Краткий обзор теорий сверхпроводимости и проанализированы проблемы высокотемпературной сверхпроводимости. Школьная энциклопедия

В 1911 году голландский ученый Каменлинг-Оннес обнаружил, что удельное сопротивление чистой ртути при температуре К резко падало до нуля. Электрический ток в таком проводнике сохранялся неизменным сколь угодно долго. Это явление получило название сверхпроводимости.

На рис.3.8. показана температурная зависимость удельного сопротивления сверхпроводника. Температура , при которой происходит переход металла в сверхпроводящее состояние, называется критической температурой.

В настоящее время сверхпроводимость обнаружена у 22 химических элементов (Pb, Zn, Al и др.) и более чем у 100 металлических сплавов (например Au 2 Bi ).

Долгое время сверхпроводящее состояние различных металлов и соединений удавалось получить лишь при весьма низких температурах, достижимых с помощью жидкого гелия. К началу 1986 г. максимальное наблюдавшееся значение критической температуры составляло 23 К. В 1986-1987 гг. был обнаружен ряд высокотемпературных сверхпроводников с критической температурой порядка 100 К, а затем и выше. Это было важным скачком, так как был преодолен «азотный рубеж»: такая температура достигается с помощью жидкого азота. В отличие от гелия жидкий азот получают в промышленном масштабе.

Все открытые до сих пор высокотемпературные сверхпроводники принадлежат к группе металлооксидной керамики (соединений типа Lа-Ва-Сu-О, Y-Ва-Сu-О ). Исследование уже открытых и поиск новых высокотемпературных сверхпроводников производятся очень интенсивно в ряде стран (в том числе и у нас в стране).

Рассмотрим основные свойства сверхпроводников.

Сверхпроводящее состояние может быть разрушено магнитным полем. При этом безразлично, является ли это поле внешним по отношению к проводнику или оно создано током, текущим по самому проводнику. Магнитное поле напряженностью , которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим. Критическое поле зависит от температуры T по закону



, (3.4.1)

где H 0 –критическое поле при T = 0 К.

Графически эта зависимость изображена на рис.3.9. При величинах внешнего магнитного поля H , больших 2/3 H С , в сверхпроводнике возникает промежуточное состояние, которое характеризуется одновременным существованием двух областей в нормальном и сверхпроводящем состоянии.

Одним из свойств сверхпроводника является полное выталкивание магнитного поля из внутреннего объема при внесении его во внешнее поле с напряженностью . Это явление называют эффектом Мейснера . Выталкивание магнитного поля сверхпроводником показано на рис.3.10.

Результирующая магнитная индукция в сверхпроводнике будет равна нулю.

Отсюда следует, что относительная магнитная проницаемость сверхпроводника также равна нулю, а магнитная восприимчивость отрицательна и равна (по модулю) единице. То есть сверхпроводник является не только идеальным проводником, но и идеальным диамагнетиком.

Физически эффект Мейснера связан с тем, что у сверхпроводника, помещенного в слабое магнитное поле, в поверхностном слое толщиной L » 10 ¸100 нм наводятся круговые незатухающие токи, которые компенсируют внешнее приложенное поле. Параметр L называют глубиной проникновения магнитного поля в сверхпроводник.

Переход в сверхпроводящее состояние сопровождается уменьшением теплопроводности. Это указывает на то, что свободные электроны, ответственные за перенос тепла в металлах, перестают взаимодействовать с решеткой и участвовать в переносе тепла. При переходе сверхпроводника в нормальное состояние возрастание энтропии составляет около 10 -3 R (здесь R – универсальная газовая постоянная). Малая разность энтропий двух состояний позволяет предположить, что, хотя сверхпроводящее состояние является более упорядоченным, оно, вероятно, охватывает лишь небольшую часть электронов.

Микроскопическая теория сверхпроводимости была разработана в 1957 г. Боголюбовым Н.Н., Дж.Бардиным, А.Купером и Дж.Шриффером. Рассмотрим кратко сущность этой теории.

Свободные электроны металла образуют электронный газ, подчиняющийся статистике Ферми-Дирака. Между электронами действуют силы отталкивания, которые в значительной степени ослаблены наличием поля положительных ионов, находящихся в узлах кристаллической решетки. Участие решетки может привести к появлению между электронами, кроме сил кулоновского отталкивания, еще и сил взаимного притяжения. При определенных условиях силы притяжения могут преобладать над силами отталкивания. Если один из электронов оказывается вблизи иона, то он вызывает смещение этого иона от положения равновесия - возникает элементарное возбуждение кристаллической решетки. При переходе решетки в основное невозбужденное состояние излучается квант тепловой энергии (звуковой частоты) - фонон , который поглощается другим электроном. В результате между двумя электронами возникает притяжение посредством обмена фононами, то есть образуется так называемая куперовская пара .

Электроны, образующие куперовскую пару, имеют антипараллельные спины, суммарный (общий) спин такой пары равен нулю, и потому она является бозоном. К бозонам принцип Паули неприменим, поэтому число бозе-частиц, находящихся в одном и том же квантовом состоянии, не ограничено.

При низких температурах бозоны скапливаются в основном состоянии, из которого их трудно перевести в возбужденное состояние. С точки зрения зонной теории уровень основного состояния располагается ниже уровня Ферми и отделен от других уровней энергетическим зазором (щелью) шириной DE s (рис.3.11). Ширина энергетического зазора при Т = 0 К оказалась равной примерно 3,5 kT С.

Минимальная порция энергии, которую может получить куперовская пара на основном уровне, равна DE S . При низкой температуре такую энергию она получить от решетки не может. Поэтому электроны движутся в металле, не теряя энергии, без торможения. С повышением температуры ширина энергетического зазора уменьшается, электронные пары разрываются. При температуре Т C ширина энергетического зазора обращается в нуль, и сверхпроводящее состояние исчезает.

Расстояние между электронами в куперовской паре

где v F - скорость электрона на уровне Ферми.

Оценка показывает, что δ ≈10 -6 м; это означает, что электроны находятся друг от друга на расстоянии порядка 10 4 периодов решетки (d ~10 -10 м). Все электроны проводимости при представляют собой связанный коллектив, состоящий из куперовских пар, простирающийся на весь объем кристалла. Особенностью такого коллектива электронов в сверхпроводнике является невозможность обмена энергией между электронами и решеткой малыми порциями, меньшими, чем энергия связи куперовской пары.

При движении такого коллектива электронов не происходит рассеяния электронных волн на тепловых колебаниях решетки или примесях, они огибают узлы решетки или атомы примесей, не изменяя своей энергии. А это означает отсутствие электрического сопротивления.

Свойства сверхпроводников делают их перспективными материалами для практического использования в электротехнике и энергетике. В настоящее время потери на джоулево тепло в подводящих проводах оценивается величиной 30-40%, то есть более трети всей производимой энергии тратится даром - на «отопление» Вселенной. Если же передавать электроэнергию по сверхпроводящим проводам с нулевым сопротивлением, то таких потерь не будет вообще. На основе сверхпроводников можно создавать электродвигатели и генераторы с высоким КПД.

С помощью сверхпроводящих катушек и соленоидов уже сейчас создаются огромные магнитные поля вплоть до 16 МА/м. Такие поля требуются для решения проблемы управляемого термоядерного синтеза для удержания горячей плазмы, для разработки транспорта магнитной на подушке, магнитных подшипников, детекторов СВЧ и других устройств.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость - квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

Открытие в 1986-1993 гг. ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило и практически использовать сверхпроводящие материалы не только при температуре жидкого гелия (4.2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешевой криогенной жидкости.

Видео YouTube

История открытия

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 градуса Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 градусах Кельвина (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.

Нулевое сопротивление - не единственная отличительная черта сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем (англ.) и Хайнцем Лондоном (англ.). Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга - Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².

В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.

В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg-Ba-Ca-Cu-O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

Видео YouTube


Фазовый переход в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Тс - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тс ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa2Ca2Cu3O8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тc теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.


Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в выталкивании сверхпроводником магнитного потока rotB = 0 . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположнонаправленное внешнему, приложенному магнитному полю и компенсирующее его.

Достаточно сильное магнитное поле при данной температуре разрушает сверхпроводящее состояние вещества. Магнитное поле с напряжённостью Нc, которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим полем. При уменьшении температуры сверхпроводника величина Нc возрастает. Зависимость величины критического поля от температуры с хорошей точностью описывается выражением


где Hc0 - критическое поле при нулевой температуре. Сверхпроводимость исчезает и при пропускании через сверхпроводник электрического тока с плотностью, большей, чем критическая jc, поскольку он создаёт магнитное поле, большее критического.

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля Hc2.
Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации.
Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны. Существуют и более сложные дву- и трёхмерные магнитные солитоны, напоминающие вихри в жидкостях, только роль линий тока в них играют линии, по которым выстраиваются элементарные магнитики (домены).

Электроны в металлах
Открытие изотопического эффекта означало, что сверхпроводимость, вероятно, вызывается взаимодействием между электронами проводимости и атомами кристаллической решетки. Чтобы выяснить, как это приводит к сверхпроводимости, нужно рассмотреть структуру металла. Как и все кристаллические твердые тела, металлы состоят из положительно заряженных атомов, расположенных в пространстве в строгом порядке. Порядок, в котором размещены атомы, можно сравнить с повторяющимся рисунком на обоях, но только рисунок должен повторяться в трех измерениях. Электроны проводимости движутся среди атомов кристалла со скоростями от 0,01 до 0,001 скорости света; их движение и есть электрический ток.


Введение

Глава 1 Открытие явления сверхпроводимости

1.2 Сверхпроводящие вещества

1.3 Эффект Мейснера

1.4 Изотопический эффект

Глава 2 Теория сверхпроводимости

2.1 Теория БКШ

2.4 Образование электронных пар

2.5 Эффективное взаимодействие между электронами, обусловленное фононами

2.6 Каноническое преобразование Боголюбова

2.7 Промежуточное состояние

2.8 Сверхпроводники второго рода

2.9 Термодинамика сверхпроводимости

2.10 Туннельный контакт и эффект Джозефсона

2.11 Квантование магнитного потока (макроскопический эффект)

2.12 Найтовский сдвиг

2.13 Высокотемпературная сверхпроводимость

Глава 3. Применение сверхпроводимости в науке и технике

3.1 Сверхпроводящие магниты

3.2 Сверхпроводящая электроника

3.3 Сверхпроводимость и энергетика

3.4 Магнитные подвесы и подшипники

Заключение

Библиография

Введение

У большинства металлов и сплавов при температуре порядка несколько градусов по Кельвину сопротивление скачком обращается в нуль. Впервые это явление, названное сверхпроводимостью, было обнаружено в 1911 г. Камерлинг - Оннесом. Вещества, обладающими таким явлением назвали сверхпроводниками. В 1957 году Дж. Бардин, Л. Купер, Дж. Шриффер разработали микроскопическую теорию сверхпроводимости, позволившую принципиально понять это явление. Теория БКШ объяснила основные факты в области сверхпроводимости (отсутствие сопротивления, зависимость Т к от массы изотопа, бесконечную проводимость (Е = 0), эффект Мейснера (В = 0), экспоненциальную зависимость электронной теплоёмкости вблизи Т = 0 и др.). Ряд выводов теории показывает хорошее количественное согласие с опытом. Многие вопросы нуждаются ещё в разработке (распределение сверхпроводящих металлов в системе Менделеева, зависимость Т к от состава и структуры сверхпроводящих соединений, возможность получения сверхпроводников с максимально высокой температурой перехода и др.). Успехи экспериментального и теоретического исследований дали реальную возможность приступить к работам по освоению этого физического явления. На протяжении почти 100 лет идут разработки в этой области, открываются новые сверхпроводящие материалы, ведутся поиски высокотемпературных сверхпроводников. В последние годы, особенно после создания теории сверхпроводимости, интенсивно развивается техническая сверхпроводимость.

Актуальность. Сегодня сверхпроводимость - это одна из наиболее изучаемых областей физики, явление, открывающее перед инженерной практикой серьёзные перспективы. Большое распространение получили приборы, основанные на явлении сверхпроводимости, без них уже не может обойтись ни современная электроника, ни медицина, ни космонавтика

Цель. Подробнее рассмотреть явление сверхпроводимости, его свойства, практическое применение, изучить теорию БКШ, а также выяснить перспективы развития данной области физики.

1)Выяснить, что собой представляет сверхпроводимость, причины его возникновения и условия возможного перехода вещества из нормального состояния в сверхпроводящее.

2)Объяснить причины, влияющие на разрушение сверхпроводящего состояния.

3)Раскрыть свойства и применение сверхпроводников.

Объект. Объектом данной курсовой работы является явление сверхпроводимости, сверхпроводники.

Предмет. Предметом являются свойства сверхпроводников и их применение.

Практическое применение. Явление сверхпроводимости используется для получения сильных магнитных полей, сверхпроводники применяются при создании вычислительных машин, для устройства модуляторов, выпрямителей, коммутаторов, персисторов и персистронов, измерительных приборов.

Методы исследования. Анализ научной литературы.

Глава 1. Открытие явления сверхпроводимости

1.1 Первые экспериментальные факты

В 1911 году в Лейдене голландский физик Х. Камерлинг-Оннес впервые наблюдал явление сверхпроводимости. Эта проблема исследовалась и ранее, опыты показывали, что с понижением температуры, сопротивление металлов падало. Одним из первых его исследований в области низких температур было изучение зависимости электрического сопротивления от температуры в ходе опыта с ртутной цепью. Ртуть тогда считалась самым чистым металлом, который можно было получить дистилляционной перегонкой. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,2 0 К ртуть практически теряет сопротивление. Для этого опыта он использовал аппарат (рис. 1), который состоял из семи U-образных сосудов с сечением 0,005 мм 2 , соединённых перевёрнутыми. Такая форма сосудов нужна была для свободного сжимания и разжимания ртути без нарушения непрерывности ртутной нити. В точках 1 и 2 по трубкам 3 и 4 подводился ток, в точках 5 и 6 измерялось падение напряжения на участках ртутной цепи.

На рис.2 приведены результаты его экспериментов с ртутью. Следует обратить внимание на то, что температурный интервал, в котором сопротивление уменьшалось до нуля, чрезвычайно узок.

Рис. 2. Зависимость сопротивления платины и ртути от температуры.

На графике видно, что при температуре 4,2 0 К электрическое сопротивление ртути резко исчезло. Такое состояние проводника, при котором его электрическое сопротивление равно нулю, называется сверхпроводимостью, а вещества в таком состоянии - сверхпроводниками. Переход вещества в сверхпроводящее состояние происходит в очень узком температурном интервале (сотые доли градуса) и поэтому считают, что переход осуществляется при определённой температуре Т к, называемой критической температурой перехода вещества в сверхпроводящее состояние.

Экспериментально сверхпроводимость можно наблюдать двумя способами:

1) включив в общую электрическую цепь, по которой течёт ток, звено из сверхпроводника. В момент перехода в сверхпроводящее состояние разность потенциалов на концах этого звена обращается в нуль;

2) поместив кольцо из сверхпроводника в перпендикулярное к нему магнитное поле. Охладив затем кольцо ниже Т к, выключают поле. В результате в кольце индуцируется незатухающий электрический ток. Ток в таком кольце циркулирует неограниченно долго.

Камерлинг - Оннес продемонстрировал это, перевезя сверхпроводящее кольцо с текущим по нему током из Лейдена в Кембридж. В ряде экспериментов наблюдалось отсутствие затухания тока в сверхпроводящем кольце в течение примерно года. В 1959 г. Коллинз сообщил о наблюдавшемся им отсутствия уменьшения тока в течение двух с половиной лет. .

Эксперименты показали, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления Холла. В то время, как в обычных проводниках под влиянием магнитного поля, ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте.

Сверхпроводимость исчезает под действием следующих факторов:

1) повышение температуры;

С повышением температуры до некоторой T к почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец (наиболее крутой переход наблюдается в монокристаллах).

2) действие достаточно сильного магнитного поля;

Переход от сверхпроводящего состояния в нормальное можно осуществить путем повышения магнитного поля при температуре ниже критической T к. Минимальное поле B к, в котором разрушается сверхпроводимость называется критическим магнитным полем. Зависимость критического поля от температуры описывается эмпирической формулой:

где В 0 - критическое поле, экстраполированное к абсолютному нулю температуры. Для некоторых веществ по - видимому имеет место зависимость от Т в первой степени. Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. Данная взаимосвязь иллюстрируется следующим графиком (рис. 3).

Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если повышая магнитное поле уничтожить сверхпроводимость при (H - сила поля, H к - повышенная сила поля):

то с понижением интенсивности поля сверхпроводимость появится вновь при поле, меняется от образца к образцу и обычно составляет 10% H к.

3) достаточно большая плотность тока в образце;

Повышение силы тока также приводит к исчезновению сверхпроводимости, то есть при этом понижается T к. Чем ниже температура, тем выше та предельная сила тока i к при которой сверхпроводимость уступает место обычной проводимости.

4) изменение внешнего давления;

Изменение внешнего давления р вызывает смещение Т к и изменение напряжённости магнитного поля, разрушающего сверхпроводимость.

1.2 Сверхпроводящие вещества

В дальнейшем было установлено, что не только у ртути, но и у других металлов и сплавов электрическое сопротивление при достаточном охлаждении становится равным нулю.

Самой высокой критической температурой среди чистых веществ обладает ниобий (9,22 0 К), а наиболее низкой иридий (0,14 0 К). Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла. Например, серое олово--полупроводник, а белое олово - металл, переходящий в сверхпроводящее состояние при температуре 3,72 0 К. Две кристаллические модификации лантана (б-La и в-La) имеют разные критические температуры перехода в сверхпроводящее состояние (для б-La Т к =4,8 0 К, в-La Т к =5,95 0 К). Поэтому сверхпроводимость является свойством не отдельных атомов, а коллективный эффект, связанный со структурой всего образца.

Хорошие проводники (серебро, золото и медь) не обладают этим свойством, а многие другие вещества, которые в обычных условиях проводники очень плохие - наоборот, обладают. Для исследователей явилось полной неожиданностью и еще больше осложнило объяснение этого явления. Основную часть сверхпроводников составляют не чистые вещества, а их сплавы и соединения. Причем сплав двух несверхпроводящих веществ может обладать сверхпроводящими свойствами. Различают сверхпроводники первого и второго рода.

Сверхпроводниками первого рода являются чистые металлы, всего их насчитывается более 20. Среди них нет металлов, которые при комнатной температуре являются хорошими проводниками, а, наоборот, металлы, обладающие сравнительно плохой проводимостью при комнатной температуре (ртуть, свинец, титан и др.).

Сверхпроводниками второго рода являются химические соединения и сплавы, причём не обязательно это должны быть соединения или сплавов металлов, в чистом виде являющиеся сверхпроводниками первого рода. Например, соединения MoN, WC, CuS являются сверхпроводниками второго рода, хотя Mo, W, Cu и тем более N, C и S не являются сверхпроводниками. Число сверхпроводников второго рода составляет несколько сотен и продолжает увеличиваться. .

Долгое время сверхпроводящее состояние различных металлов и соединений удавалось получить лишь при весьма низких температурах, достижимых с помощью жидкого гелия. К началу 1986 г. максимальное наблюдавшееся значение критической температуры составляло уже 23 0 К.

1.3 Эффект Мейснера

В 1933 г. Мейснер и Оксенфельд установили, что за явлением сверхпроводимости скрывается нечто большее, чем идеальная проводимость, т. е. равенство нулю удельного сопротивления. Они обнаружили, что магнитное поле выталкивается из сверхпроводника независимо от того, чем это поле создано - внешним источником или током, текущим по самому сверхпроводнику (рис. 4). Оказалось, что магнитное поле не проникает в толщу сверхпроводящего образца.

Рис 4. Выталкивание потока магнитной индукции из сверхпроводника.

При температурах более высоких, чем критическая температура перехода в сверхпроводящее состояние, в образце, помещённом во внешнее магнитное поле, как и во всяком металле, индукция магнитного поля внутри отлична от нуля. Если, не выключая внешнего магнитного поля, постепенно снижать температуру, то в момент перехода в сверхпроводящее состояние магнитное поле вытолкнется из образца и индукция магнитного поля внутри станет равной нулю (В=0). Этот эффект назвали эффектом Мейснера.

Как известно, металлы, за исключением ферромагнетиков в отсутствие внешнего магнитного поля обладают нулевой магнитной индукцией. Это связано с тем, что магнитные поля элементарных токов, которые всегда имеются в веществе, взаимно компенсируются вследствие полной хаотичности их расположения.

Помещенные во внешнее магнитное поле, они намагничиваются, т.е. внутри "наводится" магнитное поле. Суммарное магнитное поле вещества, внесенного во внешнее магнитное поле, характеризуется магнитной индукцией, равной векторной сумме индукции внешнего и индукции внутреннего магнитных полей, т.е. . При этом суммарное магнитное поле может быть как больше, так и меньше магнитного поля.

Для того чтобы определить степень участия вещества в создании магнитного поля индукцией, находят отношение значений индукции. Коэффициент µ называют магнитной проницаемостью вещества. Вещества, в которых при наложении внешнего магнитного поля возникающее внутреннее поле добавляется к внешнему (µ > 1), называются парамагнетиками. При коэффициенте >1 происходит уменьшение внешнего поля в образце.

В диамагнитных веществах (<1) наблюдается ослабление приложенного поля. В сверхпроводниках В=0, что соответствует нулевой магнитной проницаемости. В поверхностном слое металла возникает стационарный электрический ток, собственное магнитное поле которого противоположно приложенному полю и компенсирует его, что в результате и приводит к нулевому значению индукции в толще образца.

Существование стационарных сверхпроводящих токов обнаруживается в следующем эксперименте: если над металлическим сверхпроводящим кольцом поместить сверхпроводящую сферу, то на ее поверхности индуцируется сверхпроводящий незатухающий ток. Его возникновение приводит к диамагнитному эффекту и возникновению сил отталкивания между кольцом и сферой, в результате будет наблюдаться парение сферы над кольцом. Глубина проникновения поля в образец является одной из основных характеристик сверхпроводника. Обычно глубина проникновения приблизительно равна 100..400Е. С ростом температуры глубина проникновения магнитного поля возрастает по закону:

Наиболее простая оценка глубины проникновения магнитного поля в сверхпроводник была дана братьями Фрицем и Гансом Лондонами. Приведём эту оценку. Будем предполагать, что имеем дело с полями, медленно меняющимися во времени. Так как сверхпроводники не ферромагнитны, то можно пренебречь разницей между и и записать фундаментальные уравнения электродинамики в виде

Причём мы будем также пренебрегать разницей между частной и полной производными по времени. Предполагая, что токи создаются движением только сверхпроводящих электронов, напишем далее, где - концентрация таких электронов. После дифференцирования по времени получим. Ускорение электрона найдётся из уравнения, если пренебречь действием магнитного поля. Тогда

где введено обозначение

Продифференцировав первое уравнение (4) по, исключив из уравнений (4) и (5) величины и, получим

Этому уравнению удовлетворяет, но такое решение не согласуется с эффектом Мейснера, так как внутри сверхпроводника должно быть. Лишнее решение получилось потому, что при выводе дважды применялась операция дифференцирования по времени. Чтобы автоматически исключить это решение, Лондоны ввели гипотезу, что в последнем уравнении производную следует заменить самим вектором. Это даёт

Для определения глубины проникновения магнитного поля внутрь сверхпроводника допустим, что последний ограничен плоскостью по одну сторону от неё. Направим ось внутрь сверхпроводника нормально к его границе. Пусть магнитное поле параллельно оси, так что. Тогда

И уравнение (8) даёт

Решение этого уравнения, обращающееся в нуль при, имеет вид

Постоянная интегрирования даёт поле на поверхности сверхпроводника. На протяжении длины магнитное поле убывает в раз. Величина принимается за меру глубины проникновения поля в металл.

Для получения численной оценки примем, что на каждый атом металла приходится один сверхпроводящий электрон, полагая см -3 . тогда по формуле (6) найдём см, что по порядку величины совпадает со значениями, полученными непосредственными измерениями.

Поверхностный слой сверхпроводника обладает особыми свойствами, связанными с отличной от нуля напряженностью магнитного поля в нем. Эти свойства оказывают очень существенное влияние на получение сверхпроводников с высокими критическими полями.

Возникает ситуация, когда поверхностные токи, часто называемые экранирующими, препятствуют проникновению в образец магнитного потока приложенного поля. Если внутри вещества, находящегося во внешнем поле, магнитный поток равен нулю, то говорят, что он проявляет идеальный диамагнетизм. При снижении плотности приложенного поля до нуля образец остается в своем ненамагниченном состоянии. В другом случае, когда магнитное поле приложено к образцу, находящемуся выше переходной температуры, конечная картина заметно изменится. Для большинства металлов (кроме ферромагнетиков) значение относительной магнитной проницаемости близко к единице. Поэтому плотность магнитного потока внутри образца практически равна плотности потока приложенного поля. Исчезновение электросопротивления после охлаждения не оказывает влияния на намагниченность, и распределение магнитного потока не меняется. Если теперь снизить приложенное поле до нуля, то плотность магнитного потока внутри сверхпроводника не может меняться, на поверхности образца возникают незатухающие токи, поддерживающие внутри магнитный поток. В результате образец остается все время намагниченным. Таким образом, намагниченность идеального проводника зависит от последовательности изменения внешних условий.

Эффект выталкивания магнитного поля из сверхпроводника можно пояснить на основе представлений о намагниченности. Если экранирующие токи, полностью компенсирующие внешнее магнитное поле, сообщают образцу магнитный момент m, то намагниченность M выражается соотношением:

где V - объем образца. Можно говорить о том, что экранирующие токи приводят к появлению намагниченности, соответствующей намагниченности идеального ферромагнетика с магнитной восприимчивостью, равной минус единице.

Эффект Мейсснера и явление сверхпроводимости тесно связаны между собой и являются следствием общей закономерности, которую и установила созданная более чем через полвека после открытия явления теория сверхпроводимости.

1.4 Изотопический эффект

В 1950 г. Е. Максвелл и Ч. Рейнольдс открыли изотопический эффект, который имел большое значение для создания современной теории сверхпроводимости. Исследование нескольких сверхпроводящих изотопов ртути показало, что существует связь между критической температурой перехода в сверхпроводящее состояние и массой изотопов. При изменении массы М изотопа от 199,5 до 203,4 критическая температура изменялась от 4,185 до 4,14 К. Для данного сверхпроводящего химического элемента была установлена формула, оправдывающаяся с достаточной точностью:

где const имеет определённое значение для каждого элемента.

Масса изотопа является характеристикой кристаллической решётки, так как в неё основной вклад вносят ионы металла. Масса определяет многие свойства решётки. Известно, что частота щ колебаний решётки связана с массой:

Сверхпроводимость, которая является свойством электронной системы металла, оказывается связанной, ввиду обнаружения изотопического эффекта, с состоянием кристаллической решетки. Следовательно, возникновение эффекта сверхпроводимости обусловлено взаимодействием электронов с решеткой металла. Это взаимодействие ответственно за сопротивление металла в обычном состоянии. При определенных условиях оно должно приводить к исчезновению сопротивления, то есть к эффекту сверхпроводимости.

1.5 Предпосылки создания теории сверхпроводимости

Первой теорией, достаточно успешной описавшей свойства сверхпроводников, была теория Ф. Лондона и Г. Лондона, предложенная в 1935 г. Лондоны в своей теории основывались на двухжидкостной модели сверхпроводника. Считалось, что при в сверхпроводнике имеются «сверхпроводящие» электроны с концентрацией и «нормальные» электроны с концентрацией, где -полная концентрация проводимости). Плотность сверхпроводящих электронов уменьшается с ростом и обращается в нуль при. При она стремится к плотности всех электронов. Ток сверхпроводящих электронов течёт через образец без сопротивления.

Лондонами в дополнение к уравнения Максвелла были получены уравнения для электромагнитного поля в таком сверхпроводнике, из которых вытекали его основные свойства: отсутствие сопротивления постоянному току и идеальный диамагнетизм. Однако в силу того, что теория Лондонов была феноменологической, она не отвечала на главный вопрос, что представляют собой «сверхпроводящие» электроны. Кроме того, она имела ещё ряд недостатков, которые были устранены В.Л. Гинзбургом и Л.Д. Ландау.

В теории Гинзбурга - Ландау для описания свойств сверхпроводников была привлечена квантовая механика. В этой теории вся совокупность сверхпроводящих электронов описывалась волновой функцией от одной пространственной координаты. Вообще говоря, волновая функция электронов в твёрдом теле есть функция координат. Введением функции устанавливалось когерентное, согласованное поведение всех сверхпроводящих электронов. Действительно, если все электронов ведут себя совершенно одинаково, согласовано, то для описания их поведения достаточно той же самой волновой функции, что и для описания поведения одного электрона, т.е. функции от одной переменной.

Несмотря на то что теория Гинзбурга - Ландау, получившая дальнейшее развитие в работах А.А.Абрикосова, описывала многие свойства сверхпроводников, она не могла дать понимания явления сверхпроводимости на микроскопическом уровне.

В данной главе рассматриваются вопросы открытия явления сверхпроводимости, первые опытные факты, первые теории, а также некоторые свойства сверхпроводников.

Анализируя вышеизложенное можно сделать следующие выводы:

1) Такое состояние проводника, при котором его электрическое сопротивление равно нулю, называется сверхпроводимостью, а вещества в таком состоянии - сверхпроводниками.

2) Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд).

3) Сверхпроводимость исчезает под действием следующих факторов: повышение температуры, действие достаточно сильного магнитного поля, достаточно большая плотность тока в образце, изменение внешнего давления.

4) Магнитное поле выталкивается из сверхпроводника независимо от того, чем это поле создано - внешним источником или током, текущим по самому сверхпроводнику.

5) Существует связь между критической температурой перехода в сверхпроводящее состояние и массой изотопов, которое называется изотопическим эффектом.

6) Изотопический эффект указал на то, что колебания решетки участвуют в создании сверхпроводимости.

Глава 2. Теория сверхпроводимости

2.1 Теория БКШ

В 1957 г. Бардиным, Купером и Шриффером была построена последовательная теория сверхпроводящего состояния вещества (теория БКШ). Ещё задолго до этого Ландау была создана теория сверхтекучести гелия II. Оказалось, что сверхтекучесть - это макроскопический квантовый эффект. Однако перенести теорию Ландау на явление сверхпроводимости мешало то обстоятельство, что атомы гелия, обладая нулевым спином, подчиняются статистике Бозе-Эйнштейна. Электроны же, обладая половинным спином, подчиняются принципу Паули и статистике Ферми - Дирака. Для таких частиц невозможна бозе-эйнштейновская конденсация, необходимая для возникновения сверхтекучести. Учёные предположили, что электроны группируются в пары, которые обладают нулевым спином и ведут себя как бозе - частицы. Независимо от них в 1958 г. Н.Н. Боголюбов разработал более совершенный вариант теории сверхпроводимости.

Теория БКШ относится к идеализированной модели, в которой пока полностью отбрасываются структурные особенности металла. Металл рассматривается в виде потенциального ящика, заполненного электронным газом, подчиняющимся статистике Ферми. Между отдельными электронами действуют силы кулоновского отталкивания, в большей мере ослабленные за счёт поля атомных остовов. Изотопный эффект в сверхпроводимости указывает на наличие взаимодействия электронов с тепловыми колебаниями решётки (с фононами).

Электрон, движущийся в металле, электрическими силами деформирует--поляризует кристаллическую решетку образца. Вызванное этим смещение ионов решетки отражается на состоянии другого электрона, поскольку он теперь оказывается в поле поляризованной решетки, несколько изменившей свою периодическую структуру. Таким образом, кристаллическая решетка выступает в роли промежуточной среды в межэлектронных взаимодействиях, так как с ее помощью электроны реализуют притяжение друг к другу. При высоких температурах достаточно интенсивное тепловое движение отбрасывает частицы друг от друга, фактически уменьшая силу притяжения. Но при низких температурах силы притяжения играют очень важную роль.

Два электрона отталкиваются друг от друга, если находятся в пустоте. В среде же сила их взаимодействия равна:

где е - диэлектрическая проницаемость среды. Если среда такова, что е<0, то одноименные заряды, в том числе и электроны, будут притягиваться. Кристаллическая решетка некоторых веществ является той средой, в которой выполняется это условие, а значит при определенных температурах возможно возникновение эффекта сверхпроводимости. Таким образом, эффект взаимного притяжения электронов не противоречит законам физики, так как происходим в некоторой среде.

Рассмотрим металл при Т=0 0 К. Его кристаллическая решетка совершает «нулевые» колебания, существование которых связано с квантово-механическим соотношением неопределенностей. Электрон, движущийся в кристалле, нарушает режим колебаний и переводит решетку в возбужденное состояние. Обратный переход на прежний энергетический уровень сопровождается излучением энергии, захватываемой другим электроном и возбуждающей его. Возбуждение кристаллической решетки описывается звуковыми квантами - фононами, поэтому описанный выше процесс можно представить как излучение фонона одним электроном и поглощение его другим электроном, кристаллическая решетка же играет промежуточную роль передатчика. Обмен фононами обуславливает их взаимное притяжение.

При низких температурах это притяжение у ряда веществ преобладает над кулоновскими силами отталкивания электронов. При этом электронная система превращается в связанный коллектив, и чтобы ее возбудить требуется затрата некоторой конечной энергии. Энергетический спектр электронной системы в этом случае не будет непрерывным - возбужденное состояние отделено от основного энергетической щелью.

Теперь установлено, что нормальное состояние металла отличается от сверхпроводящего характером энергетического спектра электронов вблизи поверхности Ферми. В нормальном состоянии при низких температурах электронное возбуждение соответствует переходу электрона из первоначально занятого состояния к (<к F) под поверхностью Ферми в свободное состояние к (>к F) над поверхностью Ферми. Энергия, необходимая для возбуждения такой электронно - дырочной пары в случае сферической поверхности Ферми, равна

Поскольку к и к 1 могут лежать достаточно близко к поверхности Ферми, то.

Электронную систему в сверхпроводнике можно представить как состоящую из связанных пар электронов (куперовских пар), а возбуждение, как разрыв пары. Размер электронной пары составляет приблизительно ~10 -4 см, размер периода решетки - 10 -8 см. То есть электроны в паре находятся на огромном расстоянии.

Наиболее характерным свойством металла в сверхпроводящем состоянии является то, что энергия возбуждения пары всегда превышает некоторую определённую величину 2Д, которую называют энергией спаривания. Другими словами, в спектре энергий возбуждения со стороны малых энергий имеется щель. Например, для металлов Hg, Pb, V, Nb значение 2Д соответствует тепловой энергии при температурах 18 0 К, 29 0 К, 18 0 К и 30 0 К.

Величина энергии спаривания измеряется непосредственно на опыте: при исследовании поглощения электромагнитного излучения - поглощается только излучение с частотой ђщ = 2Д, при исследовании экспоненциального изменения затухания звука и др.

При наличии щели в энергетическом спектре квантовые переходы системы не всегда будут возможны. Электронная система не будет возбуждаться при малых скоростях движения, следовательно, движение электронов будет происходить без трения, что означает отсутствие сопротивления. При определенном критическом токе электронная система сможет перейти на следующий энергетический уровень и сверхпроводимость разрушится.

2.2 Щель в энергетическом спектре

Первые указания на существование энергетической щели были получены из экспоненциального закона спадания электронной теплоёмкости сверхпроводника:

c es ~ г T k e - bTk / T ~ c ns e - bTk / T . (16)

Энергетическая щель в сверхпроводниках непосредственно наблюдается на опыте, при этом не только подтверждается существование щели в спектре, но и измеряется ее величина. Исследовался переход электронов через тонкий непроводящий слой толщиной ~10Е, разделяющий нормальную и сверхпроводящую пленки. При наличии барьера имеется конечная вероятность прохождения электрона через барьер. В нормальном металле заполнены все уровни энергии, вплоть до максимального е F , в сверхпроводящем же до е F -Д. Прохождение тока при этом невозможно.

Наличие энергетической щели в сверхпроводнике приводит к отсутствию соответствующих состояний, между которыми происходил бы переход. Для того чтобы переход мог произойти, необходимо поместить систему во внешнее электрическое поле. В поле вся картина уровней смещается. Эффект становится возможным, если приложенное внешнее напряжение становится равным Д/e. Туннельный ток появляется при конечном напряжении U, когда eU равно энергетической щели. Отсутствие туннельного тока при сколь угодно малом приложенном напряжении является доказательством существования энергетической щели.

В настоящее время разработан ряд методов, позволяющих обнаружить такую щель и измерить её ширину. Один из них основан на изучении поглощения электромагнитных волн далёкой инфракрасной области металлами. Идея метода состоит в следующем. Если на сверхпроводник направить поток электромагнитных волн и непрерывно изменять их частоту щ, то до тех пор, пока энергия квантов ђщ этого излучения остаётся меньше ширины щели Е щ, (если таковая, конечно, есть), энергия излучения поглощаться сверхпроводником не должна. При частоте же щ к, для которой ђщ к = Е щ, должно начаться интенсивное поглощение излучения, возрастая до его значений в нормальном металле. Измерив щ к, можно определить ширину щели Е щ.

Опыты полностью подтвердили факт наличия щели в энергетическом спектре электронов проводимости у всех известных сверхпроводников. В качестве примера в таблице приведены ширина щели Е щ при Т = 0 0 К для ряда металлов и критическая температура перехода их в сверхпроводящее состояние. Из данных этой таблицы видно, что щель Е щ является весьма узкой ~ 10 -3 -10 -2 эВ; между шириной щели и критической температурой перехода Т к наблюдается непосредственная связь: чем выше Т к, тем шире щель Е щ. теория

БКШ приводит к следующему приближённому выражению, связывающему Т к с Е щ (0):

Е щ (0)=3,5кТ к, (17)

которое достаточно хорошо подтверждается опытом.

В теории сверхпроводимости большинство результатов получено для изотропной модели. Реальные же металлы в действительности анизотропны, что проявляется во многих экспериментах. При довольно широких предположениях можно получить формулу:

где - единичный вектор по направлению импульса р; и - радиус вектор ферми поверхности и скоростей на ней. Величина зависит от направления. Согласно экспериментальным данным, изменение. В то же время температурная зависимость одинакова для всех направлений, т.е. .

Таблица 1.

Вещество

Е щ (0),10 -3 эВ

Е щ =3,5кТ к

Анизотропия видна уже при сопоставлении теоретических и экспериментальных данных для теплоёмкости. При низких температурах

где - минимальная щель, а по теоретической кривой (для изотропной модели) , где - некоторая усреднённая щель. Поэтому, как правило, теоретическая кривая при проходит ниже экспериментальной.

Существуют различные методы более детального определения анизотропии щели. Так, измерение теплопроводности монокристальных одноостных сверхпроводников даёт возможность определить, расположена ли минимальная щель в направлении главной оси или лежит в базисной плоскости. Характер анизотропии щели удаётся установить и из экспериментов с туннельным контактом, если один из сверхпроводников является монокристаллом. Наиболее интересные результаты об анизотропии дают эксперименты по поглощению звука. Если частота звука - энергии связи пар, то при низких температурах поглощение происходит только на возбуждениях, т.е. пропорционально. Однако надо учесть, что механизм поглощения звука есть обратный эффект Черенкова. Это значит, что звук поглощают только те электроны, у которых проекция скорости на направление распространения звука совпадает со скоростью звука, т.е. . Но величина скорости электронов в металле см/сек, а скорости звука см/сек; это значит, что, т.е. перпендикулярно, иначе говоря, звук поглощается электронами, лежащими на контуре, получающемся при пересечении ферми поверхностью плоскостью, перпендикулярной. Ввиду этого низкотемпературное поглощение звука определяется минимальным значением щели на этом контуре. Меняя направление распространения звука можно получить довольно детальные сведения о щели.

Анизотропия щели проявляется также в том, что изменение термодинамических величин при введении в сверхпроводник дефектов больше, чем для изотропной модели. Например, при уменьшение по сравнению с (для чистого металла) , т.е. пропорционально средней квадратичной анизотропии.

2.3 Бесщелевая сверхпроводимость

В первые годы после создания теории БКШ наличие энергетической щели в электронном спектре считалось характерным признаком сверхпроводимости, но также известна сверхпроводимость и без энергетической щели - бесщелевая сверхпроводимость.

Как было впервые показано А.А. Абрикосовым и Л.П. Горьковым при введении магнитных примесей критическая температура эффектно уменьшается. Атомы магнитной примеси обладают спином, а значит спиновым магнитным моментом. При этом спины пары оказываются как бы в параллельном и антипараллельном магнитном поле примеси. С увеличением концентрации атомов, магнитной примеси в сверхпроводнике все большее число пар будет разрушаться, и в соответствии с этим ширина энергетической щели будет уменьшаться. При некоторой концентрации n, равной 0,91n кр (n кр - значение концентрации, при которой полностью исчезает сверхпроводящее состояние), энергетическая щель становиться равной нулю.

Можно предположить, что появление бесщелевой сверхпроводимости связано с тем, что при взаимодействии с атомами примеси часть пар оказывается временно разорванными. Такому временному распаду пары соответствует появление локальных энергетических уровней в пределах самой энергетической щели. С ростом концентрации примесей щель все больше заполняется этими локальными уровнями до тех пор, пока не исчезнет совсем. Существование электронов образовавшихся при разрыве пары, приводит к исчезновению энергетической щели, а оставшиеся куперовские пары обеспечивают равенство нулю электронного сопротивления.

Мы приходим к выводу, что существование щели само по себе вовсе не является обязательным условием проявление сверхпроводящего состояния. Тем более что бесщелевая сверхпроводимость, как оказалось явление не столь уж и редкое. Главное - это наличие связанного электронного состояния - куперовской пары. Именно это состояние может проявлять сверхпроводящие свойства и в отсутствии энергетической щели.

2.5 Образование электронных пар

Запрещённые зоны в энергетическом спектре полупроводников возникают вследствие взаимодействия электронов с решёткой, создающей в кристалле поле с периодически меняющимся потенциалом.

Естественно предположить, что и энергетическая щель в зоне проводимости металла, находящегося в сверхпроводящем состоянии, возникает из-за какого-то дополнительного взаимодействия электронов, появляющегося при переходе металла в это состояние. Природа этого взаимодействия состоит в следующем.

Свободный электрон зоны проводимости, двигаясь сквозь решётку и взаимодействуя с ионами, слегка «оттягивает» их из положения равновесия (рис 5), создавая в «кильваторе» своего движения избыточный положительный заряд, к которому может быть притянут другой электрон. Поэтому в металле помимо обычного кулоновского отталкивания между электронами может возникать косвенная сила притяжения, связанная с наличием решётки положительных ионов. Если эта сила оказывается больше силы отталкивания, то энергетически выгодным становится объединение электронов в связанные пары, которые получили название куперовских пар.

При образовании куперовских пар энергия системы уменьшается на величину энергии связи Е св электронов в паре. Это означает, что если в нормальном металле электроны зоны проводимости при Т=0К обладали максимальной энергией Е F , то при переходе в состояние, в котором они связаны в пары, энергия двух электронов (пары) уменьшается на Е св, а энергия каждого из них - на Е св /2, так как именно такую энергию надо затратить, чтобы разрушить эту пару и перевести электроны в нормальное состояние (рис. 6а). Поэтому между верхним энергетическим уровнем электронов, находящихся в связанных парах, и нижним уровнем нормальных электронов должна существовать щель шириной Е св, которая как раз и необходима для появления сверхпроводимости. Легко убедиться, что эта щель является подвижной, т. е. способной смещаться под действием внешнего поля вместе с кривой распределения электронов по состояниям.

На рис. 7 показана схематическая модель куперовской пары. Она состоит из двух электронов, движущихся вокруг индуцированного положительного заряда, напоминая в какой-то мере атом гелия. Каждый электрон, входящий в пару, может обладать большим импульсом и волновым вектором; пара же в целом (центр масс пары) может при этом покоиться, обладая нулевой скоростью поступательного движения. Это разъясняет непонятное на первый взгляд свойство электронов, заселяющих верхние уровни заполненной части зоны проводимости при наличии щели (рис.6а). У таких электронов и огромны (и), а скорость поступательного движения. Поскольку центральный положительный заряд пары индуцирован самими движущимися электронами, то под действием внешнего поля куперовская пара может свободно перемещаться по кристаллу, а энергетическая щель Е щ смещаться вместе со всем распределением, как показано на рис. 6б. Таким образом, и с этой точки зрения удовлетворяются условия появления сверхпроводимости.

Рис.5 рис. 7

Однако не все электроны зоны проводимости способны связываться в куперовские пары. Так как этот процесс сопровождается изменением энергии электронов, то связываться в пары могут лишь те электроны, которые способны изменять свою энергию. Таковыми являются только электроны, размещающиеся в узкой полоске, расположенной у уровня Ферми («фермиевские электроны»). Грубая оценка показывает, что число таких электронов составляет ~ 10 -4 от общего числа, а ширина полоски по порядку величины равна 10 -4 .

На рис. построена в пространстве импульсов сфера Ферми радиусом.

На ней проведены кольца шириной dl, расположенные относительно оси р у под углами ц 1, ц 2 , ц 3 . электроны, векторы которых своими концами попадают на площадь данного кольца, образуют группу, обладающую практически одинаковым импульсом. Число электронов в каждой такой группе пропорционально площади соответствующего кольца. Так как с ростом ц площадь колец увеличивается и число электронов в соответствующих им группах. Связываться в пары могут, вообще говоря, электроны любой из этих групп. Максимальное же число пар образуют те электроны, которых больше. А больше всего электронов, у которых импульсы равны по величине и противоположны по направлению. Концы векторов у таких электронов располагаются не на узкой полоске, а по всей поверхности Ферми. Этих электронов так много по сравнению с любыми другими электронами, что практически образуется лишь одна группа куперовских пар - пары, состоящие из электронов, имеющих равные по величине и противоположные по направлению импульсы. Замечательной особенностью этих пар является их импульсная упорядоченность, состоящая в том, что центры масс всех пар имеют одинаковый импульс, равный нулю, когда пары покоятся, и отличный от нуля, но одинаковый для всех пар, когда пары движутся по кристаллу. Это приводит к довольно жёсткой корреляции движения каждого отдельного электрона с движением всех остальных электронов, связанных в пары.

Электроны «движутся наподобие альпинистов, которые связаны друг с другом верёвкой: если один из них выходит из строя благодаря неровности рельефа (обусловленной тепловым движением атомов), то соседи возвращают его обратно». Это свойство делает коллектив куперовских пар мало восприимчивым к рассеянию. Поэтому если пары тем или иным внешнем воздействием приведены в упорядоченное движение, то созданный ими электрический ток может существовать в проводнике сколь угодно долго даже после прекращения действия того фактора, который его вызвал. Так как таким фактором может быть только электрическое поле Е, то это означает, что в металле, в котором фермиевские электроны связаны в куперовские пары, возбуждённый электрический ток i продолжает существовать неизменным и после прекращения действия поля: i=const при Е=0. Это является свидетельством того, что металл действительно находится в сверхпроводящем состоянии, обладая идеальной проводимостью. Грубо такое состояние электронов можно сравнить с состоянием тел, движущихся без трения: такие тела, получив начальный импульс, могут двигаться сколь угодно долго, сохраняя его неизменным.

Выше мы сравнивали куперовскую пару с атомом гелия. Однако к этому сравнению следует относится очень осторожно. Как уже отмечалось, положительный заряд пары является непостоянным и строго фиксированным, как у атома гелия, а наведённым самими движущимися электронами и перемещающимися вместе с ними. Кроме того, энергия связи электронов в паре на много порядков ниже энергии связи их в атоме гелия. Согласно данным таблицы 1, для куперовских пар Е св =(10 -2 -10 -3) эВ, в то время как для атомов гелия Е св =24,6 эВ. Поэтому размер куперовской пары на много порядков больше размера атома гелия. Расчёт показывает, что эффективный диаметр пары L ? (10 -7 -10 -6) м; его называют также длиной когерентности. В объёме L 3 , занимаемой парой, размещаются центры массы ~ 10 6 других таких пар. Поэтому эти пары нельзя рассматривать как какие-то пространственно разделённые «квазимолекулы». С другой стороны, возникающее колоссальное перекрытие волновых функций всех пар усиливает квантовый эффект спаривания электронов до макроскопического его проявления.

Существует другая аналогия, причём очень глубокая, куперовских пар с атомами гелия. Она состоит в том, что пара электронов представляет собой систему с целом спином, так же как и атомы. Известно, что сверхтекучесть гелия можно рассматривать как проявление специфического эффекта конденсации бозонов на нижнем энергетическом уровне. С этой точки зрения сверхпроводимость можно считать как бы сверхтекучестью куперовских пар электронов. Эта аналогия идёт ещё дальше. Другой изотоп гелия, ядра которого имеют полуцелый спин, не обладает сверхтекучестью. Но самый замечательный факт, открытый совсем недавно, состоит в том, что при понижении температуры атомы могут образовывать пары, вполне аналогичные куперовским, и жидкость становится сверхтекучей. Теперь можно сказать, что сверхтекучесть - это как бы сверхпроводимость пар его атомов.

Таким образом, процесс спаривания электронов является типичным коллективным эффектом. Силы притяжения, возникающие между электронами, не могут привести к спариванию двух изолированных электронов. В образовании пары участвует по существу как весь коллектив фермиевских электронов, так и атомы решётки. Поэтому и энергия связи (ширина щели Е щ) зависит от состояния коллектива электронов и атомов в целом. При абсолютном нуле, когда все фермиевские электроны связаны в пары, энергетическая щель Е щ достигает максимальной ширины Е щ (0). С повышением температуры появляются фононы, способные сообщить электронам при рассеянии энергию, достаточную для разрыва пары. При низких температурах концентрация этих фононов невелика, вследствие чего и случаи разрыва электронных пар будут редкими. Разрыв некоторых пар не может привести к исчезновению щели для электронов остальных пар, но делает её несколько уже; границы щели приближаются к уровню Ферми. С дальнейшим повышением температуры концентрация фононов растёт очень быстро, кроме того, растёт их средняя энергия. Это приводит к резкому увеличению скорости разрыва электронных пар и соответственно к быстрому уменьшению ширины энергетической щели для остающихся пар. При некоторой температуре Т к щель исчезает полностью, края её сливаются с уровнем Ферми и металл переходит в нормальное состояние.

2.5 Эффективное взаимодействие между электронами, обусловленное фононами металла

Фрелих показал, что взаимодействие электронов с фононами может приводить к эффективному взаимодействию между электронами. Ниже мы изложим основные положения его теории.

В идеальной решётке движение электрона в зоне проводимости определяется блоховской функцией

которая представляет плоскую волну, модулированную функцией u k (r), удовлетворяющей условию периодичности u k (r) = u k (r+n), где n - вектор решётки, k - волновой вектор; ч у - функция спинового состояния. Её явный вид и вид функции u k (r) нам далее не потребуется.

Электронная волновая функция всего металла, содержащего N электронов в объёме V, является антисимметричным произведением N функции ц k,у. Основное состояние соответствует заполнение состояний, лежащих в k - пространстве внутри поверхности Ферми. Будем предполагать, что эта поверхность лежит далеко от границы зоны и изотропна, т. е. представляет собой сферу радиуса k 0 . при возбуждении электроны из состояний |k| < k 0 переходят в состояния k| > k 0 .

Если е k - энергия состояния электрона с квазиимпульсом ђk, то в представлении вторичного квантования гамильтониан системы электронов (с точностью до постоянного слагаемого) имеет вид

где a + kу, a kу - фермиевские операторы рождения и уничтожения квазичастиц.

Для определения оператора взаимодействия с фононами решётки металла учтём, что при смещении положительного иона, занимающего n - е место в решётке, на величину о n , энергия взаимодействия электрона с решёткой изменится на величину. Следовательно, в представлении вторичного квантования оператор электрон - фононного взаимодействия можно написать в виде

где - оператор, выражающийся через ферми-операторы a kу и блоховские функции с помощью равенства

Оператор смещения ионов определён, следовательно,

Где, - бозе-операторы; s - скорость продольных звуковых волн, соответствующих волновому вектору q, так как только продольные волны дают вклад и для них щ(q) = sq.

Учитывая, что сумма, если, и равна нулю, если, получаем окончательное выражение операторов электрон-фононного взаимодействия в представлении чисел заполнения

где (1825) - сокращённое обозначение сумм произведений ферми-операторов; - малая величина, определяющая электрон-фононное взаимодействие. Интегрирование ведётся по одной элементарной ячейке. Буквами «э.с.» указываются члены, эрмитово сопряжённые ко всем предыдущим.

Оператор взаимодействия (24) не зависит от спинового состояния электронов, поэтому в дальнейшем спиновый индекс у можем не писать. Оператор (24) получен в предположении, что ионы в решётке движутся как единое целое, что D(q) зависит только от q и не зависит от k и что колебания ионов в решётке делятся на продольные и поперечные для всех значений q, поэтому взаимодействие осуществляется только с продольными фононами. Без этих упрощений вычисления сильно усложняются. Такое усложнение оправдывается только при необходимости получить количественные результаты.

Подобные документы

    Квантование магнитного потока. Термодинамическая теория сверхпроводимости. Эффект Джозефсона как сверхпроводящее квантовое явление. Сверхпроводящие квантовые интерференционные детекторы, их применение. Прибор для измерения слабых магнитных полей.

    контрольная работа , добавлен 09.02.2012

    Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.

    реферат , добавлен 01.12.2010

    Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.

    курсовая работа , добавлен 04.06.2016

    Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".

    презентация , добавлен 22.11.2010

    Гипотезы монополя Дирака. Магнитный заряд электрона, который тождественен кванту магнитного потока, наблюдаемого в условиях сверхпроводимости. Анализ эффекта квантования магнитного потока. Закон Кулона: взаимодействие электрического и магнитного заряда.

    статья , добавлен 09.12.2010

    Обращение в нуль электрического сопротивления постоянному току и выталкивание магнитного поля из объема. Изготовление сверхпроводящего материала. Промежуточное состояние при разрушении сверхпроводимости током. Сверхпроводники первого и второго рода.

    курсовая работа , добавлен 24.07.2010

    Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа , добавлен 20.04.2010

    Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.

    презентация , добавлен 11.04.2015

    История открытия сверхпроводников, их классификация. Фазовый переход в сверхпроводящее состояние. Научные теории, описывающие это явление и опыты, его демонстрирующие. Эффект Джозефсона. Применение сверхпроводимости в ускорителях, медицине, на транспорте.

    курсовая работа , добавлен 04.04.2014

    Научно-теоретическая поддержка обоснования проекта, опирается на теперь, считающимися элементарными знания теоретической физики. Это ряд открытий законов и замечательных эффектов, во многих случаях до сегодняшнего дня почему-то не используемых.

СВЕРХПРОВОДИМОСТИ

2007 г. Лобачев В. В.*, Яржемский В. Г.*, Холманский А.С.**


В работе дан краткий обзор теорий сверхпроводимости и проанализированы проблемы высокотемпературной сверхпроводимости.

ВВЕДЕНИЕ

Явление сверхпроводимости (1911 г.) было открыто через три года после того, как был получен жидкий гелий. При нормальных давлениях гелий становится жидким при температуре ~ 4.2 К. Голландский физик К. Камерлинг-Оннес обнаружил, что при столь низких температурах электрическое сопротивление некоторых металлов скачком обращается в нуль .

Образец металла подключается к источнику напряжения и охлаждался жидким гелием. Падение напряжения на образце, измеряемое вольтметром, при понижении температуры ниже некоторой критической Т к обращалось в нуль. В альтернативном варианте кольцо из сверхпроводника помещалось в перпендикулярное его плоскости магнитное поле. После выключения магнитного поля в кольце возбуждался индукционный ток. В обычных металлах этот ток быстро затухает. В сверхпроводнике же ток остается и течет бесконечно долгое время. В настоящее время тонкие эксперименты показывают, что удельное сопротивление сверхпроводника, по крайней мере, не выше . Эта величина в
меньше удельного сопротивления хорошего проводника – меди. Оценим время затухания сверхпроводящего тока.


Рис. 1. Связь между В и Т к.


Позже было обнаружено, что сверхпроводящее состояние разрушается не только при повышении температуры выше некоторой Т к, но также и при предельных значениях магнитного поля и сверхпроводящего тока (В к и I к). На рис. 1 представлена примерная связь между
.

СВЕРХПРОВОДНИК И ИДЕАЛЬНЫЙ ПРОВОДНИК

Поскольку сверхпроводник имеет сопротивление весьма близкое к нулю, то долгое время считалось, что свойства идеального проводника (R=0) и сверхпроводника одинаковы. Но оказалось – это справедливо только в отношении электрического сопротивления. В магнитном поле обнаруживается различие между соответствующими образцами. Возьмем идеальный проводник при температуре меньше Т c . При внесении его в магнитное поле нулевой магнитный поток останется по-прежнему нулевым, поскольку в образце возникают вихревые токи компенсирующие увеличение внешнего магнитного потока (следовательно и магнитная индукция В=0). Если же включить магнитное поле при температуре выше критической, затем охладить образец, то в этом случае магнитное поле в идеальном проводнике останется. Возникающие вихревые токи не дадут ему измениться.

В сверхпроводнике, как обнаружили Мейснер и Оксенфельд 1933 году, магнитное поле всегда нулевое. Если образец сверхпроводника переходит в сверхпроводящее состояние, то магнитное поле внутри него сразу же становится равным нулю, независимо от того, находился ли образец до перехода во внешнем магнитном поле или нет.

Магнитное поле вытесняется из сверхпроводника наружу . Отсюда делается вывод, что сверхпроводник и идеальный проводник по своей природе принципиально различаются.

ОБЗОР ТЕОРИЙ СВЕРХПРОВОДИМОСТИ

Первой попыткой объяснения сверхпроводимости стала теория братьев Г. Лондон и Ф. Лондон (1935). Были полученные уравнения, описывающие многие свойства сверхпроводников. Предполагалось, что электроны в сверхпроводнике можно рассматривать в виде двух коллективов: сверхпроводящих и нормальных электронов (двухжидкостная модель).

При нуле градусов все электроны превращаются в сверхпроводящие. При увеличении температуры плотность сверхпроводящих электронов уменьшается и обращается в ноль при Т=Т к. Сверхпроводящие электроны не испытывают сопротивления при движении. Электрического поля для такого движения не нужно - сверхпроводящие электроны движутся как бы по инерции. В отсутствие электрического поля нормальные электроны покоятся.

Сверхпроводник не оказывает никакого сопротивления только в случае, когда ток постоянный. В случае переменного тока сопротивление отлично от нуля и тем больше, чем выше частота переменного тока.

Магнитное поле не равно нулю в тонком поверхностном поле , толщина которого дается выражением

Гинзбург и Ландау применили феноменологический подход к теории сверхпроводимости, учитывающий квантованность явления и описали его как фазовый переход второго рода. Фазовым переходом второго рода называется переход без изменения агрегатного состояния. Меняется только симметрия кристаллической решетки и ход температурной зависимости физических величин.

Позже (1961) Дивером и Фейрбэнком было экспериментально обнаружено квантование магнитного потока, связанного со сверхпроводящим кольцом. Поместим кольцо в магнитное поле при T > T c . Понизим температуру и переведем кольцо в сверхпроводящее состояние, после этого выключим магнитное поле. По закону Фарадея-Ленца возникнет индукционный ток, который будет препятствовать изменению магнитного потока. Поскольку сопротивление кольца равно нулю, то этот ток не будет затухать. При этом величина такого «замороженного магнитного потока не может быть произвольной. А выражается формулой

, где n – целое число.
В нормальном проводнике прохождение тока сопровождается выделением тепла (закон Джоуля-Ленца). Это тепло возникает из-за соударений электронов с кристаллической решеткой. Кинетическая энергия электронов превращается в энергию колебаний решетки (тепловую энергию).

Тогда суть явления сверхпроводимости можно сформулировать следующим образом: при низких температурах кристаллическая решетка по каким-то причинам не может получать энергию от движущихся электронов. Почему? Чтобы понять явление сверхпроводимости надо вспомнить, что электроны и атомы в кристаллах подчинятся законам квантовой механики, согласно которой энергия может передаваться только определенными порциями - квантами. Квантованы как энергии свободных электронов в кристалле, так и колебания кристаллической решетки. Квантовый характер колебаний решетки проявляется при приближении к абсолютному нулю температур. Решетка может передать электрону только вполне определенную энергию - энергию кванта колебаний. Тогда сверхпроводимость могла бы возникнуть, если бы квант колебательной энергии был бы меньше, чем расстояние между уровнями энергии электронов. В этом случае одного кванта колебаний было бы недостаточно, для того чтобы перевести электрон на другой энергетический уровень. Однако это не так - электроны в металлах являются почти свободными и расстояние между уровнями пренебрежимо мало. Поэтому даже при очень низких температурах отдельные электроны беспрепятственно обмениваются энергией с решеткой.

Теоретически проблему сверхпроводимости в чистых металлах решили Бардин, Купер и Шриффер создав теорию, которая так и называется - теория БКШ. Они предположили, что электроны за счет взаимодействий с колебаниями кристаллической решетки образуют пары, названные куперовскими. Сверхпроводящий ток - это направленное движение пар электронов, возникающее под действием электрического поля. Однако с колебаниями решетки электроны взаимодействуют по отдельности. Поэтому для того чтобы передать энергию паре, колебания решетки должны в первую очередь разрушить пару, а затем уже передать энергию одному из электронов.

Куперовские пары имеют внутреннюю симметрию, для понимания которой надо вспомнить некоторые принципы квантовой механики. Электроны подчиняются принципу Паули, т.е. в одном квантовом состоянии могут находиться не более одного электрона. Вследствие принципа Паули все электроны в твердом теле не могут иметь равные нулю импульсы. Импульсы электронов проводимости последовательно заполняют объем в пространстве импульсов, ограниченный поверхностью, которую называют Ферми поверхность. В теории твердого тела принято вместо импульса p использовать волновой вектор k, связанный с импульсом соотношением:


Р = nk
Электроны обладают еще одной, чисто квантовой степенью свободы спином. Для наглядной интерпретации спин представляют, как вращение электрона вокруг своей оси. Подобно тому, как для произвольно выбранной оси вращения существуют два направления вращения, существуют два направления спина вверх и вниз. Поэтому в каждой точке импульсного пространства могут находиться два электрона со спинами вверх и вниз. Очевидно, что вследствие принципа Паули электроны, находящиеся глубоко внутри Ферми поверхности не могут изменить свой импульс на небольшую величину, т.к. все ближайшие уровни заняты. В проводимости участвуют только электроны находящиеся вблизи Ферми поверхности. При наложении поля электроны вблизи поверхности Ферми меняют свой импульс. Принцип Паули не препятствует этому, т.к. соседние состояния свободны. Так возникает обычный ток в проводниках.

Теперь надо понять, как может возникнуть сверхпроводящий ток. Из квантовой механики известно, что при взаимодействии двух электронов возникают два энергетических уровня: один с энергией большей, чем сумма энергий двух состояний, а другой с меньшей энергией. И пара электронов занимает самый низкий энергетический уровень. Теперь уже, прежде чем передать импульс электрону, колебания решетки должны разрушить пару, а для этого энергия кванта колебаний решетки должна быть больше энергии связи пары. Таким образом, БКШ оставалось найти тип взаимодействия между электронами и определить структуру пары. Согласно теории БКШ в пару связываются два электрона с противоположными импульсами лежащими на поверхности Ферми. Полный импульс пары равен нулю. При наложении электрического поля импульсы электронов в паре немного меняются, и центр масс пары начинает двигаться в направлении, противоположном направлению вектора напряженности. Электроны в куперовской паре в обычных сверхпроводниках паре имеют противоположные спины. Такая пара называется синглетной. Энергия пары понижается за счет взаимодействия с фононами (колебаниями решетки). Последнее предположение подтверждается изотопическим эффектом. Атомы заменяли на изотопы - атомы с таким же числом протонов , но с другой атомной массой при этом менялась температура перехода. Поскольку энергия колебаний решетки зависит от массы атомов, то из наличия изотопического эффекта делают вывод о природе потенциала притяжения между электронами. Важным свойством классических БКШ сверхпроводников является также изотропность (сферическая симметричность) куперовского спаривания. Все электроны с определенной величиной импульса вне зависимости от его направления одновременно при понижении температуры образуют куперовские пары.

Сформулируем теперь основные свойства сверхпроводников, которые следуют из теории БКШ:


  1. Куперовские пары синглетные (спины электронов в паре направлены противоположно).

  2. Сверхпроводящее состояние сферически симметрично

  3. Магнитные поля препятствуют сверхпроводимости.

  4. Сверхпроводимость обусловлена электрон-фононным взаимодействием.

  5. Сверхпроводимость наблюдается в чистых металлах.

ВИХРИ АБРИКОСОВА

Для объяснения механизма проникновения магнитного поля в поверхность сверхпроводника второго рода оказалось весьма плодотворным представление об электронных вихрях, разработанное А. А. Абрикосовым и подтвержденное экспериментально. В самом простом случае вихрь представляет собой тонкую цилиндрическую трубку (с радиусом порядка 0,1 мкм), через которую магнитный поток может проникать внутрь сверхпроводника (Рис 2). Магнитное поля поддерживается в вихре электрическими токами, которые текут вокруг оси трубки.



Рис 2. Схема смешанного состояния (шубниковская фаза). Магнитное поле и сверхпроводящие круговые токи показаны на двух нитях вихрей .


Вихрь, по сути, является отверстием в сверхпроводнике и магнитный поток , проходящий через него должен квантоваться. Согласно решению Абрикосова вихри образуют регулярную решетку, структура которой в случае смешанного состояния была установлена в экспериментах по упругому рассеянию нейтронов.

ПРОБЛЕМЫ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДИМОСТИ

В 1986 г. появилась работа Мюллера и Беднорца, в которой сверхпроводимость была обнаружена в оксидах La 1,8 Ba 0,2 CuO 4 при необычно высоких температурах T c =100 K. Этот новый тип сверхпроводимости был назван высокотемпературным ВТСП. Примечательно, что работа, за которую впоследствии дали Нобелевскую премию, была опубликована не в самом престижном физическом журнале Физикал Ревью, издающемся в США, а в немецком журнале Цайтшрифт Фюр Фюзик. Дело в том, что авторы первоначально послали статью в Физикал Ревью, но рецензенты отклонили статью: потому что сверхпроводимости в оксидах, да еще при такой высокой температуре не может быть! Аналогичная история произошла с этими же соединениями и в СССР. Эти соединения были синтезированы И. С. Шаплыгиным и В. Б. Лазаревым в Академии Наук СССР в 1979 г. Авторы обнаружили необычную температурную зависимость проводимости в этих соединениях. Проверять же на сверхпроводимость при более низких температурах не стали, потому что не могли предположить, что их образцы сверхпроводящие. Они это проверили только после Мюллера и Беднорца!



Но еще за 2-3 года до открытия ВТСП были получены сверхпроводники не с такой рекордной T c , но столь же необычные по свойствам – так называемые сверхпроводники с тяжелыми фермионами ТФСП. Это UPt 3 , (T c =0,55 K) UBe 13 (T c =0,8 K) Sr 2 RuO 4 (T c =1,5K), UPd 2 Al 3 (T c =2K), PrOs 4 Sb 12 (T c =1,85 K). ВТСП и ТФСП объединяются одним словом - необычные сверхпроводники. Согласно принятому сейчас определению, необычными называются сверхпроводники, у которых сверхпроводящее состояние не является сферически симметричным, т.е. куперовского спаривания нет в некоторых точках и на линиях поверхности Ферми. Необычные сверхпроводники экспериментально отличаются от обычных по температурной зависимости физических величин. В обычных сверхпроводниках температурная зависимость физических величин, таких как теплопроводность, экспоненциальная. В необычных сверхпроводниках температурная зависимость физических величин степенная.

Еще одним важным свойством сверхпроводящего состояния является его четность, т.е. как изменяется волновая функция пары под действием пространственной инверсии I. В школьной геометрии рассматривают фигуры центрально симметричные, которые не меняются при замене знака всех координат и фигуры, не обладающие таким свойством. В квантовой механике, если структура кристалла центрально симметричная, то возможны два состояния, характеризующиеся действием инверсии I на волновую функцию Ψ(R). Четное состояние:




Нечетное состояние:


Согласно законом квантовой механики если спины электронов в паре направлены противоположно (синглетная пара), то волновая функция четная , а если одинаково (триплетная пара), то волновая функция нечетная. Экспериментальные исследование новых типов сверхпроводников обнаружили, что во многих из них сверхпроводящее состояние имеет нечетную волновую функцию и спины электронов в паре параллельны. Это позволило сделать вывод еще об одном их необычном свойстве: сверхпроводимость в некоторых из них(UBe 13 UPt 3 Sr 2 RuO 4 , UPd 2 Al 3 PrOs 4 Sb 12) имеет триплетный характер, но некоторых, например в ВТСП –синглетная.

Межэлектронные взаимодействия всегда приводят к тому, что из-за взаимодействия двух одноэлектронных состояний возникают два возможных многоэлектронных, одно с меньшей энергией (основное), а другое с большей энергией (возбужденное) и оба электрона занимают основное состояние. Тип взаимодействия определяет, какое из состояний будет основным – синглетное или триплетное. Несмотря на то, что за прошедшие боле 20 лет создано много теорий, а число публикаций исчисляется тысячами, типы взаимодействий, приводящих к сверхпроводимости в необычных сверхпроводниках пока достоверно не известны. Известно, только то, что во многих ТФСП взаимодействие электронов в паре связано с магнетизмом. Некоторые атомы в кристаллах имеют собственные магнитные моменты, связанные с тем, что спины атомных электронов ориентированны параллельно. Моменты соседних атомов могут ориентироваться параллельно – такая структура называется ферромагнитной, или антипараллельно – такая структура называется антиферромагнитной. Во многих необычных сверхпроводниках (например UBe 13 , UPt 3) при понижении температуры до приблизительно 10T c наблюдается антиферромагнитной переход. Сосуществование антиферромагнитной структуры и сверхпроводимости достоверно наблюдается в UPd 2 Al 3 , а в Sr 2 RuO 4 , и PrOs 4 Sb 12 обнаружены спонтанные магнитные поля. Таким образом, если в БКШ сверхпроводниках магнитное поле разрушает сверхпроводимость, то в необычных сверхпроводниках внутренние магнитные поля каким-то образом поддерживают сверхпроводимость.

ЗАКЛЮЧЕНИЕ

Сформулируем теперь 5 основных особенностей необычных сверхпроводников:


  1. Куперовские пары могут быть как синглетными так и триплетными.

  2. Сверхпроводящее состояние не является сферически симметричным. На Ферми поверхности существуют линии, и точки где отсутствует куперовское спаривание.

  3. Сверхпроводимость каким-то образом связана с магнитной структурой кристалла.

  4. Конкретные взаимодействия приводящие к сверхпроводимости неизвестны, понятно только что природа этих взаимодействий может различаться.

  5. Сверхпроводимость наблюдается в интерметаллических соединениях и в ионных кристаллах.

Мы видим, что эти пять особенностей необычных сверхпроводников коренным образом отличаются от особенностей обычных сверхпроводников. Существующая теория (теория БКШ), правильно описывает частный случай, но не является всеобщей. Последующие исследования опровергли многие из ее общих выводов, но не опровергли ее логику. Это вселяет надежду, что проблема высокотемпературной сверхпроводимости будет решена и будут созданы сверхпроводники, работающие при комнатной температуре.

Другим перспективным направлением исследований механизма высокотемпературной сверхпроводимости является изучение механизма сальтаторной проводимости нейронов, имеющих спиральные миелиновые оболочки . По-видимому, для них может быть применен формализм модели квантовых вихрей Абрикосова.

ЛИТЕРАТУРА


  1. Ципенюк Ю. М. Физические основы сверхпроводимости. - М.:1996.

  2. Холманский А. С. Моделирование физики мозга //Математическая морфология. Электронный математический и медико-биологический журнал. – Т. 5. – Вып. 4. - 2006. - URL: www.smolensk.ru/user/sgma/MMORPH/N-12-html/holmansky-4/holmansky-4.htm

The Problems of hightemperature overconduction

Lobach

ev V.V., Yargemskiy V. G., Kholmanskiy A. S.


Review of some problems of hightemperature overconduction carry out.
*Московский государственный университет инженерной экологии (МГУИЭ).

**Московский государственный медико-стоматологический университет (МГМСУ)

Впервые гелий был ожижен в 1908 г. Хайке Камерлинг-Оннесом в Лейденском университете, и с того времени стало возможным изучать физические явления при температурах лишь на несколько градусов выше абсолютного нуля (точка кипения гелия при атмосферном давлении 4,2 К).

Одно из направлений исследований касалось зависимости сопротивления металлов от температуры. Камерлинг-Оннес уже проводил подобные исследования при температурах, уменьшающихся вплоть до температуры жидкого воздуха (около 80 К).

Для нескольких чистых металлов он обнаружил примерно линейную зависимость, однако он установил, что подобная зависимость не может продолжаться беспредельно, так как в противном случае при абсолютном нуле сопротивление стало бы отрицательным. Сэр Джеймс Дьюар продолжил изыскания Камерлинг-Оннеса и достиг температуры жидкого водорода (20 К), при этом выяснилось, что сопротивление действительно начинает уменьшаться медленнее.

Именно этого и следовало ожидать, причем не только по уже названной причине, но также исходя из принятых в то время представлений о металлах и их свойствах.

Считалось, что электрическая проводимость осуществляется путем переноса электронов, а сопротивление возникает в результате соударений электронов с атомами металлов.

Линейный характер уменьшения сопротивления вполне согласовывался с предполагаемым изменением движения электронов при понижении температуры. Ожидалось, однако, что При достаточно низких температурах электроны «конденсируются» на атомах, тогда сопротивление при какой-то температуре должно быть минимальным, и затем металл должен переходить в диэлектрик.

Наблюдаемое в действительности поведение металлов резко отличалось от предполагаемого. Камерлинг-Оннес обнаружил, что при понижении температуры сопротивление большинства металлов стремится к постоянной величине, тогда как у некоторых металлов оно полностью исчезает при определенной, характеристической, температуре, которая, как выяснилось, зависит от напряженности магнитного поля. Эти эксперименты относятся к числу работ, за которые Камерлинг-Оннес был удостоен в 1913 г. Нобелевской премии по физике.

В течение более двух десятилетий именно исчезновение сопротивления считалось главной, отличительной чертой сверхпроводимости. Однако некоторые особенности этого явления приводили ученых в замешательство.

Так, если магнитное поле приложить к обычному проводнику (только не ферромагнетику), часть магнитного потока проходит через толщу проводника. Если же приложить его к идеальному проводнику, в последнем индуцируются поверхностные токи, которые создают внутри проводника магнитное поле, полностью компенсирующее приложенное внешнее поле, и тем самым поддерживают внутри проводника нулевое значение магнитного потока.

Это означало, что состояние проводника в магнитном поле зависит от того, каким способом это состояние было достигнуто - ситуация в высшей степени неприятная.

Позднее, в 1933 г., В. Мейснер, Р. Оксенфельд и Ф. Хайденрейх показали, что металл, становясь сверхпроводником, в действительности выталкивает магнитный поток, если температура понижается ниже критического значения, когда образец находится в магнитном поле.

Следующий этап исследования заключался в изучении вновь открытого состояния при больших значениях тока. Необходимость такого исследования была продиктована следующим обстоятельством: если бы сопротивление в действительности не равнялось нулю, то больший ток должен был бы приводить к большему, а следовательно, и легче регистрируемому значению разности потенциалов.

Однако полученные результаты лишь еще более запутали ситуацию, так как наблюдалось «особое явление: при любой температуре ниже 4,18 К для ртутной нити, заключенной в стеклянный капилляр, существовало некое пороговое значение плотности тока, при превышении которого характер явления резко изменялся. При плотностях тока ниже пороговой электрический ток проходит без сколько-нибудь заметных разностей потенциалов, приложенных к концам нити. Это говорило о том, что нить не обладает сопротивлением.

Как только плотность тока превосходила пороговое значение, появлялась и разность потенциалов, которая к тому же росла быстрее, чем сам ток». Затем была поставлена серия экспериментов с целью найти объяснение новому эффекту. Прежде всего было замечено, что пороговая плотность тока возрастала с понижением температуры - примерно пропорционально отклонению от температуры перехода в сверхпроводящее состояние (до тех пор, пока разность между температурами была не слишком велика). Естественно напрашивалось предположение, что из-за нагрева, обусловленного каким-то эффектом, температура ртути поднималась выше точки перехода. Была поставлена задача - найти этот источник тепла.

Используя различные конфигурации ртутной нити, удалось установить, что тепло не подводилось снаружи. Рассматривалось влияние примесей в ртути, хотя в процессе перегонки они должны были быть удалены; опыты показали, что эффект нагревания не связан с примесями, специально добавленными в нужных количествах.

Далее было высказано предположение, что, возможно, контакт ртутной нити с обычным проводником, в каком-либо виде оказавшемся в ней или образованным внутри ее, способен аннулировать сверхпроводящие свойства ртути. Для проверки был взят стальной капилляр, но это не привело к каким-либо определенным результатам, и лишь в дальнейшем, в результате опытов того же типа на олове, это предположение было исключено. В целом эксперименты с ртутью не дали ответа на поставленный вопрос.

Однако, как установил Камерлинг-Оннес, ртуть являлась не вполне подходящим объектом для систематических исследований. «Совместное действие многих обстоятельств приводило к трудностям при работе с ртутью в капиллярах.

День эксперимента с жидким гелием требовал огромной подготовки, и, когда дело доходило непосредственно до описанных здесь экспериментов, на них оставалось лишь несколько часов. Чтобы при этих условиях проводить точные измерения с жидким гелием, необходимо заранее наметить программу и быстро и методично выполнять ее в день эксперимента. Изменения в постановке эксперимента, необходимость которых вызывалась наблюдаемыми явлениями, приходилось обычно вносить на следующий день.

Зачастую, в связи с некоторой задержкой, обусловленной трудоемкостью процесса изготовления сопротивлений, гелиевая установка использовалась для каких-либо других целей. Когда же мы могли снова заняться экспериментом, случалось, что приготовленные сопротивления оказывались бесполезными, так как при замораживании ртути нить разрывалась, и все наши усилия становились напрасными. В этих условиях для того, чтобы обнаружить и исключить источники неожиданных и вводящих в заблуждение помех, требовалось очень большое время.

Кроме того, желательно было охлаждать образец не через стенку капилляра, а путем его прямого контакта с жидким гелием. Поэтому, когда Камерлинг-Оннес обнаружил, что олово и свинец обладают свойствами, сходными со свойствами ртути, он продолжил эксперименты с этими двумя металлами. Именно тогда поставленная проблема и была решена.

По существу, надежда на ее решение возникла уже при проведении опытов, в которых была обнаружена сверхпроводимость свинца. Из него можно было легко изготовить проволоку, и было сделано довольно большое количество провода с поперечным сечением 70 мм2. Для одиночного проводника такого размера пороговое значение тока при 4,25 К составляло 8 А. Далее этим проводом на сердечнике диаметром 1 см была намотана катушка длиной 1 см содержащая 1000 витков. Обмотка имела шелковую изоляцию, которая смачивается жидким гелием. Как оказалось, пороговое значение тока составляло лишь 0,8 А.

В 1913 г. интерес к получению сильных магнитных полей уже был достаточно велик, причем не вызывало сомнений, что основная проблема связана с рассеянием мощности в обмотке. Например, Перрен предложил использовать для охлаждения жидкий воздух; ожидалось, что благодаря уменьшению сопротивления обмотки с понижением температуры уменьшится количество выделяемого в ней тепла, что даст определенный выигрыш.

Расчеты показали, однако, что выигрыша таким путем не достичь, в первую очередь это обусловлено тем, что весьма трудно добиться требуемой теплопередачи между предположительно компактной катушкой и охладителем. Камерлииг-Ониес правильно оценил возможности использования с этой целью сверхпроводников, обратив внимание на то, что в них тепло вообще не должно выделяться. Говоря об этом, он, однако, допускал «возможность того, что магнитное поле может привести к возникновению сопротивления в сверхпроводнике». И он приступил к исследованию этого вопроса.

«Были причины предполагать, что этот эффект окажется слабым. Прямое доказательство того, что в сверхпроводниках под действием магнитного поля возникает лишь незначительное сопротивление, было получено, когда оказалось, что описанная выше катушка остается сверхпроводящей, если даже через нее проходит ток 0,8 А. Поле самой катушки достигало в этом случае нескольких сотен гаусс, и в поле такого порядка величины находилась большая часть витков, однако никакого сопротивления не наблюдалось». Поэтому Камерлинг-Оннес создал такую установку для проведения этих экспериментов, которая позволила бы изучать явления, наблюдаемые лишь в полях порядка килогаусс.

Результаты вновь оказались неожиданными. Сверхпроводящую свинцовую катушку, использованную в предшествующих опытах, помещали в криостат так, что плоскость витков была параллельна магнитному полю.

«Прежде всего мы убедились в Том, что катушка будет сверхпроводящей в точке кипения гелия; она оставалась сверхпроводящей и тогда, когда через нее пропускали ток 0,4 А, хотя витки находились в заметном магнитном поле, создаваемом протекающим в них током.

Затем было приложено магнитное поле. При величине поля 10 кГс существовало значительное сопротивление, при 5 кГс оно было несколько меньше. Эти опыты достаточно убедительно показали, что магнитное поле при большой интенсивности вызывает появление сопротивления в сверхпроводниках, а при малой - нет. В ходе дальнейших исследований была получена зависимость сопротивления от поля.

Камерлинг-Оннес еще не был готов к тому, чтобы связать критический ток с критическим значением магнитного поля. Он не имел никаких сомнений в том, что открытое здесь явление связано с внезапным возникновением при определенной температуре обычного сопротивления в сверхпроводниках - эту связь выяснили другие исследователи. Тем не менее можно было считать, что фундамент заложен.

С течением времени, однако, парадокс, описанный в начале этой главы, стал весьма очевидным. Небольшое изменение формулировки еще более усилило его. Если вещество, находясь в магнитном поле, должно было переходить в идеально проводящее состояние при понижении температуры, то пронизывающий образец магнитный поток в момент перехода должен был бы остаться «вмороженным» в него и сохраниться при последующем выключении поля (если температура при этом поддерживается неизменной).

Приготовив подобным образом различные образцы, можно было бы создать множество (в принципе бесконечное) различных состояний, существующих при одинаковых внешних условиях, которые, возможно, могли бы даже находиться в тепловом контакте друг с другом, т. е. в состоянии равновесия.

Вплоть до 1933 г. подобная возможность не была опровергнута экспериментально, а некоторые эксперименты, казалось, даже подтверждали ее. Существовали даже и теоретические соображения в ее пользу. И в этот момент Мейснер, изучая переход в сверхпроводящее состояние, был поражен появлением своеобразного гистерезиса: возврат монокристалла олова в нормальное состояние происходил при температуре, слегка превышающей температуру перехода в сверхпроводящее состояние.

Этот эффект наблюдался даже тогда, когда сопротивление в каждой точке измерялось при двух направлениях тока методом, специально разработанным для исключения термоэлектрических явлений, если направление тока не изменялось, эффект усиливался. Гистерезис наводил на мысль о том, что явление связано с изменением проницаемости образца.

Мейснер писал об этом так: «Если бы распределение измеряемого тока и созданного им магнитного поля не изменялось, не было бы основания для возникновения гистерезисных явлений». Поэтому он вместе со своими сотрудниками предположения, что его проницаемость падает до нуля. Если бы это вообще имело место, то ни одна силовая линия поля не могла бы кончаться на внутренней поверхности полости сверхпроводника, тогда как эксперименты с очевидностью показывают, что ситуация именно такова.

Прошло немало лет, прежде чем удалось создать удовлетворительную теорию сверхпроводимости; по существу, этот вопрос не был окончательно решен даже в 1972 г. Однако открытие Мейснера по крайней мере позволило дать удовлетворительную макроскопическую трактовку наблюдаемых явлений.

Дж. Тригг "Физика ХХ века: Ключевые эксперименты"