Конструкции висячих мостов. Висячие мосты подмосковья

Висячим мостом называется такой мост, основная конструкция несущего типа которого выполняется из элементов гибкого типа. Такими элементами могут быть канаты, кабели, всевозможные цепи и другие подобные элементы. Данные элементы выполняют так называемые растягивающие работы. А часть моста, которая является проезжей, соответственно подвешена на данных гибких элементах.

Использование мостов висячего типа часто связано с невозможностью установить мост на опорные столбы. Это может представлять опасность, например, там, где прослеживается частое хождение судов. Так же популярность висячих мостов обуславливается тем, что саму часть, которая является проезжей, можно выполнить достаточно длинной.

Сам вид висячих мостов представляет собой довольно стильную конструкцию, которая выглядит монументально и достойно. Ярким примером висячего моста является самый красивый и знаменитый мост Америки, который носит гармоничное название «Золотые Ворота».


Конструкция и устройство висячего моста

Конструктивно висячий мост выглядит следующим образом. На специальные сооружения, или как их называют пилоны, которые расположены по берегам, подвешиваются тросы, которые представляют собой основные элементы для конструкции.

Уже к данным несущим тросам происходит подвешивания балок, которые имеют вертикальное положение. Данные части моста предназначены для крепления к ним полотна, которое становится проезжей частью моста. Тросы, которые являются основными, не прекращаются на пилонах, а продолжаются вплоть до самого берега, где укрепляются на уровне земли. Как правило, такое продолжение протяженности тросов обусловлено дополнительной фиксацией всей конструкции моста, а так же еще одними пролетами, которые расположены до начала пилонов.

Под действием сил тяжести висячий мост может изменять свои конструктивные качества, именно поэтому в настоящее время такие мосты стали укреплять посредством прокладывания по дорожному полотну дополнительных усиливающих элементов. Данное укрепление производится за счет уложенных продольно специальных балок и так называемых ферм, которые призваны для распределения нагрузки на мост. Таким образом, конструкция моста остается неподвижной, что гарантирует безопасность и ее устойчивость.


Характеристики и особенности строительства висячих мостов

К достоинствам висячих мостов можно отнести такие, как минимизация затрат материала даже при очень длинном пролете моста. Строительство данного типа мостов может производство достаточно высоко над уровнем водной поверхности, что дает свободный ход судам. Так же к большим преимуществам данного типа мостов перед другими можно отнести отсутствие опорных устройств в конструкции такого моста.

А это во первых дает экономию на материале. А во вторых позволяет избежать ситуаций с разрушением мостов при горных разломах, или положим при сильном течении реки. Поскольку конструкция данного моста имеет свойства упругости, это делает его более податливым таким явлениям как сильные порывы ветра или нагрузок сейсмического характера, что в свою очередь является защитным свойством, поскольку мост на опорах в данном случае пришлось бы значительно упрочнять.

Но у данного вида мостов имеются и некоторые недостатки. Так, например, к ним можно отнести то, что при сильных порывах ветра движение по мосту может быть приостановлено, поскольку мост может начать сильно качаться. Так же при сильном ветре опоры моста наиболее подвержены крутящему моменту, что в свою очередь обязывает к установке особо прочного фундамента, особенно в местах с нестабильным грунтом. Висячие мосты довольно редко используются в качестве железнодорожных мостов, поскольку для прочности конструкции, распределение нагрузок у данного типа мостов должно быть равномерным.

Страница 2 из 6

Висячие мосты простейших типов известны в странах Европы, Азии, Африки и Америки со времени возникновения устойчивой сети дорог, развития торговли и обмена. Идея использования висячей конструкции при устройстве мостовых переходов закономерно возникала на определенном уровне развития производительных сил на разных континентах и у разных народов. В центральной Азии и на Кавказе при переходах через горные реки строили узкие висячие мосты без перил (рис. 7.3). В Южной Америке, по свидетельству Гумбольдта, для перехода через реку использовали мосты на канатах, сплетенных из растительных волокон, прикрепленных к вершинам деревьев. Металлические цепные висячие мосты начали строить в Англии в эпоху промышленной революции с 40-х годов XVIII в.

Рис. 7.3 - Висячий мост в Центральной Азии

Конструктивные схемы висячих мостов позволяют, как правило, создавать сооружения, обладающие большой архитектурной выразительностью, благодаря четкому выделению несущей конструкции и ее опорных точек. Такие мосты хорошо «читаются» на фоне городской застройки. Они неоднократно возводились в ряде крупных городов Европы и Америки. В нашей стране при реализации плана реконструкции Москвы в 1936 г. через р. Москву по проекту инж. Б. П. Константинова построен висячий мост, получивший название Крымского по древнему названию существовавшего здесь брода. Крымский мост имеет отдельно стоящие пилоны при рекордной ширине проезда (см. рис. 7.1 в предыдущей лекции). Такое решение потребовало специальных динамических расчетов, подтвердивших надежность сооружения. Мост весьма успешно эксплуатируется до настоящего времени и является одним из красивейших мостов Москвы.

Первый из мостов, центральный пролет которого превышает километровый рубеж, построен в Сан-Франциско в 1937 г. через пролив Золотые Ворота. Глубина пролива по оси перехода, достигающая 115 м, а также особые условия судоходства у входа в гавань крупнейшего порта тихоокеанского побережья США продиктовали выбор висячей схемы сооружения. Вес каждого из пилонов, выполненных в основном из углеродистой стали, составлял 220 000 кН. В верхней части пилонов на длине 60 м применена более прочная кремнистая сталь. Поперечное сечение пилона - ячеистое, развитое вдоль и поперек моста (рис. 7.4). Форма поперечного сечения позволяет легко изменять по высоте площадь и момент инерции в соответствии с требованиями расчета и характером силовых воздействий на пилон. Площадь поперечного сечения пилона в верхней части 25 100 см 2 , в нижней, у основания - 48 600 см 2 . Кабели заделаны в массивы из бетона объемом по 24 500 м 3 , опирающиеся на скальное основание. Несущий кабель состоит из 61 пряди по 452 проволоки в каждой и имеет диаметр 921 мм. Расстояние между фермами жесткости 27, 42 м. Ширина проезжей части 18,28 м рассчитана на шесть полос автомобильного движения с тротуарами по 3,35 м. Интенсивность постоянной нагрузки в среднем пролете 321 кН/м и в боковых - 302 кН/м, а временной для всего моста - 595 кН/м, т. е. постоянная нагрузка превосходит временную примерно в 5,4 раза.

Рис. 7.4 - Поперечные сечения пилонов мостов: а - Золотые Ворота; б - Веррацано-Нерроуз

Мост через пролив Золотые Ворота сдан в эксплуатацию за 3 года до Такомской катастрофы и имеет не совсем благоприятное отношение ширины к центральному пролету. Сооружение в целом чувствительно к ветру и отнесено к недостаточно устойчивым.

При сооружении во Франции Танкарвильского моста через р. Сену на автомобильной дороге Гавр-Руан, открытого для движения в 1959 г., была реализована идея надежной связи между кабелем и верхним поясом фермы жесткости в середине пролета (рис. 7.5). Такая связь при условии закрепления фермы жесткости от горизонтальных перемещений на одной из опор сильно затрудняет развитие наиболее опасных кососимметричных форм колебаний пролетного строения и повышает аэродинамическую устойчивость пролетного строения. При выборе конструкции пролетного строения были приняты меры для уменьшения ее лобового сопротивления при боковом ветре. Конструкция проезжей части в виде тонкой плиты расположена на балках, прикрепленных к узлам жесткости. Сквозная конструкция для ветрового потока значительно меньшее препятствие, чем балка жесткости со сплошной стенкой Такомского моста.

Рис. 7.5 - Танкарвильский мост, 1959 г

Массивный устой в левобережной пойме р. Сены оказался необходимым в связи с обеспечением подмостового габарита. Выход скальных пород на правом берегу позволил отказаться от устройства дорогостоящего устоя и заанкерить кабели непосредственно в скале в наклонных штольнях.

В ноябре 1964 г. в США был сдан в эксплуатацию один из крупнейших в мире висячих мостов в устье р. Гудзон у входа в Нью-Йоркскую гавань, названный по имени итальянского мореплавателя Джиованни да Веррацано, впервые исследовавшего в 1524 г. гавань, на берегах которой впоследствии возник Нью-Йорк. Мост построен на скоростной автостраде в Нью-Йорке вместо ранее существовавшей паромной переправы. Пропускная способность моста, рассчитанного на 12 полос движения, составляет 48 млн. автомобилей в год (рис. 7.6). Центральный пролет моста 1300 м, общая длина с подходами 4178,5 м, а висячей части 2040 м. Каждый из четырех несущих кабелей, расположенных попарно, имеет диаметр 915 мм и сформирован из 61 проволочной пряди, составленной из 428 параллельных стальных проволок диаметром по 5 мм с пределом прочности 1580 МПа. Разрывное усилие для кабеля достигает 1 000 000 кН, Мощные стальные рамы обеспечивают неизменность контура формы жесткости. Железобетонная плита проезжей части вместе с системой продольных балок и связей и неизменяемыми боковыми гранями ферм скомпанована в замкнутую пространственную конструкцию трубчатого типа, обладающую высокой жесткостью при кручении. Верхняя и нижняя проезжие части разделены продольными барьерами на две половины для трех полос движения, каждая из которых имеет ширину 3,75 м. Проезжая часть имеет 2%-ный уклон от середины главного пролета к устоям.

Рис. 7.6 - Мост Веррацано-Нерроуз, 1964 г.

Общая масса несущих кабелей - 31787 т; расход высокопрочной стали на сооружение висячей части моста составляет 108 840 т, на подходы - 18140 т. Расход арматурной стали на висячую часть моста - 21 768 т. и на подходы 9070 т, бетона соответственно - 459 000 и 84 150 м 3 .

По сравнению с мостом Золотые Ворота нагрузка на кабели возросла на 75%, что вызвано утяжелением конструкции проезжей части и увеличением числа полос движения транспорта. Повышение уровня натяжения несущих кабелей существенно увеличило жесткость пролетного строения. Допустимые напряжения для кабелей 600 МПа.

Каждая из подвесок образована четырьмя парами стальных канатов диаметром по 56 мм. Пара подвесок образует петлю, огибающую укрепленный на кабеле стальной хомут, стянутый болтами. С учетом места расположения моста большое внимание было уделено выбору конструктивных форм и архитектуре моста. Удачна форма стальных пилонов, имеющих спокойный силуэт без лишних деталей, что подчеркивает грандиозные масштабы сооружения.

Интересен самый большой в мире висячий мост под двухъярусную совмещенную езду, построенный в 1966 г. в Лиссабоне через р. Тахо. Особое внимание в его конструкции уделено сейсмостойкости сооружения, поскольку Лиссабон расположен в тектонически активной зоне побережья Атлантического океана и неоднократно подвергался сильным землетрясениям. Расчетную схему моста проверяли на возможное воздействие землетрясения путем решения на ЭВМ соответствующей динамической задачи о кинематическом возбуждении колебаний с определением инерционных сил и внутренних усилий в системе.

При этом в расчете была использована реальная запись одного из сильных землетрясений, наблюдавшегося в Калифорнии.

Мост предназначен для пропуска двухпутной железной дороги и шести полос автомобильного движения, причем ввод сооружения в эксплуатацию был предусмотрен в две очереди. Строительство первой очереди предназначено для пропуска 20 000 авт./сут. по четырем полосам движения (рис. 7.7 и 7.8, а). Вторая очередь обеспечит расширение верхнего проезда до шести полос и прокладку двухпутной железнодорожной колеи (рис. 7.7 и 7.8, б). В связи с возрастанием расчетной временной нагрузки висячее пролетное строение должно быть усилено за счет устройства системы дополнительного кабеля и прямолинейных вант, поддерживающих узлы фермы жесткости. Стальные конструкции моста при этом не потребуют усиления, так как они изготовлены из высокопрочной-легированной стали с пределом прочности до 950 МПа. Заводские стыки конструкций пилонов выполнены на заклепках, а балок жесткости - на сварке. Все монтажные стыки - на высокопрочных болтах.

Рис 7.7 - Левая (а) и правая (б) части моста Тахо. 1966 г.: № 1-7 номера опоры моста

Рис. 7.8 - Поперечный разрез фермы жесткости моста Тахо

Представляют интерес также некоторые технико-экономические данные моста.

Расстояние между устоями - 2277,64 м, между кабелями -23,5 м. Высота подмостового габарита - 70,1 м (см. рис. 7.7 и рис. 7.8). Каждый кабель сформирован из 87 проволочных прядей по 304 оцинкованных проволоки диаметром 4,9 мм. Дополнительный кабель предусмотрен из 20 тросов диаметром по 67 мм; длинные ванты вставлены из 12 таких же тросов.

Фундаментами пилонов служат опускные колодцы (рис. 7.9), при этом основание опоры № 3 под южным пилоном заложено на рекордной глубине -- 79,3 м ниже уровня воды. Высота пилонов над водой - 190,5 м. Расход материалов на мост - 72600 т стали и 263000 м 3 бетона.

Рис. 7.9 - Промежуточные опоры № 4 и 5 (см. рис. 7.7)

Один из наиболее совершенных и перспективных типов висячих мостов - мосты с наклонными подвесками . В ЦНИИпроектстальконструкции в 1972 - 1973 гг. запроектирован висячий трубопровод с нагонными подвесками и главным пролетом 390 м для перехода через р. Амударью на газопроводной магистрали Бухара-Урал, а в 1974 г. построен висячий трубопровод с пролетом 680 м тоже через р. Амударью.

Выдающиеся по своим техническим данным мосты с наклонными подвесками построены в Англии. Первые аэродинамические испытания были начаты английской Национальной физической лабораторией в связи с разработкой проектов Фортского и Севернского мостов, последний из которых построен по схеме с наклонными подвесками и открыт для движения в 1965 г.

Основные конструктивные решения, примененные в проекте Севернского моста, были впоследствии использованы при строительстве мостов через проливы Босфор и Хамбер. Балки жесткости этих мостов имеют хорошо обтекаемую форму поперечного сечения и представляют собой замкнутые металлические коробки малой высоты, присоединенные к кабелям при помощи наклонных подвесок, образующих жесткую решетчатую конструкцию. Мост через пролив Босфор (рис. 7.10) сдан в эксплуатацию в октябре 1973 г. и предназначен для пропуска шести полос автомобильного движения. Общая стоимость его составила 36 млн. долл. Мост расположен в сейсмической зоне и рассчитан на сейсмическое воздействие, эквивалентное ускорению 0,1 g.

Рис. 7.10 - Висячий металлический мост через пролив Босфор


3 января 1870 года в Нью-Йорке началось строительство Бруклинского моста , ставшего через три года самым длинным висячим мостом в мире. Это сложнейшая конструкция, которая задала пример всем последующим подобным инженерным сооружениям. И сегодня в нашем обзоре пойдет речь о десятке самых выдающихся и известных висячих мостов со всех уголков планеты, каждый из которых является рекордсменом или был таковым в прошлом.




Висячий мост через пролив Менай в британской провинции Уэльс считают первым по-настоящему великим подвесным мостом в истории Европы. Он открылся в 1826 году. До этого в Старом Свете строили лишь простые цепные висячие переходы, эта же конструкция была для своего времени невероятно сложной и полезной в инфраструктурном плане. Основной пролет этого моста имеет длину 176 метров.



Клифтонский подвесной мост через реку Эйвон в Бристоле является одним из самых известных сооружений города и всей Великобритании в целом. Это инженерное сооружение с висячим пролетом длиной 214 метров было сдано в эксплуатацию в 1864 году и быстро стало символом английской промышленной мощи. Интересен факт, что именно здесь 1 апреля 1979 года был совершен первый в мире банджи-прыжок.



В течение несколько десятилетий два крупных города на берегах пролива Ист-Ривер, Нью-Йорк и Бруклин не имели никакого другого сообщения, кроме как лодочного. Инженеры и власти этих населенных пунктов долго спорили, что лучше и дешевле построить: мост или тоннель, пока не остановились на первом варианте. В 1870 году началось строительство Бруклинского моста, ставшего в 1883 самым длинным подвесным сооружением в мире (длина пролета – 486 метров). Сейчас это один из символов Нью-Йорка, не меньший, чем небоскреб Эмпайр-стейт-билдинг или статуя Свободы.



Подвесной мост Амбассадор не зря имеет такое нарицательное имя (переводится с английского как «посол»). Ведь он соединяет не просто два берега реки Детройт, а два государства – Соединенные Штаты Америки и Канаду. Более того, через него проходит 25 процентов торговых перевозок между этими странами. Длина самого длинного пролета этого моста составляет 564 метра. Открыто данное сооружение в 1929 году.



Золотые Ворота являются самым известным и в США, если даже не во всем мире. Это сооружение с длиной пролета 1280 метров было построено в 1937 году, став рекордсменом по данному параметру на целых двадцать семь лет. Интересно, что сейчас этот мост является самым популярным на планете местом для совершения самоубийств. Считается, что прыжок с него стал причиной смерти более 1200 человек.



В России не так уж и много больших водных преград, ради преодоления которых можно было бы строить подвесные мосты. А потому самым известным подобным сооружением в стране является относительно небольшая конструкция, Крымский мост в Москве, открытый в 1938 году. Длина его висячего пролета составляет 168 метров.



В 1973 году случилось историческое событие для всей Евразии – в Стамбуле был открыт первый мост через Босфор. Он наконец-то соединил европейский и азиатский берега этого пролива, о чем мечтали местные властители на протяжении последнего тысячелетия. Общая длина этого сооружения составляет 1560 метров, а подвесного пролета в нем – 1074. Пешеходам доступ на него полностью запрещен – власти Стамбула не хотят отнимать у Сан-Франзиско титул «столицы самоубийц».



В 1998 году между островами Хонсю и Авадзи был открыт мост Акаси-Кайкё, ставший самым длинным подобным подвесным сооружением в мире. И уже более пятнадцати лет он удерживает это почетное звание. Длина крупнейшего висячего пролета в нем составляет 1991 метр. Если растянуть все его стальные нити, то получится единый трос, способный опоясать Земной шар более семи раз.



Длина самого крупного подвесного пролета моста Большой Бельт в Дании составляет 1624 метра. Это не самый большой показатель в мире (в этом его более чем на 300м опережает японский Акаси-Кайкё), зато рекордный в Европе. Открыто рекордное для Старого Света инженерное сооружение в 1998 году.



У моста через реку Сыдухэ в китайской провинции Хубэй длина крупнейшего висячего пролета составляет и того меньше – «всего» 900 метров. Однако это сооружение является самым высоким подвесным мостом в мире. Высочайшая его точка над уровнем земли расположена на отметке 496 метров. Объект функционирует с 2009 года.

Висячие мосты, в которых балка жесткости поддержана свободно провисающим канатом (кабелем, цепью) известно очень давно. Но в современном виде эта конструкция впервые появилась в Америке.

В 1801 году в штате Пенсильвания мировой судья Джеймс Финлей (James Finley) построил первый, подвешенный на железных цепях мост, с пролетом 21 м, в 1808 году он получил на свою систему патент, а в 1810 году опубликовал работу «Описание патента цепного моста». До своей кончины в 1828 году Финлей запроектировал еще около 13 мостов, большинство из которых разрушилось. Вторым его мостом в 1807 году был мост с пролетом 39 м. Далее строительство висячих мостов пошло очень быстро, особенно в Америке.

Первые висячие мосты в Европе были построены в России в Петербурге. Фран­цузский инженер П. П. Базен в 1823 г. построил пешеходный мост с пролетом 15.25 м в Екатерингофском парке. Инженер-полковник Г.М. Треттер совместно с инженером-майором В.А. Христиановичем построили 2 цепных моста через Фонтанку. В 1824 году был построен Пантелеймоновский мост с пролетом 43 м и шириной 10.7 м. Стрела цепи = 1/10 пролета.

В поперечном сечении на Пантелеймоновском мосту было размещено пять плоскостей цепей — по две на краях и одна по центру. Мост был разобран в 1907 году.

Стоимость моста составила 161260 руб. В 1826 году был построен Египетский мост с пролетом 54.8 м и шириной 11.7 м, и со стрелой цепей =1/10 пролета. В поперечном сечении было размещено три плоскости цепей. Конструкции обоих мостов были изготовлены на заводе Берда в Петербурге.

Египетский мост обрушился в 1905 году в морозный день под нагрузкой кавалерийского эскадрона и 11 саней, как предполагают, из-за разрушения звена цепи. Английские инженеры в середине 19 века построили в Европе выдающиеся мосты. Так, в 1849 году английским инженером Кларком был построен известный висячий мост в Будапеште с пролетом 209 м.

Мосты под гужевой транспорт через большие реки в это время почти не строились. Но в 1853 году было закончено строительство большого цепного моста через Днепр в Киеве. Мост был длиной 777 м с пролетами по 139 м и отдельным разводным пролетом. Строительство длилось 5 лет. Стоимость составила 2.35 млн. рублей.

Ширина моста 16 м, ширина проезда 10 м. Все стальные конструкции 1600 т были изготовлены в Бирмингеме в Англии, на 16 пароходах доставлены в порт Одессу, и далее на волах перевезены в Киев. Мост был рассчитан на нагрузку 520 кг/м 2 . За проезд по мосту бралась плата: 6 копеек за корову, 9 за коня и 15 за автомобиль. В 1912 году по мосту проложили трамвайную линию.

Мост был построен по проекту английского инженера Чарльза Виньйоля. В 1854 году серебряная модель моста была выставлена в Лондоне и исследователи считают, что эта модель послужила прообразом Бруклинского моста в Нью-Йорке.

В 1920 году войска гетмана Пилсудского взорвали крайний пролет, но после разрыва цепи произошло крушение всего моста. Мост в 1925 году был восстановлен по проекту Е. О. Патона и получил название мост им. Евгении Бош. Мост просуществовал до 1941 года.

Висячий (подвесной) мост Tower Bridge, London

Для увеличения жесткости висячего моста и уменьшения локальных прогибов применялась система, в которой кабели моста образовывалась из жестких плоских ферм. Мост Тауэр в Лондоне через Темзу был построен по проекту инженера Джона Вольфа-Берри (John Wolfe-Barry) и архитектора сера Хорейса Джонса (Sir Horace Jones).

Висячие боковые пролеты размером по 82.3 м поддерживаются плоскими фермами, а центральный разводной пролет моста равен 79 м.

Кабели висячих мостов образовывали из ферм, стальных полос, цепей и, наконец, канатных элементов. Фермы жесткости могли иметь сложную конфигурацию.

Висячий (подвесной) мост Williamsburg Bridge

На рисунке показана гравюра поперечного сечения двухъярусной балочной фермы моста Вильямсбург в Нью-Йорке в ее первоначальном виде в 1903 году. Свой современный вид и конструкцию подвесные мосты приобрели в 20 веке:

  • кабель подвесного моста стал состоять из проволок;
  • подвесками стали канатные элементы;
  • пилоны стали иметь малую изгибную жесткость;
  • балка жесткости стала обладать значительной изгибной и крутильной жесткостью.

Наибольший висячий (подвесной) мост Верецано-Неровз (Verrazano-Narrows Bridge) построенный в Северной Америке. Основной пролет длиной 1298 м. Мост был открыт для движения в 1964 г. Мост проложен в Нью-Йорской гавани, и его 214-метровые пролеты высотой как семидесяти этажный дом.

Четыре троса, каждый три фута в диаметре, стоят больше, чем весь мост Золотые Ворота. Для его строительства необходимо было около 240 тыс. км провода, этого достаточно, чтобы обвести Землю почти восемь раз. Типичное поперечное сечение моста двухъярусная плита, которая обеспечивает 12 полос движения.

Мост назван в честь первого европейца достихшего бухты Нью-Йорка и реки Гудзон. Строительство моста началось в августе 1959 года и через 5 лет, в ноябре 1964 года, было запущено движение по верхнему уровню моста. Движение по нижнему уровню запустили только через 10 лет в 1969 году.

Стоимость строительства составила 320 миллионов долларов.
Мост - двухуровневый, на каждом из уровней находится по шесть полос для движения автотранспорта, по три в каждую сторону. Движение грузового транспорта разрешено только по верхнему уровню

Проезд по мосту в сторону Стэйтен-Айлэнда платный - 13 долларов, обратно в Бруклин проезд бесплатный. В 2008 году, по мосту ежедневно проезжало около 190 000 автомобилей
Высота моста над морем составляет 69,5 метров и эта величина является одним из ограничений при проектировании и строительстве современных круизных судов

Подвесной мост Хамбер (Humber Bridge)

Подвесной мост Хамбер через р. Северн в Англии, завершен в 1981 году.Имеет главный пролет длиной 1411 м и был до 1998 самым длинным подвесным мостом в мире. Этот мост более ажурный, чем Верецано-Неровз, имеет четыре полосы движения.

Нетипичный настил, для которого используют балки коробчатого гексагонального сечения вместо привычных ферм жесткости, и подвешивания на наклонных подвесках уменьшают как вес, так и стоимость моста.

Поперечное сечение Humber Bridge

Пилоны высотой 162,5 м и 41,275 м над уровнем воды смещены от параллели на 34,925 м и учитывают кривизну земли.
Вместе с боковыми пролетами городов тянется на 2,2 км

Подвесной мост с самой длинным пролетным строением для совместного с железнодорожным автомобильным движением. Мост ЦинМа строили в Гонконге в 1992-1997 г.

Его отрыли для движения в апреле 1997 г, за несколько месяцев перед тем, как Гонконг вернули Китаю. Мост построен на дороге в новый аэропорт Chek Lap Кок.

Он имеет центральный пролет длиной 1377 м, боковой 359 м (также висячей системы) и 300-метровую часть — трехпролетная неразрезная балка

Подвесной мост (Tsing Ма bridge)

Центральный пролет поддерживают два кабеля диаметром 1100 мм. Балка жесткости в поперечном сечении имеет размеры 41,0×7,3 м. По конструкции она является комбинированной и сочетает ферму с сплошной коробчатого балкой.

Фундамент и конструкция опор висячего (подвесного) моста

Одна опора построена со стороны острова Цин И, а другая - в 120 метрах от побережья искусственного острова Мавань. Пилоны выше уровня моря на 206 метров. Пилоны (опоры) представляют из себя стойки связанные между собой поперечинами. Опоры (пилоны) запроектированы из высокопрочного бетона по технологии непрерывного бетонирования с применением передвижной опалубки.

Закрепление висячего моста

Силы натяжения в тросах уравновешены большими опорными сооружениями, расположенными с обеих концов моста. Это массивные бетонные конструкции, глубоко заделанные в землю на побережье островов Цин И и Мавань. Общий вес бетона, использованный при создании двух пилонов — примерно 300 000 тонн.

Основные тросы висячего моста

Тросы были сформированы подвесным методом. Процесс протяжки, обеспечивался подачей проволоки с постоянным натяжением и вытягиванием от одной опоры к другой.70 000 проволок, диаметром 5,38 мм каждая были объединены в основной трос диаметром 1,1 метр, проходящий через 500-тонные чугунные салазки наверху каждой опорной башни моста.

Пролетное строение висячего моста

Металлическое пролетное строение было изготовлено в Великобритании и Японии. После доставки произвели укрупнение в монтажные блоки г. Дунгуаньв Китае. Всего было подготовлено 96 монтажных элементов, каждый 18 метров длиной и весом 480 тонн.

Монтажные блоки были доставлены на место монтажа сделанными специально для этого баржами и устанавливались двумя консольными кранами, которые перемещались по мере укрупнения блоков пролетного строения.

Висячий (подвесной) мост Tacoma Narrows Bridge

Частоты крутильных колебаний должны быть больше изгибных. Последнее требование стало определяющим при проектировании больших мостов, особенно после анализа обрушения Такомского моста.

Мост был построен в июле 1940 году по проекту Леона Моиссеева (Leon Moisseiff) в штате Вашингтон. Длина подвесного пролета 853 м. Первоначальная ширина и высота балки составляли 11.9 и 2.4 м, соответственно.

Другими словами балка была очень тонкой и имела малую изгибную жесткость и, что особенно важно малую крутильную жесткость. Как выяснилось впоследствии, частота крутильных колебаний балки была меньше частоты изгибных колебаний, что привело к появлению изгибно-крутильного флаттера (см.главу «Динамические расчеты»).

Разрушение моста произошло всего через четыре месяца после его открытия под действием бокового ветра скоростью 20 м/с в результате колебаний с большой амплитудой и низкой частотой (галопирования). После этого обрушения аэродинамические испытания мостов с подобными центральными пролетами стали обязательными.

Мост был восстановлен с существенным изменением параметров балки только через десять лет (рис.2.31). Новые ширина и высота балки составили 18.3 и 10 м, т.е.высота балки была увеличена в четыре раза..

Висячий мост Tacoma Narrows Bridge 1950

Висячий (подвесной) мост Золотые Ворота в Сан-Франциско

Золотые Ворота в Сан-Франциско в США. Мост стал культовым сооружением для США и Голливуда. Автором моста является Чарльз Элис (Charles Ellis), который разработал принципиальные решения, хотя проектированием руководил Жозеф Страус (Joseph Strauss), который ранее выдвигал идею перекрытия залива при помощи консольно-подвесной системы.

Известный подвесной мост Голден Гейт («Золотые Ворота»), построен в 1937, имел 1281-метровый главный пролет и два крайних размером 343,1 м каждый, общая длина подвесной конструкции составляла 1967 м.

Пилоны в высоту достигали 227,5 м и опоры которых погружены на глубину 30,5 метров Для устранения возможных повреждений моста от землетрясения его фундаменты были погружены в скалу на 7,6 м.

Общая ширина мостового перекрытия составляет 24,7 м и состоит из 18,3-метровой ширины проезжей части и двух ширин тротуаров по 3,2 м. Два канаты подвесного моста, каждый по 91,4 см в диаметре держат конструкцию на высоте 67,1м над уровнем моря

Висячий мост The Golden Gate Bridge, San Francisco

Строительство моста началось в январе 1933 года и уже через четыре с половиной года, 27 мая 1937 года мост был открыт для движения.

Параметры подвесного моста

  • центральный пролет = 1280 м;
  • высота пилонов 227.4 м;
  • высота фермы = 7.6 м;
  • ширина фермы = 27.4 м;
  • кабель диаметром 1 м состоит из 27000 проволок;
  • вес каждого кабеля 7 125 т.

Через 75 лет рядом с первым Фортским мостом был построен второй, но уже висячей системы. Работы были начаты в 1958 году и окончены в 1964. Автодорожный мост был построен по схеме 408 + 1006 + 408 м. Высота фермы жесткости 8.4 м, а ширина 23.8 м.

Висячий мост The Forth Road Bridge 1964

За прошлый век было построено более десятка висячих мостов с пролетами более километра. Во многих из них были воплощены новые и интересные идеи. Очень интересным сооружением является мост в Дании через пролив большой Бельт с пролетом 1624 м, построенный в 1998 году.

Подвесной мост Акаси-Кайкё (akashi kaikyo)

Но рекордсменом является подвесной мост, построенный в 1998 году в Японии. Это мост Акаши с центральным пролетом 1990.8 м.

Висячий мост Акаси-Кайкё (akashi kaikyo)

Мост через пролив Акаши соединяет западную часть города Кобе и острова Авадзи, и лежит на одном из трех маршрутов, соединяющем острова Хонсю и Шикоку. Строительные работы по сооружению фундаментов моста были начаты в 1988 году.

Мост настолько огромен, что обычные при других масштабах элементы становятся очень сложными. На этом мосту видно, как количество переходит в качество.

Мессинский мост (стадия проект)

Планы постройки моста, совмещенного под рельсовый транспорт и автодвижение, который должен связать Сицилию с континентальной Италией и пересечь Мессинский пролив, существуют уже давно. Мост в этом месте действительно нужен, так как ожидаемая интенсивность движения должна составить 50000 автомобилей и 120 поездов в сутки.

Но стоимость такого моста будет огромной. Поэтому экономическая целесообразность его строительства даже при условии платного проезда остается под вопросом, поскольку окупаемость наступит не скоро. Ранее сама идея реализации такого проекта выглядела фантастической, так как мост казался нереализуемым по следующим причинам:

  • ширина зеркала воды в створе моста составляет 3660 м, глубины более 100 м.
  • мост находится в активной сейсмической зоне, с ускорениями, равными 6 м/с 2
  • (измеренными во время катастрофического землетрясения 1908 года)
  • расчетная скорость ветра составляет 216 км / ч (1 раз в 2000 лет)

На рисунке показаны основные инженерные решения из проекта висячего моста, совмещенного под рельсовый транспорт и автодвижение, имеющего центральный пролет 3300 м.

Мост перекрывает практически всю акваторию Мессинского пролива и обеспечивает гарантированный судоходный подмостовой габарит 65 м. Балка жесткости поддержана двумя парами кабелей диаметром 1.2 м и длиной 5300 м. Вес каждого кабеля из четырех составляет 41.6 тыс. т. Кабель состоит из 44352 параллельной проволоки диаметром 5.38 мм. Погонный вес одного кабеля 7.85 т/м.

Усилие в каждом из четырех кабелей от действия собственного веса кабеля равно 68 000 т, а усилие в каждом кабеле от полной постоянной нагрузки — 118 000 т. То есть, кабель несет сам себя на 58%, а балку жесткости только на 42%.

Длина парных подвесок, идущих через каждые 30 м от кабеля к балке, колеблется в пределах от 5 до 300 м. Расстояние между парами кабелей поперек моста равно 52 м. Кабели оперты на седла пилонов, расположенные на высоте 376 м над водой.

Конструкция балки жесткости

В отличие от стандартных решений (ферма или балка с аэродинамическим профилем), конструкция балки жесткости в этом проекте весьма оригинальна и подчинена аэродинамической устойчивости сооружения.

Плита проезда поддержана тремя независимыми балками: двумя балками автопроезда и одной балкой под рельсовый транспорт, профиль которых подчинен аэродинамической устойчивости пролетного строения. Эти отдельно идущие балки объединены поперечными балками шириной 52 м, идущие с шагом 30 м.

Подвесной Мессинский мост поперечник

За поперечные балки осуществляется подвес балки жесткости к кабелю парой подвесок. Покрытие проезда по ортотропным плитам балок автопроезда выполнено толщиной 38 мм на битумной основе. Аварийный проезд между балками выполняется по стальной решетчатой плите.

Такая необычная конструкция балки жесткости пролетного строения позволила проектировщикам решить две проблемы:

  1. Удалось создать широкую, поперечно жесткую и относительно легкую балку. Постоянная погонная нагрузка составляет всего 23 т/м, и включает в себя 2.85 т/м — вес балки под рельсовый транспорт, 0.98 т/м — вес верхнего строения пути, 6.37 т/м — вес каждой из балок автопроезда, 1.99 т/м — вес покрытия и 4.91 т/м — вес поперечных балок.
  2. Удалось создать аэродинамически устойчивую балку пролетного строения, позволяющую обеспечивать устойчивость сооружения при скорости ветра 270 км/ч. Это обеспечено за счет конфигурации балок, свободной циркуляции воздуха через плиту между балками, специальных обтекателей и т.п. Поперечное отклонение середины пролетного строения при скорости ветра 80 км/ч равно всего 2.5 м, что составляет менее 1/1320 пролета, а поворот не более 3%.

В этом проекте важен сам факт того, что инженеры в настоящее время способны создать сооружение таких грандиозных размеров, не применяя революционно новых материалов для кабелей.

Несомненно, самым интересным элементом этого сооружения является легкая и аэродинамически устойчивая балка жесткости. Концепция, положенная в ее конструкцию, заслуживает дальнейшего изучения и развития.

October 17th, 2014

Этапы строительства можно разбить на следующие этапы:

1. Создание опор для пилонов

2. Создание береговых опор

3. Возведение пилонов

4. Протяжка несущих вант

5. Подвес мостовых ферм

Начнём с первого этапа.

Пилоны моста расположены в морском проливе, глубиной более 60 метров. Первым делом, специальные суда извлекли донный грунт в местах будущей установки опор.

Одновременно с этим, на берегу строились огромные плавающие пустотелые цилиндры, которые были доставлены по воде и затоплены в выкопанных котлованах. Высота цилиндров превысила шестьдесят метров, так-что они поднимались над водой. При этом такие махины предстояло установить на нужные позиции с сантиметровой точностью, что было успешно выполнено японскими инженерами.

После установки форм будущих опор, внутрь них начали заливать специальный водо нерастворимый бетон.

Одновременно на берегу происходило строительство фундаментов для береговых опор — якорей крепления вант. Они немного отличаются по конструкции в зависимости от берега. Для западной опоры был вырыт весьма глубокий семидесяти метровый котлован, стенки которого, по мере похождения, заключались в бетон. Такая глубина, если мне не изменяет память, обусловлена желанием пройти сквозь осадочные породы до твёрдых слоёв. К слову, на другом берегу, глубина котлована составила всего двадцать три с половиной метра.

После проходки, в стволе соорудили металлический каркас-фундамент и залили его бетоном. Затем наверху установили уже собранный будущий узел крепления вант, намертво соединив его с фундаментом.

И сразу же вокруг начали возводить стены.

Параллельно сооружались пилоны. Их не отливали из бетона, а собирали из металлических элементов. Внутри находятся лифты, лестницы, маятники компенсации колебаний. Последнее важный элемент практически всех современных японских высотных конструкций, по причине высокой сейсмичности. Перемещая массивный груз, такое устройство позволяет погасить опасные отклонения от вертикали, сохраняя прочность и целостность конструкции.

После завершения монтажа обеих пилонов, рабочие приступили к протяжке тросов. Самым первым делом, вертолётом был переброшен первичный кабель — по сути крепкая сантиметровая пластиковая верёвка, на которую, в дальнейшем стали постепенно навешивать все остальные, увеличивая число нитей. Для этого протягиваемый трос прикрепляли к первичному кабелю и начинали его тянуть. Разматываясь с катушки, он тянул на собой прикреплённый трос. После протяжки нескольких параллельных нитей, на них уложили временное полотно, по которому смогли пойти рабочие. После монтажа мостков, начали протягивать нити несущих тросов и так, постепенно, были собраны главные ванты, держащие весь вес полотна. Они имеют диаметр 1122 мм и состоят из множества шестиугольных элементов, каждый из которых, в свою очередь, состоит из 127 стальных нитей, каждая диаметром 5.23 мм. Общая длина всех нитей (на двух вантах) составляет одну световую секунду.

Снаружи ванты обмотаны несколькими слоями изоляции. У наземных опор, нити разделяются, прикрепляясь концами к точкам крепления.

Заключительным этапом стал подвес ферм дорожного полотна. Фермы — весьма сложные, ведь внутри них находится место для перспективой железнодорожной линии. Элементы ферм подвозили морем, затем кранами поднимали вверх, где собирали и монтировали к точкам подвеса.

На сегодня мост является самым длинным подвесным мостом в мире: его полная длина составляет 3911 метров, центральный пролёт имеет длину 1991 метр, а боковые - по 960 метров. Высота пилонов составляет 298 метров, что выше 90-этажного дома. Благодаря своим размерам Жемчужный мост дважды вошел в Книгу рекордов Гиннеса. В конструкции моста имеется система двухшарнирных балок жёсткости, позволяющая выдерживать скорости ветра до 80 м/с, землетрясения магнитудой до 8,5 баллов и противостоять сильным морским течениям. Также используются специальные системы маятников, работающих с резонансной частотой конструкции моста.

Фото 6.

В настоящее время для перемещения автомобилей используется только верхняя часть пролётных конструкций, однако существует и нижний технический этаж, где, в перспективе может быть проложено железнодорожное полотно. Снижнего уровня можно попасть внутрь пилонов, а затем выйти и на их вершины, откуда открывается прекрасный вид на Кобе и море. Со стороны Кобе есть специально построенный бетонный променад длинною в 317 метровдля того, чтобы можно было полюбоваться видами с моста и на сам мост. В Японии, когда строят что-то громадное, рядом появляется музей этого сооружения. Появился и музей моста Акаси-Кайкё, в котором японцы воспроизвели в макетах всю историю строительства от начала рытья котлованов, до натяжки тросов. Эксплуатация этого чудо-моста расчитана не менее чем на 200 лет.

Фото 7.

Фото 8.

Фото 9.

Фото 10.

Фото 11.

Фото 13.



Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -