фотон, то из этого определения следует, что при индуцированном излучении внешний фотон, стимулирует рождение нового фотона такой же частоты (энергии).

Рассмотрим важнейшие особенности спонтанного и индуцированного переходов на одном простом идеализированном примере. Допустим, что в объеме V с зеркальными стенками имеется одинаковых систем (атомов, молекул), из которых в начальный фиксированный момент времени некоторая часть переведена в возбужденное состояние с энергией суммарная избыточная энергия в этом объеме будет равна Для спонтанных переходов характерно следующее:

1) процесс перехода возбужденных систем в нормальные состояния (т. е. излучение избыточной энергии растянут во времени. Одни системы пребывают в возбужденном состоянии малое время для других это время больше. Поэтому поток (мощность) излучения будет с течением времени изменяться, достигнет максимума в некоторый момент и затем будет асимптотически убывать до нуля. Среднее значение потока излучения будет равно

2) момент времени, когда начинается излучение одной системы, и местонахождение этой системы совершенно не связаны с моментом излучения и местонахождением другой, т. е. между излучающими системами нет «согласованности» (корреляции) ни в пространстве, ни во времени. Спонтанные переходы являются совершенно случайными процессами, разбросанными во времени, по объему среды и по всевозможным направлениям; плоскости поляризации и электромагнитных излучений от различных систем имеют вероятностный разброс, поэтому сами излучатели не являются источниками когерентных волн.

Для характеристики индуцированных переходов допустим, что в рассматриваемый объем V в момент времени вводится один фотон с энергией, в точности равной Имеется некоторая вероятность того, что этот фотон при одном из столкновений с невозбужденной системой поглотится ею; эта вероятность будет учтена ниже в более общем случае (когда в объеме V происходит взаимодействие рассматриваемых систем с фотонным газом). Будем полагать, что фотон не поглощается, многократно отражается от стенок сосуда и при столкновениях с возбужденными системами стимулирует излучение таких же фотонов, т. е. вызывает индуцированные переходы. Однако каждый появившийся при этих переходах новый фотон будет также возбуждать индуцированные переходы. Так как скорости фотонов велики, а размеры объема V малы, то понадобится очень малое время для того, чтобы все имеющиеся в начальный момент времени возбужденные системы были вынуждены перейти в нормальное состояние. Следовательно, для индуцированных переходов характерно следующее:

1) время необходимое для излучения избыточной энергии может быть регулируемо и сделано очень малым, поэтому поток излучения может быть очень большим;

2) кроме того, фотон, вызвавший переход, и фотон такой же энергии (частоты), появившийся при этом переходе, находятся в одинаковой фазе, имеют одинаковые поляризацию и направление движения. Следовательно, электромагнитные волны, образующиеся при индуцированном излучении, когерентны.

Однако не каждое столкновение фотона с возбужденной системой приводит к ее переходу в нормальное состояние, т. е. вероятность индуцированного перехода в каждом «акте взаимодействия» фотона с системой не равна единице. Обозначим эту вероятность через Допустим, что в данный момент времени в объеме V имеется фотонов и каждый из них в среднем может иметь столкновений в единицу времени. Тогда число индуцированных переходов в единицу времени , следовательно, и число появившихся фотонов в объеме V будет равно

Обозначим число возбужденных систем в объеме V через Число столкновений фотонов с возбужденными системами будет пропорционально концентрации таких систем, т. е. Тогда может быть выражено в зависимости от :

где шинд учитывает все другие факторы, кроме числа фотонов и числа возбужденных систем

Увеличение числа фотонов в объеме V будет происходить также и вследствие спонтанного излучения. Вероятность спонтанного перехода есть обратная величина среднего времени пребывания в возбужденном состоянии Следовательно, число фотонов, появляющихся в единицу времени вследствие спонтанных переходов, будет равно

Уменьшение числа фотонов в объеме V будет происходить в результате их поглощения невозбужденными системами (при этом будет увеличиваться число возбужденных систем). Так как не каждый «акт взаимодействия» фотона с системой сопровождается поглощением, то следует ввести вероятность реализации поглощения Число столкг новений в единицу времени одного фотона с невозбужденными системами будет пропорционально числу таких систем поэтому по аналогии с (2.83) можно для убыли фотонов написать:

Найдем разность между интенсивностями процессов излучения и поглощения фотонов, т. е. процессов перехода систем из высших уровней на низшие и обратно:

В зависимости от значения в рассматриваемом объеме могут происходить следующие изменения;

1) если то в этом объеме будет происходить постепенное уменьшение плотности фотонного газа, т. е. поглощение лучистой энергии. Необходимым условием для этого является малая концентрация возбужденных систем: Лвозб

2) если то в системе установится равновесное состояние при некоторой определенной концентрации возбужденных систем и плотности лучистой энергии;

3) если (что возможно при больших значениях то в рассматриваемом объеме будет происходить увеличение плотности фотонного газа (лучистой энергии).

Очевидно, что уменьшение или увеличение энергии излучения будет иметь место не только в изолированном объеме с отражающими стенками, но и в том случае, когда поток монохроматической лучистой энергии (поток фотонов частотой распространяется в среде, содержащей возбужденные частицы избыточной энергией

Найдем относительное изменение числа фотонов, приходящееся на один фотон и на одну систему; воспользовавшись (2.86), (2.83), (2.84) и (2.85), получим

Заметим, что в равновесном состоянии (которое возможно только при положительной температуре согласно формуле (2.42), приведенной в § 12, отношение равно

Статистическая сумма в знаменателе в данном случае состоит только из двух слагаемых, соответствующих: 1) системам в нормальных состояниях с энергией и 2) возбужденным системам о энергией Из этой формулы следует, что при бесконечно большой положительной температуре Это означает, что путем повышения температуры невозможно достигнуть состояния, при котором число возбужденных систем было бы больше числа невозбужденных. было больше, чем Мневозб, т. е. необходимо, чтобы число фотонов, появляющихся при переходах на низшие уровни, было больше числа фотонов, поглощаемых за то же время). Выше было указано, что такое состояние не может быть достигнуто повышением температуры. Поэтому для получения среды, способной усиливать проходящий через нее лучистый поток, необходимо использовать другие (не температурные) способы возбуждения атомов и молекул.

Можно показать, что может быть больше (т. е. N) только при отрицательной температуре, т. е. при неравновесном состоянии рассматриваемой среды. Если, кроме того, это неравновесное состояние является метастабильным (см. ч. II, § 3), то можно при помощи подходящего внешнего воздействия вызвать скачкообразный переход к равновесному состоянию освобождением избыточной энергии за очень короткое время. Эта идея и лежит в основе работы лазеров.

Состояние среды, при котором верхние энергетические уровни имеют большие коэффициенты заполнения по сравнению с низшими, называется инверсионным. Так как в этом состоянии среда не ослабляет, как обычно, а усиливает проходящее через нее излучение, то в формуле для изменения интенсивности лучистого потока в среде

коэффициент будет отрицательной величиной (следовательно, показатель степени - положительной величиной). Ввиду этого среду в инверсионном состоянии называют средой с отрицательным показателем поглощения. Возможность получения таких сред, их свойства и использование для усиления оптического излучения были установлены и разработаны В. А. Фабрикантом и его сотрудниками (1939-1951).