Коническая поверхность конуса. Понятие конуса

Конус (с греческого «konos») – сосновая шишка. Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Конус (круговой конус) – тело, которое состоит из круга – основание конуса, точки, не принадлежащей плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса и точки окружности основания. Отрезки, которые соединяют вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, которая соединяет вершину конуса с центром основания, перпендикулярна плоскости основания. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через образующую конуса и перпендикулярная осевому сечению, проведённому через эту образующую, называется касательной плоскостью конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Объём конуса равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

Площадь боковой поверхности конуса можно найти по формуле:

S бок = πRl,

Площадь полной поверхности конуса находится по формуле:

S кон = πRl + πR 2 ,

где R – радиус основания, l – длина образующей.

Объём кругового конуса равен

V = 1/3 πR 2 H,

где R – радиус основания, Н – высота конуса

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)l,

Площадь полной поверхности усеченного конуса можно найти по формуле:

S кон = πR 2 + πr 2 + π(R + r)l,

где R – радиус нижнего основания, r – радиус верхнего основания, l – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2),

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.



Конусом (точнее, круговым конусом) называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга,- вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1) Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими, конуса. Все образующие конуса равны друг другу. Поверхность конуса состоит из основания и боковой поверхности.
Рис. 1
Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. Наглядно прямой круговой конус можно представлять себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис.2).
Рис. 2
Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.
Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса (рис. 3). В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса (рис. 4).
Рис. 3 Рис. 4

Площадь поверхности конуса
Боковую поверхность конуса, как и боковую поверхность цилиндра, можно развернуть на плоскость, разрезав ее по одной из образующих (рис. 2,а,б). Разверткой боковой поверхности конуса является круговой сектор (рис. 2,6), радиус которого равен образующей конуса, а длина дуги сектора - длине окружности основания конуса.
За площадь боковой поверхности конуса принимается площадь ее развертки. Выразим площадь Sбок боковой поверхности конуса через его образующую l и радиус основания r.
Площадь кругового сектора - развертки боковой поверхности конуса (рис.2) - равна (Пl2а)/360, где а - градусная мера дуги ABA", поэтому
Sбок = (Пl2а)/360. (*)
Выразим а через l и r. Так как длина дуги ABA" равна 2Пr (длине окружности основания конуса), то 2Пr = Пlа/180, откуда a=360r/l. Подставив это выражение в формулу (*), получим:
Sбок = Пrl. (**)
Таким образом, площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.
Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания. Для вычисления площади Sкон полной поверхности конуса получается формула: Sкон = Пr (l + r). (***)

Усеченный конус
Возьмем произвольный конус и проведем секущую плоскость, перпендикулярную к его оси. Эта плоскость пересекается с конусом по кругу и разбивает конус на две части. Одна из частей представляет собой конус, а другая называется усеченным конусом. Основание исходного конуса и круг, полученный в сечении этого конуса плоскостью, называются основаниями усеченного конуса, а отрезок, соединяющий их центры, - высотой усеченного конуса.

Часть конической поверхности, ограничивающая усеченный конус, называется его боковой поверхностью, а отрезки образующих конической поверхности, заключенные между основаниями, называются образующими усеченного конуса. Все образующие усеченного конуса равны друг другу (докажите это самостоятельно).
Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую: Sбок = П (r + r1) l.

Дополнительная информация о конусе
1. В геологии существует понятие «конус выноса». Это форма рельефа, образованная скоплением обломочных пород (гальки, гравия, песка), вынесенными горными реками на предгорную равнину или в более плоскую широкую долину.
2. В биологии есть понятие «конус нарастания». Это верхушка побега и корня растений, состоящая из клеток образовательной ткани.
3. «Конусами» называется семейство морских моллюсков подкласса переднежаберных. Раковина коническая (2–16 см), ярко окрашенная. Конусов свыше 500 видов. Живут в тропиках и субтропиках, являются хищниками, имеют ядовитую железу. Укус конусов очень болезнен. Известны смертельные случаи. Раковины используются как украшения, сувениры.
4. По статистике на Земле ежегодно гибнет от разрядов молний 6 человек на 1 млн. жителей (чаще в южных странах). Этого бы не случалось, если бы везде были громоотводы, так как образуется конус безопасности. Чем выше громоотвод, тем больше объем такого конуса. Некоторые люди пытаются спрятаться от разрядов под деревом, но дерево не проводник, на нем заряды накапливаются и дерево может быть источником напряжения.
5. В физике встречается понятие «телесный угол». Это конусообразный угол, вырезанный в шаре. Единица измерения телесного угла – 1 стерадиан. 1 стерадиан – это телесный угол, квадрат радиуса которого равен площади части сферы, которую он вырезает. Если в этот угол поместить источник света в 1 канделу (1 свечу), то получим световой поток в 1 люмен. Свет от киноаппарата, прожектора распространяется в виде конуса.

Рассмотрим какую-либо линию l (кривую или ломаную), лежащую в некоторой плоскости (рис. 386, а, б), и произвольную точку М, не лежащую в этой плоскости. Всевозможные прямые, соединяющие точку М со всеми точками линии образуют поверхность а; такая поверхность называется конической поверхностью, точка вершиной, линия - направляющей, прямые образующими. На рис. 386 мы не ограничиваем поверхность а ее вершиной, но представляем себе ее простирающейся неограниченно в обе стороны от вершины.

Если коническую поверхность рассечь какой-либо плоскостью, параллельной плоскости направляющей , то в сечении получим линию (кривую или ломаную, в зависимости от того, была ли кривой или ломаной линия ), гомотетичную линии l, с центром гомотетии в вершине конической поверхности. Действительно, отношение любых соответствующих отрезков образующих будет постоянным:

Итак, сечения коническои поверхности плоскостями, параллельными плоскости направляющей, подобны и подобно расположены, с центром подобия в вершине конической поверхности; это же верно для любых параллельных плоскостей, не проходящих через вершину поверхности.

Пусть теперь направляющая - замкнутая выпуклая линия (кривая на рис. 387, а, ломаная на рис. 387, б). Тело, ограниченное с боков конической поверхностью, взятой между ее вершиной и плоскостью направляющей, и плоским основанием в плоскости направляющей, называется конусом (если -кривая линия) или пирамидой (если -ломаная).

Пирамиды классифицируются по числу сторон многоугольника, лежащего в их основании. Говорят о треугольной, четырехугольной и вообще -угольной пирамидах. Заметим, что -угольная пирамида имеет грань: боковых граней и основание. При вершине пирамиды мы имеем -гранный угол с плоскими и двугранными углами.

Они соответственно называются плоскими углами при вершине и двугранными углами при боковых ребрах. При вершинах основания мы имеем трехгранных углов; их плоские углы, образованные боковыми, ребрами и сторонами основания, называются плоскими углами при основании, двугранные углы между боковыми гранями и плоскостью основания - двугранными углами при основании.

Треугольная пирамида иначе называется тетраэдром (т. е. четырехгранником). Любая из ее граней может быть принята за основание.

Пирамида называется правильной при выполнении двух условий: 1) в основании пирамиды лежит правильный многоугольник,

2) высота, опущенная из вершины пирамиды на основание, пересекает его в центре этого многоугольника (иначе говоря, вершина пирамиды проектируется в центр основания).

Заметим, что правильная пирамида не является, вообще говоря, правильным многогранником!

Отметим некоторые свойства правильной -угольной пирамиды. Проведем через вершину такой пирамиды высоту SO (рис. 388).

Повернем всю пирамиду как целое вокруг этой высоты на угол При таком повороте многоугольник основания перейдет сам в себя: каждая из его вершин займет положение соседней. Вершина пирамиды и ее высота (ось вращения!) останутся на месте, и поэтому пирамида как целое совместится сама с собой: каждое боковое ребро перейдет в соседнее, каждая боковая грань совместится с соседней, каждый двугранный угол при боковом ребре также совместится с соседним.

Отсюда вывод: все боковые ребра равны между собой, все боковые грани суть равные равнобедренные треугольники, все двугранные углы при основании равны, все плоские углы при вершине равны, все плоские углы при основании равны.

Из числа конусов в курсе элементарной геометрии мы изучаем прямой круговой конус, т. е. такой конус, основание которого круг, а вершина проектируется в центр этого круга.

Прямой круговой конус показан на рис. 389. Если проведем через вершину конуса высоту SO и повернем конус вокруг этой высоты на произвольный угол, то окружность основания будет скользить сама по себе; высота и вершина останутся на месте, поэтому при повороте на любой угол конус совместится сам с собой. Отсюда видно, в частности, что все образующие конуса равны между собой и одинаково наклонены к плоскости основания. Сечения конуса плоскостями, проходящими через его высоту, будут равнобедренными треугольниками, равными между собой. Весь конус получается от вращения прямоугольного треугольника SOA вокруг его катета (который становится высотой конуса). Поэтому прямой круговой конус является телом вращения и также называется конусом вращения. Если не оговорено противное, мы для краткости в дальнейшем говорим просто «конус», понимая под этим конус вращения.

Сечения конуса плоскостями, параллельными плоскости его основания, суть круги (хотя бы потому, что они гомотетичны кругу основания).

Задача. Двугранные углы при основании правильной треугольной пирамиды равны а. Найти двугранные углы при боковых ребрах.

Решение. Обозначим временно сторону основания пирамиды через а. Проведем сечение пирамиды плоскостью, содержащей ее высоту SO и медиану основания AM (рис. 390).

На этом уроке мы познакомимся с такой фигурой, как конус. Изучим элементы конуса, виды его сечений. И узнаем, с какой фигурой конус имеет много общих свойств.

Рис.1. Предметы конусовидной формы

В мире огромное количество вещей имеют форму конуса. Зачастую мы их даже не замечаем. Дорожные конусы, предупреждающие о дорожных работах, крыши замков и домов, рожок для мороженого - все эти предметы имеют форму конуса (см. рис. 1).

Рис. 2. Прямоугольный треугольник

Рассмотрим произвольный прямоугольный треугольник с катетами и (см. рис. 2).

Рис. 3. Прямой круговой конус

Вращая данный треугольник вокруг одного из катетов (не нарушая общности, пусть это будет катет ), гипотенуза опишет поверхность, а катет опишет круг. Таким образом, получится тело, которое называют прямым круговым конусом (см. рис. 3).

Рис. 4. Виды конусов

Раз уж мы говорим о прямом круговом конусе, видимо, существует и непрямой, и не круговой? Если в основании конуса круг, но вершина не проектируется в центр этого круга, то такой конус называют наклонным. Если же основание - не круг, а произвольная фигура, то такое тело также иногда называют конусом, однако, разумеется, не круговым (см. рис. 4).

Таким образом, мы снова приходим к аналогии, уже знакомой нам по работе с цилиндрами. По сути конус - это что-то вроде пирамиды, просто у пирамиды в основании многоугольник, а у конуса (который мы будем рассматривать) - круг (см. рис. 5).

Отрезок оси вращения (в нашем случае это катет ), заключенный внутри конуса, называют осью конуса (см. рис. 6).

Рис. 5. Конус и пирамида

Рис. 6. - ось конуса

Рис. 7. Основание конуса

Круг, образованный вращением второго катета (), называют основанием конуса (см. рис. 7).

А длина этого катета является радиусом основания конуса (или, проще говоря, радиусом конуса) (см. рис. 8).

Рис. 8. - радиус конуса

Рис. 9. - вершина конуса

Вершина острого угла вращающегося треугольника, лежащая на оси вращения, называется вершиной конуса (см. рис. 9).

Рис. 10. - высота конуса

Высота конуса - отрезок, проведенный из вершины конуса перпендикулярно его основанию (см. рис. 10).

Здесь у вас может возникнуть вопрос: чем же тогда отличается отрезок оси вращения от высоты конуса? На самом деле они совпадают только в случае прямого конуса, если же вы будете рассматривать наклонный конус, то заметите, что это два совершенно разных отрезка (см. рис. 11).

Рис. 11. Высота в наклонном конусе

Вернемся к прямому конусу.

Рис. 12. Образующие конуса

Отрезки, соединяющие вершину конуса с точками окружности ее основания, называют образующими конуса. Кстати, все образующие прямого конуса равны между собой (см. рис. 12).

Рис. 13. Природные конусоподобные объекты

В переводе с греческого konos означает «сосновая шишка». В природе достаточно объектов, имеющих форму конуса: ель, гора, муравейник и др. (см. рис. 13).

Но мы-то привыкли, что конус - прямой. У него равные между собой образующие, а высота совпадает с осью. Такой конус мы назвали прямым конусом. В курсе школьной геометрии обычно рассматриваются именно прямые конусы, причем по умолчанию любой конус считается прямым круговым. Но мы уже говорили о том, что бывают не только прямые конусы, но и наклонные.

Рис. 14. Перпендикулярное сечение

Вернемся к прямым конусам. «Разрежем» конус плоскостью, перпендикулярной оси (см. рис. 14).

Какая же фигура окажется на срезе? Конечно же, круг! Вспомним, что плоскость проходит перпендикулярно оси, а значит, параллельно основанию, которое является кругом.

Рис. 15. Наклонное сечение

А теперь давайте постепенно наклонять плоскость сечения. Тогда наш круг начнет постепенно превращаться во все более вытянутый овал. Но только до тех пор, пока плоскость сечения не столкнется с окружностью основания (см. рис. 15).

Рис. 16. Виды сечений на примере морковки

Любители познавать мир экспериментальным путем могут в этом убедиться с помощью морковки и ножа (попробуйте отрезать от морковки пластинки под разным углом) (см. рис. 16).

Рис. 17. Осевое сечение конуса

Сечение конуса плоскостью, проходящей через его ось, называют осевым сечением конуса (см. рис. 17).

Рис. 18. Равнобедренный треугольник - фигура сечения

Здесь же мы получим совершенно другую фигуру сечения: треугольник. Данный треугольник является равнобедренным (см. рис. 18).

На этом уроке мы узнали о цилиндрической поверхности, видах цилиндра, элементах цилиндра и сходстве цилиндра с призмой.

Образующая конуса равна 12 см и наклонена к плоскости основания под углом 30 градусов. Найти площадь осевого сечения конуса.

Решение

Рассмотрим искомое осевое сечение. Это равнобедренный треугольник, в котором боковые стороны равны 12, а угол при основании - 30 градусов. Дальше можно действовать по-разному. Либо можно провести высоту, найти ее (половина гипотенузы, 6), потом основание (по теореме Пифагора, ), а затем площадь .

Рис. 19. Иллюстрация к задаче

Либо сразу найти угол при вершине - 120 градусов - и посчитать площадь как полупроизведение сторон на синус угла между ними (ответ будет, тот же).

  1. Геометрия. Учебник для 10-11 классов. Атанасян Л.С. и др. 18-е изд. - М.: Просвещение, 2009. - 255 с.
  2. Геометрия 11 класс, А.В. Погорелов, М.: Просвещение, 2002
  3. Рабочая тетрадь по геометрии 11 класс, В.Ф. Бутузов, Ю.А. Глазков
  1. Yaklass.ru ().
  2. Uztest.ru ().
  3. Bitclass.ru ().

Домашнее задание


Тема урока: Конус и его элементы

Цели урока: ввести понятия конуса, образующей, высотой и основания; ввести понятие площади боковой поверхности конуса как площади ее развертки; сформировать навык решения задач на нахождение элементов конуса.

Тип урока: комбинированный.

Оборудование: ПК, мультимедийный проектор, интерактивная доска, модели конусов.

Ход урока:


  1. Проверка домашнего задания у доски.

  2. Самостоятельная работа (Приложение 1.)

  3. Объяснение нового материала.

  • Понятия конуса, его элементов(вершина, ось, образующие, основание, боковая поверхность). Изображение конуса.
Конусом (точнее, круговым конусом) называется тело, кото­рое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга,- вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1).

Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис.2).

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.


  • ^ Сечение конуса разными плоскостями.

    Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса (рис. 3). В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса (рис. 4).



Теорема. Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса.

Доказательство. Пусть - плоскость, параллельная плоскости основания конуса и пересекающая конус (рис.5). Преобразование гомотетии относительно вершины конуса, совмещающее плоскость