Компактные термоядерные реакторы: прорыв или просчёт? Российские учёные построят прототип термоядерного реактора.

Текст
Олег Акбаров

Текст
Николай Удинцев

Вчера американская компания Lockheed Martin объявила, что намеревается создать портативный термоядерный реактор . Согласно пресс-релизу, им удалось достичь значительного прогресса в решении неустранимых до настоящего времени проблем, и первый полностью функциональный прототип появится уже в 2019 году. В мире, где колебания цен на энергоносители имеют такое значение, появление такой технологии может глобально изменить не только экологический, но и экономический, и политический ландшафт. Look At Me разобрался в истории проблемы, а также выяснил подробнее, кто такие Lockheed Martin и что они готовят.


Как работает термоядерная реакция

Существующие сейчас ядерные реакторы используют распад ядер атомов сверхтяжёлых элементов, в результате которого образуются более легкие и высвобождается энергия. При термоядерной реакции ядра атомов более лёгких элементов объединяются в более тяжёлые за счёт кинетической энергии теплового движения. Например, по тому же принципу работает Солнце и другие звезды.

Для достижения этого эффекта необходимо, чтобы ядра, преодолев кулоновский барьер , сблизились на расстояние, близкое размеру самих ядер и много меньше размера атома. В таких условиях ядра больше не могут отталкиваться друг от друга, поэтому вынуждены объединиться в более тяжёлый элемент. А при их объединении выделяется значительное количество энергии сильного взаимодействия . Она и является продуктом работы реактора.


Что хотят сделать
в Lockheed Martin

Компания Lockheed Martin на протяжении десятилетий является основным поставщиком Пентагона. На её счету разработка самолёта-разведчика U-2, истребителей F-117 Nighthawk, F-22 Raptor и ещё 22 самолётов. Однако в последние годы количество военных контрактов компании, которая около 90 % своих доходов получает от министерства обороны США, начало снижаться. Поэтому в Lockheed Martin заинтересовались альтернативной энергетикой.

Lockheed Martin: Compact Fusion Research & Development

В данный момент управляемую термоядерную реакцию проводят в токамаках или стеллараторах . Это установки в форме тора, которые удерживают высокотемпературную плазму (температура выше миллиона кельвинов) внутри с помощью мощного электромагнита. Проблема такого подхода заключается в том, что на данном этапе получаемая энергия практически равна затрачиваемой на поддержание работы установки.


Главное отличие концепта команды Lockheed Martin от токамака в том, что плазма удерживается другим способом: вместо камер в форме тора используется набор сверхпроводящих катушек. Они создают другую геометрию магнитного поля, которая удерживает всю камеру, где проходит реакция. И чем больше давление плазмы, тем сильнее магнитное поле будет её удерживать.

«Наша технология компактного термоядерного реактора совмещает несколько подходов к проблеме магнитного удержания плазмы и предполагает уменьшение прототипа реактора на 90 % по сравнению с более ранними концептами», - Томас Макгуайр, руководитель подразделения Skunk Works Revolutionaly Technology Programs (является частью Lockheed Martin).

По словам самого Макгуайра, защитившего свою дипломную работу в Массачусетском технологическом институте на тему термоядерного синтеза, он «по сути, соединил разные концепты в единый прототип, восполнив пробелы каждого достоинствами другого». В итоге получился принципиально новый продукт, которым и занимается его команда в Lockheed Martin.

Портативному реактору нужно около 20 кг термоядерного топлива

Традиционные реакторы занимают целые полигоны и обслуживаются сотнями специалистов


Несмотря на то что реактор предполагается построить такого размера, чтобы он уместился в прицеп грузовика, его мощности должно хватить на обеспечение энергией маленького города или 80 тысяч домов. Он будет превращать дешевый и экологичный водород (дейтерий и тритий) в гелий. При этом в год портативному реактору нужно около 20 кг термоядерного топлива. Объём его отходов, по словам представителей Lockheed Martin, будет намного меньше отходов от работы, например, угольной электростанции.

Компания хочет построить опытную модель портативного термоядерного реактора к 2016 году, первые прототипы мощностью 100 МВт - к 2019 году, а рабочие модели - к 2024 году. Повсеместное распространение устройств планируется к 2045 году.


Что даст человечеству управляемый термояд

Экологически
чистая энергия

Термоядерная реакция проходит намного безопаснее ядерной. Например, практически невозможным считается выход термоядерной реакции из-под контроля. Если же в реакторе случится авария, то ущерб для окружающей среды будет в разы меньше, чем при аварии на ядерном реакторе. Стоит отметить, что существующие реакции с участием дейтерия и трития всё же выделяют достаточное количество радиоактивных отходов, однако у них короткий период полураспада. При этом перспективные реакции с применением дейтерия и гелия-3 будут проходить почти без их образования.

Полёты
по Солнечной системе

Установка Lockheed Martin - прообраз термоядерного ракетного двигателя (ТЯРД). Такой можно установить на космический корабль для освоения Солнечной системы и ближайшего к Земле космического пространства. Считается, что ТЯРД сможет развивать скорость в 10 % от скорости света (примерно 30 тысяч км/с). В теории эффективность такого двигателя (его удельный импульс) минимум в 20 раз (а максимум - в 9 тысяч раз) превзойдёт эффективность существующих ракетных двигателей.

Практически бесконечный
источник энергии

Поскольку для работы термоядерного реактора нужен водород, топливо для него можно добывать из любой воды. В перспективе вместо трития будут использовать гелий-3, которого достаточно много в земной атмосфере и ещё больше (сотни тысяч тонн) на Луне. Со временем (и при достаточном распространении термоядерной энергетики) компании могут сократить добычу полезных ископаемых для их сжигания на существующих электростанциях.

Ученые Института ядерной физики Сибирского отделения Российской академии наук (ИЯФ СО РАН) намерены создать в своем институте рабочую модель термоядерного реактора. Об этом изданию «Сиб.фм» сообщил руководитель проекта, доктор физико-математических наук Александр Иванов.

Для разворачивания проекта «Развитие фундаментальных основ и технологий термоядерной энергетики будущего» ученые получили правительственный грант. Всего на создание реактора ученым потребуется около полумиллиарда рублей. Построить установку в Институте собираются за пять лет. Как сообщается, исследованиями, связанными с управляемым термоядерным синтезом, в частности физикой плазмы, в ИЯФ СО РАН занимаются давно.

«До сих пор мы занимались физическими опытами для создания класса ядерных реакторов, которые можно использовать в реакциях синтез-деления. Мы добились в этом прогресса, и перед нами встала задача - построить прототип термоядерной станции. К настоящему моменту мы накопили базу и технологии и полностью готовы к началу работ. Это будет полномасштабная модель реактора, которую можно использовать для проведения исследований или, к примеру, для переработки радиоактивных отходов. Технологий для создания такого комплекса много. Они новые и сложные, и требуется некоторое время, чтобы их освоить. Все задачи физики плазмы, которые мы будем решать, актуальны для мирового научного сообщества», - сообщил Иванов.

В отличие от обычной ядерной энергетики, в термоядерной предполагается использование энергии, высвобождаемой при образовании более тяжелых ядер из легких. В качестве топлива предусматривается применение изотопов водорода - дейтерия и трития, однако в ИЯФ СО РАН собираются работать только с дейтерием.

«Мы будем проводить только моделирующие эксперименты с генерацией электронов, но все параметры реакций будут соответствовать реальным. Электроэнергию тоже вырабатывать не будем - только доказывать, что реакция может протекать, что параметры плазмы достигнуты. Прикладные технические задачи будут реализовываться в других реакторах», - подчеркнул заместитель директора Института по научной работе Юрий Тихонов.

Реакции с участием дейтерия относительно недороги и имеют высокий энергетический выход, но при их протекании образуется опасное нейтронное излучение.

«В существующих установках достигнута температура плазмы в 10 миллионов градусов. Это ключевой параметр, который определяет качество реактора. Надеемся повысить температуру плазмы во вновь созданном реакторе в два или в три раза. На таком уровне мы сможем использовать установку как нейтронный драйвер для энергетического реактора. На основе нашей модели могут создаваться безнейтронные реакторы на тритии-дейтерии. Другими словами, созданные нами установки позволят создавать безнейтронное топливо», - пояснил другой заместитель директора ИЯФ СО РАН по научной работе Александр Бондарь.

Правительственный грант на строительство рабочей модели термоядерного реактора в рамках проекта «Развитие фундаментальных основ и технологий термоядерной энергетики будущего» получил , передаёт Сиб.фм .

«До сих пор мы занимались физическими опытами для создания класса ядерных реакторов, которые можно использовать в реакциях синтез-деления. Мы добились в этом прогресса, и перед нами встала задача – построить прототип термоядерной станции. К настоящему моменту мы накопили базу и технологии и полностью готовы к началу работ. Это будет полномасштабная модель реактора, которую можно использовать для проведения исследований или, к примеру, для переработки радиоактивных отходов. Технологий для создания такого комплекса много. Они новые и сложные, и требуется некоторое время, чтобы их освоить. Все задачи физики плазмы, которые мы будем решать, актуальны для мирового научного сообщества», – сообщил руководитель проекта Александр Иванов .

Как пояснил заместитель директора института по научной работе Юрий Тихонов , разработанный реактор будет отличаться от реальной термоядерной станции тем, что здесь не будет использоваться тритий, а только дейтерий. К тому же реактор не предназначен для выработки электроэнергии, к чему стремятся учёные, работающие над управляемым термоядерным синтезом во всём мире.

«Мы будем проводить только моделирующие эксперименты с генерацией электронов, но все параметры реакций будут соответствовать реальным. Электроэнергию тоже вырабатывать не будем – только доказывать, что реакция может протекать, что параметры плазмы достигнуты. Прикладные технические задачи будут реализовываться в других реакторах», – подчеркнул Юрий Тихонов.

«В существующих установках достигнута температура плазмы в 10 миллионов градусов. Это ключевой параметр, который определяет качество реактора. Надеемся повысить температуру плазмы во вновь созданном реакторе в два или в три раза. На таком уровне мы можем использовать установку как нейтронный драйвер для энергетического реактора. На основе нашей модели могут создаваться безнейтронные реакторы на тритии-дейтерии. Другими словами, созданные нами установки позволят создавать безнейтронное топливо», – пояснил заместитель директора ИЯФ по научной работе Александр Бондарь .

Учёные надеются построить действующую модель реактора за пять лет.

ИЯФ СО РАН – один из двух сибирских институтов (второй – Институт археологии и этнографии), выигравший грант Российского научного фонда на проведение фундаментальных научных исследований.

16:57 30/03/2018

👁 798

Вся эта история началась в 2013 году, а в 2014 представители Lockheed Martin дали знать, что работают над подобного рода устройством.

Тогда ученый по имени Томас Макгуайр, глава Compact Fusion Project, заявил о намерении завершить разработку в течение пяти лет. В 2013 году он заявил о намерении получить рабочий прототип через пять лет, а через десять - наладить промышленное производство таких систем. Skunk Works, занимающееся проектом, является подразделением Lockheed Martin.

Информации о термоядерной энергии и установках, которые ее способны производить, огромное количество. Начиная с 20-х годов прошлого века ученые пытаются представить, как должна выглядеть и функционировать термоядерная установка, реактор, создавая концептуальные прототипы устройств. Все они огромные и очень дорогие. Например, над созданием которого международное сообщество работает во Франции, стоит около $50 млрд, а его вес составляет примерно 23 000 тон. Реактор должен быть готов где-то к 2021 году. Температура внутри устройства будет около 150 миллионов градусов Цельсия, это в 10 раз выше температуры ядра . Магнитное поле установки будет примерно в 200 тысяч раз больше, чем у самой .

Репортер FlightGlobal Стивен Тримбл в своем твиттере сообщил, что “новый патент инженера Skunk Works показывает дизайн компактного термоядерного реактора с чертежом F-16 в качестве потенциального приложения. В Палмдейле ведется испытание прототипа реактора”.

Эксперты называют это невозможным, хотя по мнению The War Zone “не исключено, что в ближайшее время американская корпорация выступит с официальным заявлением”.

В Lockheed Martin заявили, что патент получен 15 февраля 2018 года. В свое время руководитель проекта Compact Fusion Томас Макгуайр заявил, что опытная установка будет создана в 2014 году, прототип – в 2019 году, а рабочий образец – в 2024 году.

Со своей стороны, российские ученые, занимающиеся исследованиями в области управляемого термоядерного синтеза, назвали сообщение Lockheed Martin ненаучным заявлением, направленным на привлечение внимания широкой публики.

“Этого не может быть. Дело в том, что то, что понимают под термоядерным реактором, с физической точки зрения очень хорошо известно. Если звучит “гелий 3” – сразу надо понимать, что это обман. Это характерный признак таких квазиоткрытий – где одна строчка “как это сделать, как реализовать” и десять страниц о том, как после будет хорошо. Это очень характерный признак – вот, мы изобрели холодный термоядерный синтез, и дальше, как его реализовать не говорят, а дальше только десять страниц, как это будет здорово”,- рассказал Pravda.ru заместитель директора лаборатории ядерных реакций им. Флерова ОИЯИ в Дубне Андрей Папеко.

“Основной вопрос, как возбудить термоядерную реакцию, чем нагреть, чем удерживать – это тоже, в общем, вопрос, который не решен сейчас. И даже, скажем, лазерные термоядерные установки, нормальная термоядерная реакция там не зажигается. И ни в каком обозримом будущем, увы, пока решения не видно”,- пояснил физик-ядерщик.

“России довольно широко ведутся исследования, это понятно, это во всей открытой печати опубликовано, то есть, нужно изучать условия нагревания материалов для термоядерной реакции. В общем, это смесь с дейтерием – фантастики никакой нет, эта физика вся очень хорошо известна. Как нагреть, как удержать, как снять энергию, если вы зажигаете очень горячую плазму, она съест стенки реактора, она их расплавит. В больших установках – там можно магнитными полями удерживать, фокусировать в центре камеры, чтобы не расплавляло стенки реактора. А в маленьких установках просто не получится, расплавится, сгорит. То есть, это, по-моему, очень преждевременные утверждения.

Так, глава российского агентства ИТЭР Анатолий Красильников публично заявил, что озвученный Lockheed Martin научный прорыв на самом деле является пустыми словами и не имеет ничего общего с реальностью. И то, что американцы якобы готовы приняться за создание прототипа реактора с заявленными размерами, кажется господину Красильникову обычным пиаром. По его мнению, современная наука пока не готова спроектировать в ближайшие несколько лет полноценно функционирующий безопасный термоядерный реактор столь малых размеров.

В качестве аргументов Красильников отметил, что над международным проектом ИТЭР работают заслуженные физики-ядерщики Китая, Южной Кореи, Индии, США, Японии, России и стран Евросоюза, однако даже собранные воедино лучшие умы современности надеются получить только первую плазму из ИТЭР в лучшем случае к 2023 году. При этом ни о какой компактности прототипа речи не идёт.

One Comment

    Физика до сих пор очень мало знает о самом механизме существования атома. Атом мыслится как энергетически замкнутая кладовая неисчерпаемой энергии. Словом, в попытках освоить УТС физика (ее теория и практика) оперировали громадным количеством неизвестных факторов. Все это, несомненно, является следствием отрицания существования не корпускулярной космической среды – эфира. Что же нового в понимании микромира дает теория эфира? Прежде всего, она утверждает, что атом существует не сам по себе, а только благодаря тому, что он поглощает эфир извне, который, пройдя обработку в электронной оболочке атома и превратившись в элементарные частицы, поглощается ядром (его нуклонами). Атомные ядра, лишенные естественного доступа эфира извне, отбирают его отрицательную составляющую в виде своих электронов и электронов атомов из примесей. В этом и заключается отрицательное влияние примесей. Если с доступом в плазму атомов примесей, борьба, хоть и неосознанно, физиками все-таки велась, то с доступом эфира извне никакие мероприятия не предусматривались. А для того, чтобы получить полноценную и устойчивую плазму, необходима её полная изоляция от эфира. Никакая вакуумная техника этот вопрос решить не может, поскольку эфир обладает высокой проникающей способностью.

Ученые Института ядерной физики Сибирского отделения Российской академии наук (ИЯФ СО РАН) намерены создать в своем институте рабочую модель термоядерного реактора. Об этом изданию «Сиб.фм» сообщил руководитель проекта, доктор физико-математических наук Александр Иванов.

Для разворачивания проекта «Развитие фундаментальных основ и технологий термоядерной энергетики будущего» ученые получили правительственный грант. Всего на создание реактора ученым потребуется около полумиллиарда рублей. Построить установку в Институте собираются за пять лет. Как сообщается, исследованиями, связанными с управляемым термоядерным синтезом, в частности физикой плазмы, в ИЯФ СО РАН занимаются давно.

«До сих пор мы занимались физическими опытами для создания класса ядерных реакторов, которые можно использовать в реакциях синтез-деления. Мы добились в этом прогресса, и перед нами встала задача - построить прототип термоядерной станции. К настоящему моменту мы накопили базу и технологии и полностью готовы к началу работ. Это будет полномасштабная модель реактора, которую можно использовать для проведения исследований или, к примеру, для переработки радиоактивных отходов. Технологий для создания такого комплекса много. Они новые и сложные, и требуется некоторое время, чтобы их освоить. Все задачи физики плазмы, которые мы будем решать, актуальны для мирового научного сообщества», - сообщил Иванов.

В отличие от обычной ядерной энергетики, в термоядерной предполагается использование энергии, высвобождаемой при образовании более тяжелых ядер из легких. В качестве топлива предусматривается применение изотопов водорода - дейтерия и трития, однако в ИЯФ СО РАН собираются работать только с дейтерием.

«Мы будем проводить только моделирующие эксперименты с генерацией электронов, но все параметры реакций будут соответствовать реальным. Электроэнергию тоже вырабатывать не будем - только доказывать, что реакция может протекать, что параметры плазмы достигнуты. Прикладные технические задачи будут реализовываться в других реакторах», - подчеркнул заместитель директора Института по научной работе Юрий Тихонов.

Реакции с участием дейтерия относительно недороги и имеют высокий энергетический выход, но при их протекании образуется опасное нейтронное излучение.

«В существующих установках достигнута температура плазмы в 10 миллионов градусов. Это ключевой параметр, который определяет качество реактора. Надеемся повысить температуру плазмы во вновь созданном реакторе в два или в три раза. На таком уровне мы сможем использовать установку как нейтронный драйвер для энергетического реактора. На основе нашей модели могут создаваться безнейтронные реакторы на тритии-дейтерии. Другими словами, созданные нами установки позволят создавать безнейтронное топливо», - пояснил другой заместитель директора ИЯФ СО РАН по научной работе Александр Бондарь.